首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aimed to investigate certain processes of fluoride production which enable glass ionomer cements to leach fluoride. Two fluoroaluminosilicate glasses, G338 and LG26 were used. The free and total fluoride which could be dissolved from the glasses was measured, before and after acetic acid washing. Both glasses contained appreciable amounts of soluble fluoride prior to any acid treatment. The latter process reduced the amount to some 75% of the original levels. Replacing the customary polymeric acid with propionic acid produced a cement which disintegrated in water allowing the amount of fluoride generated by the cement forming process to be measured. Cement production increased soluble fluoride by a further 3%. Both glasses behaved similarly when undergoing the various processes. G338 produced significantly greater quantities of fluoride, of the order of 10, compared with LG26 although containing only three times the amount of fluoride in the glass formula. A substantial proportion, over half, of the total fluoride was complexed especially after contact with cement and when G338 was used. During the period of the experiment, 21 days, total fluoride release did not seem to depend on the square root of time.  相似文献   

2.
Distribution of fluoride in glass ionomer cement determined using SIMS   总被引:1,自引:0,他引:1  
The uptake by glass ionomer cement of ions (particularly fluoride) from solutions in which the cements have been immersed has been extensively reported. The concentrations within the cement often greatly exceed those in the immersing solution. The distribution of these ions has not been determined. The aim of this study is to use SIMS to investigate the levels of ions within the cement at different depths below the immersed surface of the cement. K+ and F were the ions studied and uptake was into a cement containing neither K nor F (LG30) and one containing F (AH2).The surface was analysed using a Cameca ims4f instrument employing a 14.5 keV Cs+ primary ion beam. This was calibrated on cements made from a series of glasses in which fluorine content was systematically substituted for oxygen (without other elemental changes). XPS, which is very much a surface technique, was used in confirmatory role with respect to the SIMS analysis. Cement discs were made from LG30- and AH2-based cements. After maturation for 72 h these were immersed in 0.275% KF solution for 24 h. SIMS analysis indicated appreciable surface F concentration on LG30 and on AH2 an enhanced F concentration. In contrast, K was not detected on the LG30 surface and only at a low level on AH2. These results were confirmed by XPS. Using the ion beam of the SIMS to sputter away cement enabled the F depth profile on LG30 to be measured to 10 microm. Over this distance the F content drops from 6.2 mmol/g at 0.2 microm from the surface to 0.2 mmol/g at 10 microm. No K was detected down to 13 microm from the surface. From the results of this study, it can be concluded that SIMS is an appropriate tool for further investigation of the distribution of ions uptaken by glass ionomer cements.  相似文献   

3.
The aim of this study was to examine the release of silica (Si), calcium (Ca), phosphorous (P), and fluoride (F) from conventional glass ionomer cement (GI) and resin-modified glass ionomer cement (LCGI), containing different quantities of bioactive glass (BAG). Further aim was to evaluate in vitro biomineralization of dentine. The release of Si increased with the increasing immersion time from the specimens containing BAG, whereas the amount of Ca and P decreased indicating in vitro bioactivity of the materials. LCGI with 30wt% of BAG showed highest bioactivity. It also showed CaP-like precipitation on both the surface of the test specimens and on the dentin discs immersed with the material. Within the limitations of this study, it can be concluded that a dental restorative material consisting of glass ionomer cements and BAG is bioactive and initiates biomineralization on dentin surface in vitro.  相似文献   

4.
Studies have shown that ions in a glass ionomer matrix are 1-10% of the amounts present in the original glass. To measure more precisely the release from a cement matrix, known amounts of ions were added to LG30 glass which was fluoride and sodium-free. Cement without additions acted as the control. 1.4-1.6% of each of sodium, calcium and aluminum fluorides were added to three portions of control blend. The sodium and fluoride release into deionised water from five discs of each cements blend was measured for 8 months. This represented complete release for sodium but not for fluoride. Traces of fluoride and sodium in the glass produced low but measurable amounts indicating about a third of the fluoride and substantially all sodium present in LG30 was released. The addition of calcium fluoride had no significant effect on sodium or fluoride release and aluminium fluoride minimal effects. Adding sodium fluoride significantly enhanced release of both ions although fluoride release was less than from a glass containing 5% fluoride. Only small proportions of the additions, 2-5% of the fluoride and 13% of sodium, were released. Sodium and fluoride appeared to be released independently. For LG30 cements additives were poor at supplying extra ions.  相似文献   

