首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amiodarone inhibits cardiac ATP-sensitive potassium channels   总被引:2,自引:0,他引:2  
INTRODUCTION: ATP-sensitive K+ channels (K(ATP)) are expressed abundantly in cardiovascular tissues. Blocking this channel in experimental models of ischemia can reduce arrhythmias. We investigated the acute effects of amiodarone on the activity of cardiac sarcolemmal K(ATP) channels and their sensitivity to ATP. METHODS AND RESULTS: Single K(ATP) channel activity was recorded using inside-out patches from rat ventricular myocytes (symmetric 140 mM K+ solutions and a pipette potential of +40 mV). Amiodarone inhibited K(ATP) channel activity in a concentration-dependent manner. After 60 seconds of exposure to amiodarone, the fraction of mean patch current relative to baseline current was 1.0 +/- 0.05 (n = 4), 0.8 +/- 0.07 (n = 4), 0.6 +/- 0.07 (n = 5), and 0.2 +/- 0.05 (n = 7) with 0, 0.1, 1.0, or 10 microM amiodarone, respectively (IC50 = 2.3 microM). ATP sensitivity was greater in the presence of amiodarone (EC50 = 13 +/- 0.2 microM in the presence of 10 microM amiodarone vs 43 +/- 0.1 microM in controls, n = 5; P < 0.05). Kinetic analysis showed that open and short closed intervals (bursting activity) were unchanged by 1 microM amiodarone, whereas interburst closed intervals were prolonged. Amiodarone also inhibited whole cell K(ATP) channel current (activated by 100 microM bimakalim). After a 10-minute application of amiodarone (10 microM), relative current was 0.71 +/- 0.03 vs 0.92 +/- 0.09 in control (P < 0.03). CONCLUSION: Amiodarone rapidly inhibited K(ATP) channel activity by both promoting channel closure and increasing ATP sensitivity. These actions may contribute to the antiarrhythmic properties of amiodarone.  相似文献   

2.
Effects of mexiletine on the rapid inward sodium current (INa) were studied in freshly isolated single cells of the ventricular myocardium of adult rats and in single cultured ventricular muscle cells of newborn rats. The current was measured in internally perfused, voltage-clamped cells by a single suction pipette technique. Mexiletine was applied extracellularly. INa was reduced by the drug in both preparations when the membrane was depolarized to -20 mV by short (8 ms) pulses delivered at a frequency of 0.1 Hz from a holding potential of -100 mV. Mexiletine in a concentration of 50 microM diminished the INa under this condition by 70 +/- 8% (mean +/- S.D.) in the adult myocardial cells. A nearly equal reduction of the current (65 +/- 10%) was caused in the neonatal myocardial cells by 15 microM mexiletine. A use-dependent block of INa was produced in the presence of 10 and of 20 to 30 microM mexiletine, respectively, in the neonatal and the adult myocardial cells by repetitive depolarizing test pulses applied at frequencies between 1 and 7 Hz. Prolongation of the pulse duration from 10 to 100 ms enhanced the use-dependent block of INa in both preparations. The frequency-dependent action of mexiletine could be modulated by 100-ms hyperpolarizing prepulses from -80 to -140 mV. The time course of the use-dependent block (prepulse off) and unblock (prepulse on) was monitored. The slope of the inactivation curve of INa in the neonatal heart cells was reduced in the presence of mexiletine and the midpoint of the curve was shifted in the hyperpolarizing direction. These findings are interpreted as suggesting that binding of mexiletine to the sodium channel of the rat myocardial cells studied is enhanced when the cell membrane becomes depolarized.  相似文献   

