首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-detector row CT: radiation dose characteristics   总被引:8,自引:0,他引:8  
Hamberg LM  Rhea JT  Hunter GJ  Thrall JH 《Radiology》2003,226(3):762-772
PURPOSE: To determine the dose characteristics of multi-detector row computed tomography (CT) and to provide tabulated dose values and rules of thumb that assist in minimizing the radiation dose at multi-detector row CT. MATERIALS AND METHODS: Weighted CT dose index (CTDI100w) values were obtained from three multi-detector row CT scanners (LightSpeed; GE Medical Systems, Milwaukee, Wis) for both head and body CT modes by using standard CT-dose phantoms. The CTDI100w was determined as a function of x-ray tube voltage (80, 100, 120, 140 kVp), tube current (range, 50-380 mA), tube rotation time (0.5-4.0 seconds), radiation profile width (RPW) (5, 10, 15, 20 mm), and acquisition mode (helical high-quality and high-speed modes and axial one-, two-, and four-section modes). Statistical regression was performed to characterize the relationships between CTDI100w and various technique factors. RESULTS: The CTDI100w (milligray) increased linearly with tube current: in head mode, CTDI100w = (0.391 mGy/mA +/- 0.004) x tube current (milliampere) (r2 = 0.999); in body mode, CTDI100w = (0.162 mGy/mA +/- 0.002) x tube current (milliampere) (r2 = 0.999). The CTDI100w increased linearly with rotation time: in head mode, CTDI100w = (34.7 mGy/sec +/- 0.2) x rotation time (seconds) (r2 = 1.0); in body mode, CTDI100w = (13.957 mGy/sec +/- 0.005) x rotation time (seconds) (r2 = 1.0). The relationship of normalized CTDI100w (milligrays per 100 mAs) with tube voltage followed a power law: in head mode, CTDI100w = (0.00016 mGy/100 mAs. kVp +/- 0.00007) x (tube voltage)(2.5+/-0.1) (r2 = 0.997); in body mode, CTDI100w = (0.000012 mGy/100 mAs. kVp +/- 0.000007) x (tube voltage)(2.8+/-0.1) (r2 = 0.996). In all scanning modes, CTDI100w decreased when RPW increased. CTDI100w was 10% higher in head mode and 13% lower in body mode compared with the value suggested by the manufacturer, which is displayed at the scanner console. When deposited power exceeded 24 kW, CTDI100w increased by 10% as a result of use of the large focal spot. CONCLUSION: The authors provide a set of tables of radiation dose as a function of imaging protocol to facilitate implementation of radiation dose-efficient studies.  相似文献   

2.
The aim of the study was to investigate achievable dose levels in 16-slice CT by evaluating CT dose indices (CTDI) and effective doses of dose-optimized protocols compared with 4-slice dose surveys. Normalized CTDI free in air and in 16 cm and 32 cm diameter phantoms were measured on four different 16-slice CT scanners in the Netherlands. All collimation and tube potential settings were analysed. Volume CTDI was calculated for adult protocols for brain, chest, pulmonary angiography (CTPA), abdomen and biphasic liver CT. Effective doses were calculated first using volume CTDI with conversion factors and second from CTDIair values using the ImPACT dose calculator. Average results of the 16-slice scanners were correlated to results of dose surveys with predominantly 4-slice scanners. Statistical analysis was done with Student t-tests with a Bonferroni correction; therefore p < 0.017 was significant. The results of CTDIair and weighted CTDI were documented for all scanners. Effective doses averaged over four scanners for brain, chest, CTPA, abdomen and biphasic liver protocols were 1.9+/-0.4, 3.8+/-0.4, 3.0+/-0.2, 7.2+/-0.9 and 10.2+/-1.3 mSv, respectively. Compared with dose surveys achievable effective doses were equal (p = 0.069) to significantly lower (p < 0.017) for chest and abdomen protocols. For 16-slice spiral brain CT there was a trend of equal doses compared with sequential brain CT in the dose surveys. Thus, with dose-optimized protocols 16-slice CT can achieve equal to lower effective doses in examinations of the chest and abdomen compared with 4-slice CT, while doses can remain stable in the brain.  相似文献   