5.
The fluoride release from a commercial, restorative glass ionomer cement was found to be strongly dependent on sample surface area rather than volume. This was noted for disc, cylindrical- and bar-shaped specimens over periods ranging from 1 day to 3 yr. Release from all shapes of specimen followed the established pattern of an initial non-linear region followed by one where release was proportional to the square root of time. If fluoride levels in the cement matrix of specimens were artificially increased by incorporation during the mixing then the release pattern during the first few months was altered. The initial release increased for some specimen sizes and decreased for others. The dependency on surface area was greatly reduced for several months. By the time a year had elapsed the correlation between fluoride ion release and surface area had been re-established. The influence of additional fluoride during setting can therefore act to perturb the normal release pattern and may in some instances reduce the initial fluoride release. Release should be quoted in terms of, or with measurements of, the surface area of specimens under investigation.  相似文献   

6.
The relation of membrane transport of alkali cations to their external concentrations or to their cellular contents was studied in HeLa cells. Chilling the cells at 0 degrees C reversed cell Na+ and K+ to a mirror image of the normal pattern. Upon rewarming to 37 degrees C the ouabain-sensitive Rb+ uptake became 2-fold faster than the control. A kinetic analysis revealed that the stimulation was due to an increase in the maximal rate of Rb+ uptake, Jmax. The increase in apparent Km was relatively small. The analysis also showed that the ouabain-sensitive cation transport system seemed to have two binding sites for Rb+. The stimulation of Rb+ uptake was related to an increase in cell Na+, and an addition of ouabain abolished such a relation. Net Na+ flux which was in the direction from inside the cells to the medium at hypernormal cell Na+ was iiincreased when cell Na+ ncreased. In contrast, net Na+ flux which was in the opposite direction in the presence of ovabain was reduced and became almost 0 at cell Na+ of 900 nmol/mg of protein. The Na+/Rb+ coupling ratio in the ouabain-sensitive cation transport was apparently less than 1 at nearly physiological cell Na+, but it approached 1.5 when cell Na+ was sufficiently high. The sum of cell K+ plus Rb+ varied inversely with cell Na+, and this relation was unaffected upon treatment with ouabain. When Rb+ uptake declined below 80% of the control, cell K+ plus Rb+ was reduced, however, 40% of the sum of cell cations was still preserved even after complete inhibition of the cation pumps by ouabain treatment of 2 hr. Interrelations of these results are discussed.  相似文献   