3.
Mesoridazine, a phenothiazine antipsychotic agent, prolongs the QT interval of the cardiac electrocardiogram and is associated with Torsade de pointes-type arrhythmias. In this study, we examined the effects of mesoridazine on human ether-a-go-go-related gene (HERG) K+ currents. HERG channels were stably expressed in human embryonic kidney 293 cells and studied using standard whole-cell patch-clamp technique (37 degrees C). Mesoridazine blocked HERG currents in a concentration-dependent manner (IC50 550 nM at 0 mV); block increased significantly over the voltage range where HERG activates and saturated at voltages eliciting maximal HERG channel activation. Tonic block of HERG current by mesoridazine (1.8 microM) was minimal (< 2-4%). The rate of the onset of HERG channel block was rapid and dose dependent (tau = 54 +/- 7 ms at 0 mV and 1.8 microM mesoridazine), but not significantly affected by test potentials ranging from -30 to +30 mV. The V1/2 for steady-state activation was shifted from -31.2 +/- 1.0 to -39.2 +/- 0.5 mV (P < 0.01). The apparent rate of HERG channel deactivation was significantly reduced (fast tau = 153 +/- 8 vs. 102 +/- 6 ms at -50 mV, P < 0.01; slow tau = 1113 +/- 63 vs. 508 +/- 27 ms, P < 0.01). The inactivation kinetics and voltage dependence of steady-state inactivation of the HERG channel were not significantly altered by mesoridazine. These findings demonstrate that mesoridazine is a potent and rapid open-channel blocker of HERG channels. This block would explain the QT prolongation seen clinically at therapeutic concentrations (0.3-3.6 microM).  相似文献   

4.
OBJECTIVE: The purpose of the study was to investigate the properties of the delayed rectifier potassium current (IK) in myocytes isolated from undiseased human left ventricles. METHODS: The whole-cell configuration of the patch-clamp technique was applied in 28 left ventricular myocytes from 13 hearts at 35 degrees C. RESULTS: An E-4031 sensitive tail current identified the rapid component of IK (IKr) in the myocytes, but there was no evidence for an E-4031 insensitive slow component of IK (IKs). When nifedipine (5 microM) was used to block the inward calcium current (ICa), IKr activation was fast (tau = 31.0 +/- 7.4 ms, at +30 mV, n = 5) and deactivation kinetics were biexponential and relatively slow (tau 1 = 600.0 +/- 53.9 ms and tau 2 = 6792.2 +/- 875.7 ms, at -40 mV, n = 7). Application of CdCl2 (250 microM) to block ICa altered the voltage dependence of the IKr considerably, slowing its activation (tau = 657.1 +/- 109.1 ms, at +30 mV, n = 5) and accelerating its deactivation (tau = 104.0 +/- 18.5 ms, at -40 mV, n = 8). CONCLUSIONS: In undiseased human ventricle at 35 degrees C IKr exists having fast activation and slow deactivation kinetics; however, there was no evidence found for an expressed IKs. IKr probably plays an important role in the frequency dependent modulation of repolarization in undiseased human ventricle, and is a target for many Class III antiarrhythmic drugs.  相似文献   

5.
To determine if the fast sodium current inactivation process is necessary for sodium current (INa) blockade by quinidine, we studied the effects of quinidine on INa in guinea-pig ventricular myocytes treated with chloramine-T, which removes the fast inactivation process of INa. Following exposure to chloramine-T (2 mM), INa amplitude was reduced at all voltages and INa decay was irreversibly prevented. Quinidine (10 microM) produced resting block of INa of 36 +/- 2% (n = 5) at the peak potential of -30 mV in chloramine-T treated myocytes. Quinidine decreased INa in a dose-dependent manner. The half-blocking concentration (KD) was 1.9 +/- 0.2 x 10(-5) M (n = 4). The steady-state inactivation curve (hx) was shifted in the negative potential direction (-5.2 +/- 0.4 mV, n = 4). Even after removal of the fast inactivation process of INa, use-dependent block was observed in the presence of quinidine when various depolarizing pulse durations (5 ms approximately 200 ms) were applied repetitively at intervals of 300 ms approximately 2 s. Longer depolarizing pulses and higher frequency pulse trains produced greater use-dependent block. Use-dependent block was also enhanced at more positive holding potentials. These results suggest that quinidine produces both resting block and use-dependent block of sodium channels in the absence of the fast INa inactivation process.  相似文献   