3.
The longitudinal dose profile in a computed tomography dose index (CTDI) phantom had been studied by many researchers. The cross-sectional dose profile in the CTDI phantom, however, has not been studied. It is also important to understand the cross-sectional dose profile in the CTDI phantom for dose estimation in X-ray CT. In this study, the cross-sectional dose profile in the CTDI phantom was calculated by use of a Monte Carlo (MC) simulation method. A helical or a 320-detector-row cone-beam X-ray CT scanner was simulated. The cross-sectional dose profile in the CTDI phantom from surface to surface through the center point was calculated by MC simulation. The shape of the calculation region was a cylinder of 1-mm-diameter. The length of the cylinder was 23, 100, or 300 mm to represent various CT ionization chamber lengths. Detailed analyses of the energy depositions demonstrated that the cross-sectional dose profile was different in measurement methods and phantom sizes. In this study, we also focused on the validation of the weighting factor used in weighted CTDI (CTDI w ). As it stands now, the weighting factor used in CTDI w is (1/3, 2/3) for the (central, peripheral) axes. Our results showed that an equal weighting factor, which is (1/2, 1/2) for the (central, peripheral) axes, is more suitable to estimate the average cross-sectional dose when X-ray CT dose estimation is performed.  相似文献   

4.
The purpose of the study is to evaluate image quality and radiation exposure as a function of patient size for CT pulmonary angiography (CTPA) performed at reduced tube voltage and reduced intravenous (IV) contrast dose. We reviewed consecutive CTPAs performed between 9/1/2010 and 10/31/2010 on a 128-slice Siemens AS+ scanner using automated tube current modulation with quality reference mAs 200 and IV contrast concentration 370 mg I/ml followed by a saline flush: 99 scans at 120 kVp using 75 ml of contrast at 5 ml/s and 53 scans on patients lighter than 175 lbs at 100 kVp using 50 ml of contrast at 4 ml/s. We measured patient size (mean water-equivalent diameter) using a topogram analysis tool, signal (mean CT density) and noise (standard deviation) in the main pulmonary artery (MPA) on axial images, and calculated local CTDI(vol) from the kVp and mAs. Linear regression models were created for dependent variables ln(CTDI(vol)), signal, noise, and signal to noise ratio (SNR) as a function of independent variables size, age, gender, and kVp. After controlling for other variables, scanning at 100 kVp yielded CTDI(vol) reduction of 33 % (p?相似文献   

5.
OBJECTIVES: This study evaluates two methods for calculating effective dose, CT dose index (CTDI) and dose-area product (DAP) for a cone beam CT (CBCT) device: 3D Accuitomo at field size 30x40 mm and 3D Accuitomo FPD at field sizes 40x40 mm and 60x60 mm. Furthermore, the effective dose of three commonly used examinations in dental radiology was determined. METHODS: CTDI(100) measurements were performed in a CT head dose phantom with a pencil ionization chamber connected to an electrometer. The rotation centre was placed in the centre of the phantom and also, to simulate a patient examination, in the upper left cuspid region. The DAP value was determined with a plane-parallel transmission ionization chamber connected to an electrometer. A conversion factor of 0.08 mSv per Gy cm(2) was used to determine the effective dose from DAP values. Based on data from 90 patient examinations, DAP and effective dose were determined. RESULTS: CTDI(100) measurements showed an asymmetric dose distribution in the phantom when simulating a patient examination. Hence a correct value of CTDI(w) could not be calculated. The DAP value increased with higher tube current and tube voltage values. The DAP value was also proportional to the field size. The effective dose was found to be 11-77 microSv for the specific examinations. CONCLUSIONS: DAP measurement was found to be the best method for determining effective dose for the Accuitomo. Determination of specific conversion factors in dental radiology must, however, be further developed.  相似文献   

6.
The general method of measuring the half-value layer (HVL) for X-ray computed tomography (CT) using square aluminum-sheet filters is inconvenient in that the X-ray tube has to be set to stationary mode. To avoid this inconvenience, we investigated a new method using copper-pipe filters that cover the ionization chamber (copper-pipe method). Using this method, the HVL can be measured at the isocenter in the rotation modes of CT. We examined the accuracy and reproducibility of the copper-pipe method compared with those of the general method. The effective energy measured using the copper-pipe method correlated well with the general method (y=1.064x, r=0.987), and its error was 1.81±1.38%. The results indicate that the copper-pipe method enables accurate measurement of the effective energy of X-ray CT and is a convenient method suited to all general X-ray equipment as well as all X-ray CT.  相似文献   