7.
文题释义:黏弹性力学:连续介质力学的重要分支,又称黏弹性理论,研究黏弹性物质的力学行为、本构关系及其破坏规律,以及黏弹性体在外力和其他因素作用下的变形和应力分布。聚合物、混凝土、金属、岩石、土壤、石油、肌肉、血液和骨骼等,在一定条件下既具有弹性性质又具有黏性性质,这种兼具弹性和黏性性质的材料称为黏弹性材料,含黏弹性固体与黏弹性流体,又可分为线性黏弹性体和非线性黏弹性体。线性黏弹性体的两种极端情况即为胡克体(遵循胡克定律)和牛顿流体(遵循牛顿粘性定律)。 生物力学:是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支,其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。 物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题,依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。 背景:以往对改性玻璃离子水门汀的力学性能研究多以压缩、弯曲实验居多,关于玻璃离子水门汀加入锶羟基磷灰石后的应力松弛、蠕变实验研究鲜有报道。 目的:对比分析传统玻璃离子水门汀、复合树脂釉质粘接剂、改性玻璃离子水门汀的应力松弛、蠕变特性。 方法:按质量比15%向玻璃离子水门汀中加入掺锶羟基磷灰石,制备改性玻璃离子水门汀。制作改性玻璃离子水门汀、复合树脂釉质粘接剂与传统玻璃离子水门汀试样,3组各取10个试样进行应力松弛实验,另取10个试样进行蠕变实验。 结果与结论:①应力松弛实验7 200 s时,传统玻璃离子水门汀组应力下降了1.18 MPa,复合树脂釉质粘接剂组应力下降了1.39 MPa,掺锶羟基磷灰石复合玻璃离子水门汀组应力下降了1.38 MPa;传统玻璃离子水门汀组应力下降量小于掺锶羟基磷灰石复合玻璃离子水门汀组、复合树脂釉质粘接剂组(P < 0.05),掺锶羟基磷灰石复合玻璃离子水门汀组和复合树脂釉质粘接剂组应力下降量无差异(P > 0.05)。②蠕变实验7 200 s时,传统玻璃离子水门汀组应变上升了0.24%,复合树脂釉质粘接剂组应变上升了0.33%,掺锶羟基磷灰石复合玻璃离子水门汀组应变上升了0.32%;传统玻璃离子水门汀组应变上升量小于掺锶羟基磷灰石复合玻璃离子水门汀组、复合树脂釉质粘接剂组(P < 0.05),掺锶羟基磷灰石复合玻璃离子水门汀组试和复合树脂釉质粘接剂组应变上升量无差异(P > 0.05)。③结果表明,15%掺锶羟基磷灰石提高和改善了玻璃离子水门汀的黏弹特性,有利于其与黏结物体的黏结,有利于提高黏结强度。 ORCID: 0000-0003-1024-5733(丁洁) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

8.
Lucas ME  Arita K  Nishino M 《Biomaterials》2003,24(21):3787-3794
Improving the mechanical strength of glass ionomer cement while preserving its favorable clinical properties such as fluoride release, bonding to tooth structure and biocompatibility is desirable. In this study, hydroxyapatite was incorporated into chemically setting glass ionomer cement and its effect on the fracture toughness, bonding to dentin and fluoride release was identified. Commercial glass ionomer cement (Fuji IX GP((R)) ) was the control and base material. Eight weight percent of hydroxyapatite was added into the glass ionomer powder. Specimens were fabricated and the fracture toughness, shear bond strength and eluted fluoride ion concentration were measured. Adding hydroxyapatite into the glass ionomer cement led to significantly higher fracture toughness after 15min and 24h from mixing. The hydroxyapatite-added cement also exhibited bond strength to dentin similar to that of the control from 15min to 56 days and consistent fluoride release for 13 weeks. SEM findings showed a cohesive type of fracture in the material for all specimens in both groups. These results indicate that hydroxyapatite-added glass ionomer cement has a potential as a reliable restorative material with improved fracture toughness, long-term bonding to dentin and unimpeded ability of sustained fluoride release.  相似文献   

9.
Ana ID  Matsuya S  Ohta M  Ishikawa K 《Biomaterials》2003,24(18):3061-3067
In this study, the effects of added bioactive glass on the basic setting properties of a commercially available resin-modified glass ionomer cement were investigated with respect to setting time, mechanical strength, and setting mechanism. It was found to be clinically acceptable whether the setting time was extended or shortened depending on the type of bioactive glass added. The compressive strength of the set cement containing the bioactive glass decreased and was much higher when compared with the conventional type glass ionomer cement containing bioactive glass. The Fourier-transform infrared and 13C CP/MAS-NMR spectroscopies revealed that the extent of the acid-base reaction was larger in the cements containing bioactive glass than in the commercial resin-modified glass ionomer cement because of its high basicity in the bioactive glass. The 27Al MAS-NMR showed that crosslinking of the carboxylates in the polymeric acid by Al proceeded less in the cement containing the bioactive glass.  相似文献   