6.
OBJECTIVE: To elucidate the regional difference of the K+ current blocking effects of methanesulfonanilide class III agents. METHODS: Regional differences in action potential duration (APD) and E-4031-sensitive component (IKr) as well as -insensitive component (IKs) of the delayed rectifier K+ current (IK) were investigated in enzymatically isolated myocytes from apical and basal regions of the rabbit left ventricle using the whole-cell clamp technique. RESULTS: At 1 Hz stimulation, APD was significantly longer in the apex than in the base (223.1 +/- 10.6 vs. 182.7 +/- 14.5 ms, p < 0.05); application of 1 microM E-4031 caused more significant APD prolongation in the apex than in the base (32.5 +/- 6.4% vs. 21.0 +/- 8.8%, p < 0.05), resulting in an augmentation of regional dispersion of APD. In response to a 3-s depolarization pulse to +40 mV from a holding potential of -50 mV, both IK tail and IKs tail densities were significantly smaller in apical than in basal myocytes (IK: 1.56 +/- 0.13 vs. 2.09 +/- 0.21 pA/pF, p < 0.05; IKs: 0.40 +/- 0.15 vs. 1.43 +/- 0.23, p < 0.01), whereas IKr tail density was significantly greater in the apex than in the base (1.15 +/- 0.13 vs. 0.66 +/- 0.11 pA/pF, p < 0.01). The ratio of IKs/IKr for the tail current in the apex was significantly smaller than that in the base (0.51 +/- 0.21 vs. 3.09 +/- 0.89; p < 0.05). No statistical difference was observed in the voltage dependence as well as activation and deactivation kinetics of IKr and IKs between the apex and base. Isoproterenol (1 microM) increased the time-dependent outward current of IKs by 111 +/- 8% during the 3-s depolarizing step at +40 mV and its tail current by 120 +/- 9% on repolarization to the holding potential of -50 mV, whereas it did not affect IKr. CONCLUSIONS: The regional differences in IK, in particular differences in its two components may underlie the regional disparity in APD, and that methanesulfonanilide class III antiarrhythmic agents such as E-4031 may cause a greater spatial inhomogeneity of ventricular repolarization, leading to re-entrant arrhythmias.  相似文献   

7.
AIM: Clinical use of amiodarone is associated with occasional development of torsade de pointes (TdP). However, preclinical models have failed to demonstrate the proarrhythmic potential of amiodarone. The objective of this study was to reveal and explain the pro- and anti-arrhythmic effects of acute exposure to amiodarone in an animal model. METHODS AND RESULTS: Endo- and epicardial monophasic action potentials (MAPs) and 12-lead electrocardiogram were recorded in female rabbit isolated hearts. Ion channel currents were measured in human embryonic kidney cells expressing SCN5A Na+ and HERG K+ channels. Acute amiodarone alone caused an insignificant increase in duration of MAP (MAPD90) without causing TdP. In the presence of 3 nM sea anemone toxin (ATX-II), amiodarone (1-30 nM) prolonged MAPD90 from 217 +/- 5 to 250 +/- 8 ms (n = 16, P < 0.01), increased transmural dispersion of repolarization (TDR) from 59 +/- 9 to 70 +/- 10 ms and beat-to-beat variability (BVR) of MAPD(90) from 0.75 +/- 0.03 to 1.06 +/- 0.13 ms (P < 0.05). At 30-300 nM, amiodarone induced TdP in 16 out of 17 hearts. A further increase of amiodarone concentration to 1-10 microM abbreviated MAPD(90) to 211 +/- 9 ms, decreased BVR to 0.5 +/- 0.01 ms, decreased TDR (n = 7, P < 0.05), and suppressed TdP. Amiodarone inhibited HERG K+ and late Na+ currents with IC50s of 0.8 +/- 0.1 and 3.0 +/- 0.9 microM, respectively. CONCLUSION: In hearts in which late INa is augmented to mimic congenital or acquired pathological conditions, amiodarone has a concentration-dependent biphasic effect to induce and then suppress arrhythmic activity, secondary to inhibition of HERG K+ and late Na+ currents. This is the first preclinical model demonstrating the potential for amiodarone to induce TdP.  相似文献   