7.
目的 探讨CT不同扫描方案检查所致婴幼儿眼晶状体吸收剂量估算方法,并寻求快速估算眼晶状体吸收剂量的实用方法。方法 通过设置7种临床标准扫描方案,对1岁年龄组仿真模体进行扫描,利用布放在模体不同位置的热释光探测器(TLD)测量剂量,最后测量结果分别用组织因子转换和个人剂量当量转换两种方法来估算眼晶状体吸收剂量,同时将眼晶状体吸收剂量与CT剂量指数(CTDI)建立线性回归方程。结果 7种临床标准儿童扫描方案CT检查所致的婴幼儿眼晶状体吸收剂量分别为(9.96±0.69)mGy(头部轴向)、(7.01±0.42)mGy(头部螺旋)、(12.60±0.97)mGy(副鼻窦)、(12.97±0.42)mGy(内耳高分辨)、(0.63±0.03)mGy(颈部软组织)、(8.89±0.44)mGy(颈部颈椎)和(0.34±0.01)mGy(胸部常规),不同组之间剂量差异有统计学意义(F=846.826,P<0.05)。不同扫描部位,CTDI值与眼晶状体吸收剂量之间均存在线性关系(r=0.986~0.999,P<0.05)。结论 采用儿童CT扫描条件,婴幼儿眼晶状体吸收剂量单次剂量范围一般不会超过阈剂量。另外,通过读取CTDI值,利用线性关系,可快速估算眼晶状体吸收剂量。  相似文献   

8.
A study was undertaken to assess the quality of general chest CT examinations for indication of lung carcinoma according to the criteria proposed in the European Commission (EC) Guidelines, and to investigate their usefulness in the optimization of this practice. The criteria were evaluated for a sample of 100 examinations from five radiology departments in the Madrid area featuring single slice helical CT scanners with special emphasis on radiation dose and image quality. To determine the degree of compliance with the image criteria considered, the examinations were independently evaluated twice by five radiologists from the participating centres. A subsequent selection of the observers was made according to the consistency and independence of their readings. Dose measurements carried out in parallel supplied data to estimate the values of the CT dose indices (CTDI), dose-length product (DLP) and effective dose (E). The results show good compliance with the image criteria used - between 93% and 98% on average at the different sites, with variable degrees of internal deviation. 10 out of a total of 16 criteria proposed in the EC guidelines were met by practically all the examinations in the sample. The average weighted CTDI (CTDI(w)) values per site were in the range of 13-19 mGy; those of DLP were between 263 mGy cm and 577 mGy cm, and those of effective dose between 4 mSv and 9 mSv. The highest mean DLP value was below but close to the reference value proposed in the EC Document (650 mGy cm). In general, a weak correlation or no correlation at all was found between image quality scores and patient dose (DLP).  相似文献   

9.
Patient and staff dose during CT guided biopsy, drainage and coagulation   总被引:5,自引:0,他引:5  
Patient and staff dose during CT guided coagulation of osteoid osteoma, tissue biopsy and abscess drainage were evaluated retrospectively on a conventional CT scanner and prospectively on a scanner equipped with fluoroscopic CT. The computed tomography dose index (CTDI) and the individual dose equivalent, i.e. the penetrating dose for workers at a depth of 10 mm tissue, were measured. Evaluation of CTDI enabled effective dose and maximum skin entrance doses for the patient to be determined. Doses were assessed for 96 CT guided interventions, including 16 drainages with average effective doses of 13.5 mSv and 9.3 mSv for the conventional CT scanner and the scanner with spiral CT fluoroscopy, respectively, 49 biopsies (effective doses of 8 mSv and 6.1 mSv, respectively), and 31 coagulations of osteoid osteoma (effective doses of 2.1 mSv and 0.8 mSv, respectively). Effective doses to patients were in the same range as those observed for regular diagnostic CT examinations. Entrance skin doses were well below the 2 Gy threshold for deterministic skin effects on the CT scanner equipped with fluoroscopic function (0.03-0.33 Gy), whilst skin doses on the conventional scanner were considerably higher (0.09-1.61 Gy). This is mainly owing to the fact that on the conventional scanner mAs was rarely reduced for scans evaluating needle position whereas low mAs per rotation was selected on the scanner with the fluoroscopy option. The maximum dose to a worker measured outside the lead apron was 28 microSv for one single procedure. The mean dose per procedure was below 10 microSv for radiologists and below 1 microSv for radiographers. Correcting for attenuation of the lead apron, the doses to workers are very low.  相似文献   