10.
The objective of the study was to examine the effects that fluoride ions released from different dental glass ionomer cements may have on titanium. The study included determination of the amounts of released ions and measurement of the color changes on titanium plates cemented with four kinds of commercial glass ionomer cements due to immersion of such “sandwich specimens” in 1% saline (NaCl) solution. The discoloration of titanium in the presence of glass ionomer cements was observed. In addition, for specimens cemented with two of the cements titanium ions were found in the solution after immersion. The results of the present study show that a low concentration of released fluoride ions and other elements from glass ionomer cements may cause aesthetic problems of discoloration of titanium restorations and appliances.  相似文献   

11.
This investigates the effects of the addition of Na and F ions to a glass ionomer cement in which those ions are not inherently present on its interactions with dilute (0.2%) NaF solution. Both the effect of the solution on the cement's surface morphology and the effect of the cement on the solution in terms of take up of Na+ and F- and of change in pH are to be investigated. These results are to be compared to previous results obtained with glasses which contained both, one, or neither of the ions as components of their glasses. NaF (1.3% by weight in the mixed cement) was added to the powder components of a glass ionomer based on LG30 glass (which contains Al, Si, Ca, P, and O only). Discs of cement were set in moulds at 37 degrees C for 1 h then stored in water at 37 degrees C for 3 days. Each test disc was then immersed in 10 ml 0.2% NaF solution whereas controls remained immersed in water (N = 3 for test and control). Test and control disc surfaces were assessed both qualitatively by electron microscopy and quantitatively by linear profilometry (Ra values). Potentiometry was used to measure solution pH and Na and F concentrations using a pH electrode and suitable ion selective electrodes both before and after cement immersion. The surface of test specimens was subject considerable disruption with the polysalt cement matrix being removed and residual glass particles being disclosed. The controls showed no such disruption. This effect was reflected in a significant difference of Ra. Such an effect was not shown by test and control surfaces of LG30 but a similar effect was to that shown by LG26 (which contains F as a glass component). Solution pH changed by 1 unit which was much more than the change shown by LG30 or LG26 but is similar to that of AH2 and MP4 cements which both contain Na. The Na and F uptake was much lower than for LG30 whereas that of LG26 was higher than LG30. The Na:F ratio was 0.29:1 compared to 1.26:1 for LG30 (LG26 = 1.01:1, AH2 = 1.02:1, MP4 = 1.04:1). Fluoride addition to a F-free glass ionomer renders it vulnerable to surface disruption by NaF solution showing that fluoride complexes produced in glass dissolution are not necessarily involved in this process. Sodium addition to a Na-free glass ionomer confirms the role of this cement in enhancing pH change in NaF solution. The level of uptake of F- from a NaF solution in much lower than that for the F-free glass ionomer which shows there is no direct relationship between F- uptake and surface disruption. The ratio of Na:F uptake is below 0.3:1, but the pH change is similar to cements where the ratio is close to unity which indicates that F-/OH- interchange is not a significant mechanism even when anion/cation uptake is not balanced.  相似文献   

12.
This study investigates the fluoridation of four conventional glass ionomer cements (GIC) (ChemFil Superior encapsulated, Fuji Cap II, Ketac-Fil and Hi Dense) and three resin-modified GIC (RM-GIC) (Fuji II LC encapsulated, Photac-Fil and Vitremer). The fluoride release of matured restorative GIC was measured as a function of time, after four repeated fluoridations in a 2% NaF aqueous solution for 1 h. This release was corrected for the intrinsic release as determined with a control group. It was demonstrated that application of fluoride is capable of recharging GIC but the subsequent high fluoride release only lasts for one or a few days. Moreover, the fluoride release behaviour depends on the cement formulation. Comparable to the intrinsic release, the net fluoride release after fluoridation is composed of a short- and a long-term process, the former being predominant after fluoridation. The total amount of fluoride released according to the short-term process increases with consecutive fluoridations. This is especially pronounced for the RM-GIC, who exhibit a relatively slow release after fluoridation as compared to the conventional GIC. An explanation for these results is suggested on the basis of the physicochemistry of the setting reaction of the cements and of the fluoridation process.  相似文献   