8.
Actions of FRC8653 on the macroscopic and unitary Ba2+ currents were studied using the rabbit basilar artery. Application of (+/-)-FRC8653 (less than 1 microM) increased the amplitude of the inward current when depolarization pulses more negative than -10 mV were applied but inhibited it when depolarization was more positive than 0 mV (in each case from a holding potential of -80 mV). At a holding potential of -40 mV, (+/-)-FRC8653 (greater than 0.1 nM) consistently inhibited the inward current. (-)-FRC8653 (greater than 1 nM) inhibited the amplitude of the inward current evoked by a depolarizing pulse more positive than -10 mV (the holding potential being -80 mV). At the holding potential of -80 mV, but not at -40 mV, (+)-FRC8653 (1 microM) enhanced the current amplitude evoked by a depolarizing pulse more negative than -10 mV but inhibited the current evoked by a pulse more positive than 0 mV. (+/-)-FRC8653 shifted the voltage-dependent inhibition curves to the left, and the slope of the curve became steeper (test pulse of +10 mV). Two types of single Ca2+ channel currents (12 and 23 pS) were recorded from the basilar artery by the cell-attached patch-clamp method. Opening of the 12-pS channel occurred with a depolarizing pulse (-20 mV) from a holding potential of -80 mV, but not from one of -60 mV. (+)-FRC8653 activated, and (-)-FRC8653 inhibited, the 23-pS channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Amiodarone produces use-dependent block of cardiac sodium channels in vitro. This study assessed whether similar use-dependent block occurred in 19 patients with coronary artery disease and inducible, sustained, monomorphic ventricular tachycardia treated with amiodarone. Beat-to-beat measurements of ventricular paced QRS durations during 12-beat trains at cycle lengths of 700, 600, 400 and 300 ms were analyzed at a baseline antiarrhythmic drug-free study and after 2 and 10 weeks of amiodarone therapy. At the drug-free study, there were no significant changes in paced QRS durations within the 12-beat trains at any pacing cycle lengths. After 2 and 10 weeks of amiodarone therapy, progressive prolongation of paced QRS durations occurred over the 12-beat trains at pacing cycle lengths of 600, 400 and 300 ms (p less than 0.05). Significant changes in QRS duration were not observed at a pacing cycle length of 700 ms. This progressive prolongation in QRS duration can be fitted as a function of beat number to a monoexponential equation and occurred with an onset time constant of 1.02 +/- 0.41 beats (306 +/- 122 ms) at a pacing cycle length of 300 ms. The magnitude of QRS prolongation increased as the pacing cycle length was shortened. The magnitudes of QRS prolongation were similar after 2 and 10 weeks of amiodarone therapy. In conclusion, use-dependent prolongation in QRS duration occurs at rapid pacing cycle lengths in humans receiving amiodarone.  相似文献   

10.
Amiodarone effectively blocks both the sodium and calcium channels and beta-adrenoceptors, in addition to blocking several potassium currents including IKr, IKs, Ito, IK1, IKACh and IKNa. The incidence of clinical torsade de pointes (TdP) associated with amiodarone has been reported to be low and the present study compared the proarrhythmic potential of amiodarone with that of a selective IKr channel blocker, sematilide, using a canine chronic atrioventrucular block model. Amiodarone or sematilide (3 and 30 mg/kg; n=4 for each group) was administered orally without anesthesia under continuous ECG monitoring. Both drugs prolonged the QT interval, although the onset was faster for sematilide. The high dose of sematilide induced TdP in 3 of 4 animals, which caused their death, but neither the low dose of sematilide nor the 2 dosages of amiodarone induced lethal ventricular arrhythmias. These results suggest that IKr channel inhibition by amiodarone with its additional ion channel blocking action may contribute to the prevention of TdP.  相似文献   