10.
目的:探讨三维人工智能(AI)定位技术在胸部CT平扫中的应用价值。方法:回顾性分析2020年9月至10月在南京大学医学院附属鼓楼医院因新型冠状病毒肺炎筛查接受胸部平扫CT检查的患者100例,采用区组随机分组法分为人工定位组和三维AI定位组,每组50例。2组患者使用相同的胸部扫描协议。测量2组患者的定位偏离距离、CT剂量...  相似文献   

11.
In this study, we aimed to evaluate quantitatively the patient organ dose from computed tomography (CT) using Monte Carlo calculations. A multidetector CT unit (Aquilion 16, TOSHIBA Medical Systems) was modeled with the GMctdospp (IMPS, Germany) software based on the EGSnrc Monte Carlo code. The X-ray spectrum and the configuration of the bowtie filter for the Monte Carlo modeling were determined from the chamber measurements for the half-value layer (HVL) of aluminum and the dose profile (off-center ratio, OCR) in air. The calculated HVL and OCR were compared with measured values for body irradiation with 120 kVp. The Monte Carlo-calculated patient dose distribution was converted to the absorbed dose measured by a Farmer chamber with a 60Co calibration factor at the center of a CT water phantom. The patient dose was evaluated from dose-volume histograms for the internal organs in the pelvis. The calculated Al HVL was in agreement within 0.3 % with the measured value of 5.2 mm. The calculated dose profile in air matched the measured value within 5 % in a range of 15 cm from the central axis. The mean doses for soft tissues were 23.5, 23.8, and 27.9 mGy for the prostate, rectum, and bladder, respectively, under exposure conditions of 120 kVp, 200 mA, a beam pitch of 0.938, and beam collimation of 32 mm. For bones of the femur and pelvis, the mean doses were 56.1 and 63.6 mGy, respectively. The doses for bone increased by up to 2–3 times that of soft tissue, corresponding to the ratio of their mass-energy absorption coefficients.  相似文献   

12.
Because the exposure dose in X-ray computed tomography examinations is sometimes difficult to determine, it is important to be able to estimate the dose for these examinations. The effective energy of the X-ray CT scanner is required to estimate exposure dose. Although the half-value-layer (HVL) method has been used to calculate effective energy, it is not an easy method. This paper proposes a technique by which effective energy can be easily calculated. Certain details were found to cause change in effective energy, and the ratio (inner-metal center-air ratio: IMCAR) between air dose and dose in fixing the metallic pipe in the isocenter of an X-ray CT scanner was necessary. The IMCAR from a different X-ray CT scanner was required, and, when effective energy was calculated, it showed an error of less than 0.7% for the half-value-layer method. The effect of this error on dose estimation was slight (0.4%). This technique is useful, because effective energy can easily be calculated with a high degree of accuracy.  相似文献   

13.
降低儿童16层螺旋CT检查辐射剂量的研究   总被引:5,自引:1,他引:4       下载免费PDF全文
目的论证CT扫描参数kVp和mAs与剂量和图像噪声的关系,在不影响临床诊断的基础上,修正并验证一种基于成人扫描参数的安全可行的儿童16层螺旋CT检查的扫描参数。方法利用16层螺旋CT,采用标准CT剂量指数(CTDI)测试仪、100mm笔型电离室,分别测量16cm和32cm直径模体在2mm×5mm准直宽度时不同kVp和mAs的CTDI;采用20cm标准水模,测量单一感兴趣区域(ROI)标准偏差值SD代表噪声水平。以成人扫描参数的不同百分比修正为不同年龄段儿童CT扫描的参数供临床验证。结果随着kVp和mAs的增加,CTDI随之增加,并与mAs呈线性关系;16cm直径模体的表面CTDI要高于32cm模体58%;实际的加权CTDIw值高于CT扫描仪显示的CTDIw;mAs相同时,kVp越高,图像噪声SD值越低,在kVp固定时,随着mAs的增加,图像噪声SD随之减少,当mAs增加到一定程度后,图像噪声趋向平稳。结论在不影响临床诊断的图像噪声水平下,根据年龄和体型特点,儿童16层CT检查mAs可以比成人降低10%~85%。  相似文献   