13.
The objective of this study was to investigate the effect of repeated applications of a neutral NaF solution on the surface roughness of four conventional glass ionomer cements (GIC) (ChemFil Superior encapsulated, Fuji Cap II, Ketac-Fil and Hi Dense), three resin-modified (RM-) GIC (Fuji II LC encapsulated, Photac-Fil and Vitremer) and one polyacid-modified composite resin (PAM-C) (Dyract). Matured specimens were four times alternately eluted in water and exposed to 2% neutral NaF aqueous solutions for 1h. Control specimens were only subjected to elution in water for the same time period. After the treatment the surface roughness R(a) was determined using non-contact surface profilometry and selected samples were examined with SEM. Except for the PAM-C, R(a) increased drastically for the fluoride-treated samples compared to water-stored samples, the effect being most pronounced for the GIC. Surface roughening apparently is caused by a progressive disintegration or chemical erosion of the polysalt matrix of (RM-)GIC.  相似文献   

14.
The effect of an early water contact on the fluoride release is studied for the resin-modified glass ionomer cements (RM-GIC) GC Lining LC, PhotacBond, Vitremer and Vitrebond and for the polyacid-modified composite resins (PAM-C) Variglass and Dyract. Six months fluoride release profiles were determined in regularly renewed water (37 degrees C), for the products directly after light curing and after 24 h maturation in a humid atmosphere (85% RH). ANOVA shows that both the short-term and the long-term fluoride release of a RM-GIC are influenced by this maturation. This indicates that direct water contact for this material should be avoided. For the RM-GIC a correlation is found between the initial fluoride release process and the long-term process. For the PAM-C materials, no differences in the fluoride release are found as a function of maturation, indicating that early water contact has no effect. The amounts of fluoride released by PAM-C are low compared to RM-GIC, which can affect their caries preventive potential. The results are explained on the basis of the setting reaction of both types of materials.  相似文献   

15.
This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added.  相似文献   

16.
The fluoride ion released from glass ionomer cements into water is reportedly, in part, complexed with other elements present in the cement. When measured using ion selective electrode potentiometry (ISE) a decomplexant TISAB IV (T) is used to convert all fluoride to F- ion which the ISE can detect. In this study, an additional decomplexing procedure (H) designed to hydrolyse fluorine covalently bonded to phosphorus in the monofluorophosphate (MFP) ion into F- was also used. The soluble products from three glass ionomers were analysed by both techniques (H & T). Five 1 x 10 mm discs were each immersed in 10 ml of de-ionised water. This was changed and 4 ml analysed by T and 4 ml by H at 1, 2, 3, 6, 10, 13, 17, 21, 24, 28, and 31 days. H was greater than T for 161 of the 165 pairs ( chi2=74.7, p=<0.001 ). The total cumulative F release H (in micromol/g cement) at 31 days for AH2 was 122.3, s.d. 30.8; LG26 44.0, s.d. 1.55; LG30 10.0, s.d. 3.15 as compared T results of 100.1, s.d. 31.1; 30.3, s.d. 1.92; 3.7, s.d. 1.36, respectively. In all three cases the H was significantly greater than T (matched pair 't' test with p=0.01 or less). H-T was show to have a very strong associative relationship with t1/2 (R2=0.98 or greater p<0.001 ). Evaluating the ratio of P:F in the cements in comparison with the ratio of additional F measured by H to that measured by T produced a relationship log[(H-T)/T]=0.28 x log[P/F]-0.45 with R2=0.999. It is concluded that glass ionomers release more fluorine than is detected by ISE using TISAB IV. If this F is in the form of MFP this may be released more completely into saliva than F as F-, release of which is substantially reduced by Ca2+, since calcium monofluorophosphate is more soluble than CaF2.  相似文献   