11.
Membrane currents from single smooth muscle cells enzymatically isolated from canine renal artery were recorded using the patch-clamp technique in the whole-cell and cell-attached configurations. These cells exhibited a mean resting potential, input resistance, membrane time constant, and cell capacitance of -51.8 +/- 2.1 mV, 5.2 +/- 0.98 G omega, 116.2 +/- 16.4 msec, and 29.1 +/- 2.0 pF, respectively. Inward current, when elicited from a holding potential of -80 mV, activated near -50 mV, reached a maximum near 0 mV and was sensitive to the dihydropyridine agonist Bay K 8644 and dihydropyridine antagonist nisoldipine. Two components of macroscopic outward current were identified from voltage-step and ramp depolarizations. The predominant charge carrier of the net outward current was identified as K+ by tail-current experiments (reversal potential, -61.0 +/- 0.8 mV in 10.8 mM [K+]o 0 mM [K+]i). The first component was a small, low-noise, voltage- and time-dependent current that activated between -40 and -30 mV (IK(dr)), and the second component was a larger, noisier, voltage- and time-dependent current that activated at potentials positive to +10 mV (IK(Ca)). Both IK(dr) and IK(Ca) displayed little inactivation during long (4-second) voltage steps. IK(Ca) and IK(dr) could be pharmacologically separated by using various Ca2+ and K+ channel blockers. IK(Ca) was substantially inhibited by external NiCl2 (500 microM), CdCl2 (300 microM), EGTA (5 mM), tetraethylammonium (Ki at +60 mV, 307 microM), and charybdotoxin (100 nM) but was insensitive to 4-aminopyridine (0.1-10 mM). IK(dr) was inhibited by 4-aminopyridine (Ki at +10 mV, 723 microM) and tetraethylammonium (Ki at +10 mV, 908 microM) but was insensitive to external NiCl2 (500 microM), CdCl2 (300 microM), EGTA (5 mM), and charybdotoxin (100 nM). Two types of single K+ channels were identified in cell-attached patches. The most abundant K+ channel that was recorded exhibited voltage-dependent activation, was blocked by external tetraethylammonium (250 microM), and had a large single-channel conductance (232 +/- 12 pS with 150 mM K+ in the patch pipette, 130 +/- 17 pS with 5.4 mM K+ in the patch pipette). The second channel was also voltage dependent, was blocked by 4-aminopyridine (5 mM), and exhibited a smaller single-channel conductance (104 +/- 8 pS with 150 mM K+ in the patch pipette, 57 +/- 6 pS with 5.4 mM K+ in the patch pipette). These results suggest that depolarization of canine renal artery cells opens dihydropyridine-sensitive Ca2+ channels and at least two K+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In guinea pig cardiac myocytes quinidine (20 microM) caused less than 10% tonic block reduction of the sodium current at -120 mV, but a fast pulse train reduced it more than 90%. Recovery from use-dependent block was time and voltage dependent, and was always slow (tau = 34 +/- 10 seconds at -160 mV; tau = 90 +/- 35 seconds at -120 mV; n = 15, mean +/- SD, p less than 0.001, paired t test). However, in association with repeated activation a fast component of recovery from block was observed: use-dependent unblocking. Availability of sodium channels for use-dependent unblocking was enhanced by hyperpolarization until a plateau was reached near -160 mV. Compared with the availability of drug-free sodium channels (h-curve), the voltage dependence of availability for use-dependent unblocking (h'-curve) was shifted by about 30 mV to more negative potentials, and its slope was reduced 2.5-fold. At -160 mV, the kinetics of development of availability of sodium channels for use-dependent unblocking were rapid (tau less than 10 msec). Depolarization to -120 mV reduced the availability of sodium channels for fast unblocking with a time constant of 191 +/- 46 msec (n = 14). Finally, block established by frequent brief depolarizations (activations) declined during prolonged inactivation. From these results we concluded that the time and voltage dependence of the availability of sodium channels for unblocking are considerably different from the availability for activation of drug-free channels, that rested drug-associated channels do exist, and that drug-associated channels do not conduct (or at least have a greatly reduced conductance) upon activation unless they first unblock. Furthermore, activated and inactivated channels have a different affinity for quinidine, and since quinidine can occupy the channel receptor even when "guarded," our results are incompatible with the guarded receptor hypothesis but can be explained within the framework of the modulated receptor hypothesis.  相似文献   

13.
Effects of flecainide, a potent antiarrhythmic agent, on sodium channel availability was investigated in guinea pig single cardiac cells by the whole-cell voltage-clamp technique. Sodium current (INa) experiments were performed at 17 degrees C, and maximum upstroke velocity (Vmax) experiments were performed at 37 degrees C. Flecainide (3 microM) caused little tonic block, but reduced sodium channel availability in a use-dependent manner. The latter effect was accentuated by depolarization and attenuated by hyperpolarization. Long (200-msec) and short (10-msec) depolarizations yielded similar use-dependent block. These results indicate that flecainide has a low affinity for rested (R) and inactivated (I) channels but a high affinity for activated ones (A). In each of these states, the channels can bind to drug to form the corresponding RD, ID, and AD states. Recovery from flecainide block consisted of two components. An initial fast component was strongly voltage dependent: with increasing hyperpolarization, recovery developed more quickly and to a larger extent. At 17 degrees C, the mean time constant shortened from 132 +/- 81.6 msec at -120 mV to 46.9 +/- 34.1 msec at +/- 160 mV (kinetics were too fast for accurate measurement at 37 degrees C). A later slow component was largely voltage independent: at 37 degrees C, the mean time constant was 9.8 +/- 3.2 seconds at -100 mV and 10.7 +/- 3.8 seconds at -75 mV. The slow component of recovery was similarly independent of voltage at 17 degrees C. In terms of the modulated-receptor theory, our results indicate that the fast recovery depends on availability for unblocking (RD) but occurs during activation (AD----A). Indeed, when the RD state is maximized by strong hyperpolarization, activation unblock was also maximized. However, during depolarization to -100 mV, availability for activation unblock declined with a time constant of 98 +/- 12 msec (RD----ID). Therefore, the voltage-dependent fast unblocking is mostly due to priming of the RD state (RD----ID), and the voltage-independent slow unblock reflects dissociation of flecainide from closed states (RD----R and ID----I). We conclude that flecainide interacts with sodium channels preferentially in the activated state, whereas unblocking occurs via two separate pathways: activated and closed states. Furthermore, drug association with channels shifts the voltage dependence of closed-state transitions (RD in equilibrium ID) and their kinetics toward more negative potentials.  相似文献   