14.
Recent years have seen the development of mobile CT units, designed for use in operating theatres, intensive care units and accident and emergency departments. One such unit is the Tomoscan M (Philips, Utrecht, The Netherlands). It operates with a maximum tube voltage of 130 kV, and a maximum tube current of only 50 mA. This study tested whether acceptable quality CT images of the brain could be produced on the mobile unit with these parameters. 44 consecutive normal head examinations performed on the mobile scanner were compared with 35 examinations from two conventional CT units. Two independent readers scored the examinations for noise and artefact. CT dose index (CTDI) values for the three CT units were obtained in free air as an estimate of patient dose. Differences in artefact score between CT units were generally small, but noise scores were worse when using the Tomoscan M with a 2 s slice time. The lowest CTDI values were obtained with the Somatom DRH (Siemens, Erlangen, Germany) unit and the highest with the SR 7000 (Philips, Utrecht, The Netherlands), with values from Tomoscan M, in all except one case, falling between these values for the protocols used in the study. The measured scattered radiation doses from the Tomoscan M are presented.  相似文献   

15.
16.
The purpose of this study is to retrospectively analyze the effect of z-axis modulation for CT head protocols on patient dose and image quality in patients with acute head trauma and stroke. The study was approved by the Institutional Review Board. We retrospectively evaluated the effect of dose modulation on unenhanced CT head examinations in patients with acute head trauma and stroke. Two series of 100 consecutive studies were reviewed: 100 studies performed without dose modulation, 100 studies performed with z-axis dose modulation. Multidetector 16-section CT was performed sequentially and axial 5-mm-thick slices were obtained from base of skull to vertex. With z-axis dose modulation, the same tube current range was maintained, but a computer algorithm altered the tube current applied to each CT section. For each examination, the weighted volume CT dose index (CTDI (vol)) and dose-length product (DLP) were recorded and noise was measured. Each study was also reviewed for image quality by two independent, blinded readers. The variables (CTDI (vol) and DLP, image quality, and noise) in the two groups were compared by using student t test and Wilcoxon rank-sum test. For unenhanced CT head examinations, the CTDI (vol) and DLP, respectively, were reduced by 35.8% and 35.2%, respectively, by using z-axis dose modulation. Image quality and noise were unaffected by the use of this dose modulation technique (P?<?0.004). Utilization of z-axis modulation technique for CT head examination in patients with acute head trauma and stroke offers significant radiation dose reduction while image quality is optimally maintained.  相似文献   

17.
Objective To propose Irish CT diagnostic reference levels (DRLs) by collecting radiation doses for the most commonly performed CT examinations. Methods A pilot study investigated the most frequent CT examinations. 40 CT sites were then asked to complete a survey booklet to allow the recording of CT parameters for each of 9 CT examinations during a 12-week period. Dose data [CT volume index (CTDI(vol)) and dose-length product (DLP)] on a minimum of 10 average-sized patients in each category were recorded to calculate a mean site CTDI(vol) and DLP value. The rounded 75th percentile was used to calculate a DRL for each site and the country by compiling all results. Results are compared with international DRL data. Results Data were collected for 3305 patients. 30 sites responded with data for 34 scanners, representing 54% of the national total. All equipment had multislice capability (2-128 slices). DRLs are proposed using CTDI(vol) (mGy) and DLP (mGy cm) for CT head (66/58 and 940, respectively), sinuses (16 and 210, respectively), cervical spine (19 and 420, respectively), thorax (9/11 and 390, respectively), high resolution CT (7 and 280, respectively), CT pulmonary angiography (13 and 430, respectively), multiphase abdomen (13 and 1120, respectively), routine abdomen/pelvis (12 and 600, respectively) and trunk examinations (10/12 and 850, respectively). These values are lower than current DRLs and comparable to other international studies. Wide variations in mean doses are noted across sites. Conclusions Baseline figures for Irish CT DRLs are provided on the most frequently performed CT examinations. The variations in dose between CT departments as well as between identical scanners suggest a large potential for optimisation of examinations.  相似文献   