17.
In this study, a methacryloyl derivative of l-proline was synthesized, characterized and incorporated into a conventional glass ionomer cement (GIC) with a polyacid composition. Subsequently, the effects of incorporation of synthesized N-methacryloyl-proline and terpolymer on the GIC's mechanical and working properties were studied. 1-Methacryloylpyrrolidone-2-carboxylic acid was synthesized and used in a polymerization reaction with acrylic acid and itaconic acid in order to form terpolymer which was used in Fuji II commercial GIC formulations. Chemical structural characterization of the resulting products was performed using (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The viscosity and molecular weight of the terpolymer were also measured. The mechanical strength properties of the modified GICs were evaluated after 24h or 1 week of immersion in distilled water at 37 degrees C. Analysis of variance was used to study the statistical significance of the mechanical strengths and working properties, and to compare them with a control group. Results showed that N-methacryloyl-proline modified GICs exhibited significantly higher compressive strength (CS; 195-210MPa), higher diametral tensile strength (DTS; 19-26MPa) and higher biaxial flexural strength (38-46MPa) in comparison to Fuji II GIC (161-166MPa in CS, 12-14MPa in DTS and 13-18MPa in biaxial flexural strength). The working properties (setting and working time) of the modified samples showed that the modified cement was a fast-set cement. It was concluded that a novel amino acid-containing GIC has been developed in this study with 27%, 94% and 170% increases in values for compressive, diametral tensile and biaxial flexural strength, respectively, in comparison to commercial Fuji II GIC.  相似文献   

18.
This study quantified the release of monomers from polymerized specimens of four commercially available resin composites and one glass ionomer cement immersed in water:ethanol solutions. Individual standard curves were prepared from five monomers: (1) triethylene glycol dimethacrylate (TEGDMA), (2) 2-hydroxy-ethyl methacrylate (HEMA), (3) urethane dimethacrylate (UDMA), (4) bisphenol A glycidyl dimethacrylate (BISGMA), and (5) bisphenol A. The concentration of the monomers was determined at Days 1, 7, 30, and 90 with the use of electrospray ionization/mass spectrometry. Data were expressed in mean micromol per mm(2) surface area of specimen and analyzed with Scheffe's test (p<0.05). The following monomers were found in water: monomers (1) and (2) from Delton sealant, monomer (5) from ScotchBond Multipurpose Adhesive and Delton sealant, monomer (3) from Definite and monomer (4) from Fuji II LC, ScotchBond Multipurpose Adhesive, Synergy and Definite. All these monomers increased in concentration over time, with the exception of monomer (1) from Delton sealant. Monomers (3) and (5) were found in extracts of materials despite their absence from the manufacturer's published composition. All monomers were released in significantly higher concentrations in water:ethanol solutions than in water. The greatest release of monomers occurred in the first day. The effect of the measured concentrations of monomers (1-5) on human genes, cells, or tissues needs to be considered with the use of a biological model.  相似文献   

19.
20.
The glass ionomer cement Vitrebond showed a clear genotoxic effect in the in vitro Mammalian Cell Gene Mutation Test (HPRT Test) with CHO cells as well as in the bacterial umu-test with Salmonella typhimurium TA1535/pSK1002. Both DMSO and Ham's F12 cell culture medium extracts according to ISO 10993-12 (Biological evaluation of medical devices-Part 12: sample preparation and reference materials, Geneva, Switzerland) exhibit a clear genotoxic effect in the umu-test. The effect is independent of the extraction volume in a range from 0.5 to 4 ml Ham's F12 cell culture medium. Subsequent extractions of Vitrebond showed no significant difference in the genotoxic response although weight loss and content of 2-hydroxyethyl-methacrylate dropped significantly. In vivo conditions of Vitrebond were simulated by extractions with artificial and collected human saliva. These extracts showed a clear genotoxic effect in the umu-test, even if only a few seconds of extraction time were applied. In conclusion, sample preparations for genotoxicity testing according to ISO 10993-12 reflect the in vivo conditions of Vitrebond applications. This seems to be mostly due to the hydrophilic nature of the genotoxic ingredients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号