14.
The role of protein kinase C in regulating Ca2+ channel activity was investigated using the whole-cell patch-clamp technique in the mouse pituitary tumor cell line AtT-20. The Ca2+ current was activated by depolarizing voltage steps from a holding potential of -80 mV. Extracellular application of the protein kinase C activator 1-oleoyl-2-acetylglycerol (OAG) reduced voltage-dependent Ca2+ current. This effect was reversible and dose dependent (10-100 microM). Pertussis toxin did not block the effect of OAG on Ca2+ current, suggesting that OAG does not affect Ca2+ channels via a pertussis toxin sensitive guanosine triphosphate binding protein. Na+-free solutions did not block the effect of OAG on Ca2+ channels, suggesting that this effect of OAG does not involve the Na+/H+ antiporter. The phorbol esters 12-deoxyphorbol-13-isobutyrate (10 microM) and phorbol-12,13-diacetate (100 microM) also reduced Ca2+ current. The results suggest that protein kinase C may be an inhibitory regulator of voltage-dependent Ca2+ channels.  相似文献   

15.
The effects of tetrodotoxin (TTX) on cardiac sodium channels in guinea-pig ventricular muscle were investigated. Membrane potential was controlled using a single sucrose gap voltage clamp method, and the maximum upstroke velocity of the ventricular action potential (Vmax) was used as an indicator of drug-free sodium channels. Reduction of Vmax by TTX was found to be both voltage- and time-dependent, similar to the effects of many local anesthetic drugs, with the exception that TTX concentrations high enough to produce significant use-dependent block (e.g. 2 microM), also produced significant tonic block, even at potentials negative to -85 mV. The mechanism underlying use-dependent block was determined by defining the time course of block development at potentials between -40 and +20 mV, and the time course of recovery at -85 mV. In 2 microM TTX, the time course of block development at +20 mV contained two phases, a fast phase (tau less than 3 ms) having a mean amplitude of 8.1 +/- 3.2% of control Vmax, and a slow phase (tau = 429 +/- 43 ms) having an amplitude of 35 +/- 2% of control Vmax (n = 5). Recovery from use-dependent block at -85 mV occurred with a time constant of 324 +/- 58 ms (n = 5). The effects of TTX could be well-described by a modulated receptor model with an estimated 12 mV drug-induced shift of inactivation, and state-dependent dissociation constants of 10, 4 and 0.3 microM for rested, activated and inactivated channels. These same drug rate constants could also be used to adequately simulate the reported effects of TTX on plateau sodium currents in a variant model with slow inactivation kinetics.  相似文献   