18.
Estimating the dose delivered to the patient in X-ray computed tomography (CT) examinations is not a trivial task. Monte Carlo (MC) methods appear to be the method of choice to assess the 3D dose distribution. The purpose of this work was to extend an existing MC-based tool to account for arbitrary scanners and scan protocols such as multi-slice CT (MSCT) scanners and to validate the tool in homogeneous and heterogeneous phantoms. The tool was validated by measurements on MSCT scanners for different scan protocols under known conditions. Quantitative CT Dose Index (CTDI) measurements were performed in cylindrical CTDI phantoms and in anthropomorphic thorax phantoms of various sizes; dose profiles were measured with thermoluminescent dosimeters (TLD) in the CTDI phantoms and compared with the computed dose profiles. The in-plane dose distributions were simulated and compared with TLD measurements in an Alderson-Rando phantom. The calculated dose values were generally within 10% of measurements for all phantoms and all investigated conditions. Three-dimensional dose distributions can be accurately calculated with the MC tool for arbitrary scanners and protocols including tube current modulation schemes. The use of the tool has meanwhile also been extended to further scanners and to flat-detector CT.  相似文献   

19.
BackgroundSize-specific dose estimate (SSDE), which corrects CT dose index (CTDI) for body diameter and is a better measure of organ dose than is CTDI, has not yet been validated in vivo.ObjectiveThe purpose was to determine the correlation between SSDE and measured breast entrance skin dose (ESD) for pediatric chest CT angiography across a variety of techniques, scanner models, and patient sizes.MethodsDuring 42 examinations done on 4 different scanners over 7 years, we measured mid-sternal ESD as an approximation of breast dose with skin dosimeters. We recorded age, weight, effective tube current, kilovoltage potential, console CTDI, and dose-length product, from which we calculated effective dose. We measured effective chest diameter to convert CTDI to SSDE, and we correlated SSDE with measured ESD, using linear regression. We evaluated image quality to answer the clinical question.ResultsPatient mean (±SD) age was 8.4 ± 6.1 years (median, 7.9 years; range, 0.02–19.5 years); mean weight was 35 ± 27 kg (median, 26 kg; range, 3.5–115 kg); effective chest diameter was 20 ± 7 cm (median, 19 cm; range, 10–35 cm). Mean effective dose was 2.9 ± 2.8 mSv (median, 2.2 mSv; range, 0.1–14.4 mSv). We observed a linear correlation (R2 = 0.98, P < .005) between SSDE (mean, 11 ± 11mGy; median, 7 mGy; range, 0.5–40 mGy) and breast ESD (mean, 12 ± 11 mGy; median, 7 mGy; range, 0.3–44 mGy). Our doses, which compared favorably with those previously reported, decreased significantly (P < .05) during the course of our study, because of the introduction of automatic exposure control, low kilovoltage, and high pitch techniques. All studies were of diagnostic quality.ConclusionSSDE is a valid dose measure in children undergoing chest CT angiography over a wide range of scanner platforms, techniques, and patient sizes, and it may be used to model breast dose and to document the results of dose reduction strategies.  相似文献   

20.
A review of patient doses from CT examinations in the UK for 2003 has been conducted on the basis of data received from over a quarter of all UK scanners, of which 37% had multislice capability. Questionnaires were employed to collect scan details both for the standard protocols established at each scanner for 12 common types of CT examination on adults and children, and for samples of individual patients. This information was combined with published scanner-specific CT dose index (CTDI) coefficients to estimate values of the standard dose indices CTDI(w) and CTDI(vol) for each scan sequence. Knowledge of each scan length allowed assessment of the dose-length product (DLP) for each examination, from which effective doses were then estimated. When compared with a previous UK survey for 1991, wide variations were still apparent between CT centres in the doses for standard protocols. The mean UK doses for adult patients were in general lower by up to 50% than those for 1991, although doses were slightly higher for multislice (4+) (MSCT) relative to single slice (SSCT) scanners. Values of CTDI(vol) for MSCT were broadly similar to European survey data for 2001. The third quartile values of these dose distributions have been used to derive UK national reference doses for examinations on adults (separately for SSCT and MSCT) and children as initial tools for promoting patient protection. The survey has established the PREDICT (Patient Radiation Exposure and Dose in CT) database as a sustainable national resource for monitoring dose trends in CT through the ongoing collation of further survey data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号