16.
Prolongation of cardiac action potentials may mediate some of the arrhythmia-suppressing and arrhythmia-aggravating actions of antiarrhythmic agents. In this study, suppression of time-dependent outward current by quinidine and amiodarone was assessed in guinea pig ventricular myocytes. The net time-dependent outward current contained at least two components: a slowly activating, La(3+)-resistant delayed rectifier current (IK) and a rapidly activating, La(3+)-sensitive current. Quinidine block of total time-dependent outward current during clamp steps to positive potentials was relieved as a function of time, whereas that induced by amiodarone was enhanced. In contrast, at negative potentials, suppression of current, whereas amiodarone reduced IK but not the La(3+)-sensitive current, suggesting that differential block of the two components of time-dependent current underlies the distinct effects of the two agents. In contrast to these disparate effects on total time-dependent outward current, steady-state reduction of IK by both drugs increased at positive voltages and saturated at approximately +40 mV; the voltage dependence of block by quinidine (17% per decade, +10 to +30 mV) was steeper than that by amiodarone (5% per decade, +10 to +20 mV). Block by quinidine was time dependent at negative potentials: on stepping from +50 to -30 mV, block initially increased very rapidly, and subsequent deactivation of IK was slowed. This effect was not seen with amiodarone. At -80 mV, quinidine block was relieved with a time constant of 40 +/- 15 msec (n = 4, twin-pulse protocol). The effects of quinidine on IK were compatible with neither a purely voltage-dependent model of quinidine binding nor a model incorporating both voltage- and state-dependent binding of quinidine to delayed rectifier channels having only one open state. The voltage- and time-dependent features of quinidine block were well described by a model in which quinidine has greater affinity for one of two open states of the channel. We conclude that the effects of quinidine and amiodarone on time-dependent outward current reflects block of multiple channels. Quinidine block of IK was far more voltage dependent than that produced by amiodarone, suggesting the drugs act by different mechanisms.  相似文献   

17.
V. A. Maltsev, H. N. Sabbah and A. I. Undrovinas. Late Sodium Current is a Novel Target for Amiodarone: Studies in Failing Human Myocardium. Journal of Molecular and Cellular Cardiology (2001) 33, 923-932. The authors recently reported the existence of a novel late Na(+)current (I(NaL)) in ventricular cardiomyocytes (VC) isolated from both normal and failing human hearts. Both in failing human and canine VC, partial block of I(NaL)normalized action potential (AP) duration and abolished early after depolarizations (EADs). The most recent computer simulation studies indicate a significant contribution of the persistent Na(+)current into the ion current balance on the plateau of VC AP as well as its important role in the dispersion of AP duration across the ventricular wall. The data thus indicate a possibility for I(NaL)to be a new therapeutic target. The present study tested a hypothesis that I(naL)could be a novel target for amiodarone (AMIO). Midmyocardial VC isolated from left ventricle of explanted failing human hearts were measured by a whole-cell clamp. I(NaL)was effectively blocked by AMIO in therapeutic concentrations, with IC(50)being 6.7+/-1.1 microM (mean+/-S.E.M., n=16 cells). At the same time, AMIO (5 microM ) produced almost no effect on the transient Na(+)current (IC(50)=87+/-28 microM, n=8). AMIO significantly shifted the steady-state inactivation (SSI) curve of I(NaL)towards more negative potentials and accelerated decay time course in a dose-dependent manner. At 5 microM, AMIO shifted SSI by 21+/-3 mV (n=7) and decreased the decay time constant from 0.67+/-0.05 s to 0.37+/-0.04 s (n=5, P<0.004). Evaluation of AMIO binding to different Na(+)channel (NaCh) states by means of mathematical models describing dose-dependent SSI shift and decay acceleration was consistent with an action that AMIO blocks NaCh preferentially in inactivated and activated states rather than in resting state. The authors conclude that the late Na(+)current is effectively blocked by AMIO and represents a new target for the drug in patients with chronic heart failure (HF).  相似文献   

18.
OBJECTIVES: The aim of this study was to assess the ability of a non-invasive study, the signal-averaged ECG (SAECG), to predict the effect of amiodarone at ventricular level. BACKGROUND: Amiodarone is the main drug drug used in the treatment of ventricular arrhythmias. Standard ECG does not detect any change in QRS complex resulting from amiodarone therapy. SAECG is more sensitive than ECG for detecting changes in QRS complex. METHODS: The study examined the effects of amiodarone on SAECG in relation to the results of programmed ventricular stimulation in 68 patients with old myocardial infarction, spontaneous and inducible sustained ventricular tachycardia (VT). RESULTS: Amiodarone prolonged the total QRS duration (dur) (129+/-28 vs. 140+/-30 ms, P<0.05) and low amplitude signal (LAS) dur (45+/-20 vs. 51+/-20 ms, P<0.1), whereas the root-mean-square voltage of the last 40 ms of QRS complex (RMS 40) was significantly reduced (20+/-16 vs. 14+/-9 microV, P<0.05). Changes in SAECG parameters did not differ significantly in patients in whom amiodarone prevented the inducibility of VT (n=15) and those in whom VT remained inducible with amiodarone (n=53), but in baseline QRS duration was significantly shorter in patients in whom amiodarone prevented the VT induction (118+/-26 vs. 133+/-28 ms, P<0.05). In patients in whom amiodarone did not prolong the cycle length of VT (n=15), SAECG did not change significantly (QRS dur 131+/-29 vs. 132+/-27 ms, LAS 42+/-20 vs. 42+/-19 ms, RMS 40 22+/-14 vs. 19+/-11 microV). Comparison of the SAECG data in patients with no inducible VT and those with slowed VT differed significantly (P<0.05) between the control state and the recording with amiodarone. CONCLUSIONS: The effects of amiodarone on VT inducibility are predicted by a shorter baseline QRS duration and the degree of drug-induced prolongation of filtered QRS duration. Amiodarone prolonged the QRS duration, LAS duration and decreased RMS 40; this effect was more important in patients with no inducible VT and in those with only slowed VT, than in patients with unchanged or accelerated VT. The absence of changes of QRS duration predicted the induction of a more rapid or not slowed VT with amiodarone with a sensitivity of 87% and a specificity of 83%. Therefore, SAECG appears as an useful and simple means to predict the effects of amiodarone in patients with myocardial infarction and VT.  相似文献   

19.
Block of sodium current (INa) by ethmozin (moricizine), an antiarrhythmic drug, was investigated in isolated, voltage-clamped, canine cardiac Purkinje cells. Initial block of INa by ethmozin (2 microM) in noninactivated cells (held at -150 mV) was 9.3 +/- 1.2% (S.D.). Additional "use-dependent" block developed in response to repetitive depolarization. This block was both frequency-dependent and dose-dependent with the fall in peak INa greater at increasing depolarization frequencies (0.625 to 4 Hz) and with increasing dose (2 microM to 20 microM). Use-dependent block was modeled according to the guarded receptor hypothesis assuming ingress to the channel binding site during the open state of the channel, and egress from the channel independent of the kinetic state of the channel. The rate constants (on-rate = 2100 +/- 100 (S.D.)/M/ms and off-rate = 1.7 +/- 0.3 (S.D.) 10(-5)/ms) were used to predict the time course of INa block in response to repeated depolarizations and the dose-response relationship of steady-state used-dependent block measured in independent experiments. We conclude that ethmozin blocks INa in Purkinje cells in both a non-use-dependent and a use-dependent manner and that the guarded receptor model is useful in describing the use-dependent block.  相似文献   

20.
OBJECTIVE: The goal of this study was to characterize the electrophysiological properties of the Kv4.3 channels expressed in a mammalian cell line. METHODS: Currents were recorded using the whole-cell voltage clamp technique. RESULTS: The threshold for activation of the expressed Kv4.3 current was approximately -30 mV. The dominant time constant for activation was 1.71 +/- 0.16 ms (n = 10) at +60 mV. The current inactivated, this process being incomplete, resulting in a sustained level which contributed 15 +/- 2% (n = 25) of the total current. The time course of inactivation was fit by a biexponential function, the fast component contributing 74 +/- 5% (n = 9) to the overall inactivation. The fast time constant was voltage-dependent [27.6 +/- 2.0 ms at +60 mV (n = 10) versus 64.0 +/- 3.6 ms at 0 mV (n = 10); P < 0.01], whereas the slow was voltage-independent [142 +/- 15 ms at +60 mV (n = 10) versus 129 +/- 33 ms at 0 mV (n = 6) P > 0.05]. The voltage-dependence of inactivation exhibited midpoint and slope values of -26.9 +/- 1.5 mV and 5.9 +/- 0.3 mV (n = 21). Recovery from inactivation was faster at more negative membrane potentials [203 +/- 17 ms (n = 13) and 170 +/- 19 ms (n = 4), at -90 and -100 mV]. Bupivacaine block of Kv4.3 channels was not stereoselective (KD approximately 31 microM). CONCLUSIONS: The functional profile of Kv4.3 channels expressed in Ltk- cells corresponds closely to rat ITO, although differences in recovery do not rule out association with accessory subunits. Nevertheless, the sustained component needs to be considered with respect to native ITO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号