首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Commercially pure titanium (cpTi) was etched using three concentrated acids: 18% HCl, 43% H3PO4, and 48% H2SO4. The bond strengths between five types of veneering composite resin and eight cpTi treatments (involving combinations of sandblasting, acid etching in 48% H2SO4, and vacuum firing) were determined before and after 10,000 and 20,000 thermal cycles. There were no significant differences in the bond strength of resin to cpTi after etching in 48% H2SO4 at 90 degrees C for 15 minutes, at 60 degrees C for 15, 30, or 60 minutes, and after sandblasting with and without vacuum firing (p > 0.05); moreover, these treatments yielded the highest values. As for vacuum firing, it had no significant effect on resin bond strength to cpTi before or after 10,000 and 20,000 thermal cycles. We therefore concluded that acid etching in concentrated H2SO4 is a simple and effective surface modification method of titanium for bonding to veneering composite resins.  相似文献   

2.
The aim of this study was to evaluate the hydrophilicity, surface free energy, and proliferation and viability of human osteoblast-like MC3T3-E1 cells on sandblasted and acid-etched titanium surfaces after air-abrasion with 45S5 bioactive glass, zinc-containing bioactive glass, or inert glass. Sandblasted and acid-etched titanium discs were subjected to air-abrasion with 45S5 bioactive glass, experimental bioactive glass (Zn4), or inert glass. Water contact angles and surface free energy were evaluated. The surfaces were studied with preosteoblastic MC3T3-E1 cells. Air-abrasion with either type of glass significantly enhanced the hydrophilicity and surface free energy of the sandblasted and acid-etched titanium discs. The MC3T3-E1 cell number was higher for substrates air-abraded with Zn4 bioactive glass and similar to that observed on borosilicate coverslips (controls). Confocal laser scanning microscopy images showed that MC3T3-E1 cells did not spread as extensively on the sandblasted and acid-etched and bioactive glass-abraded surfaces as they did on control surfaces. However, for 45S5- and Zn4-treated samples, the cells spread most at the 24 h time point and changed their morphology to more spindle-like when cultured further. Air-abrasion with bioactive glass and inert glass was shown to have a significant effect on the wettability and surface free energy of the surfaces under investigation. Osteoblast cell proliferation on sandblasted and acid-etched titanium discs was enhanced by air-abrasion with 45S5 bioactive glass and experimental Zn4 bioactive glass compared with air-abrasion with inert glass or no air-abrasion.  相似文献   

3.
目的:通过体外实验研究普通喷砂酸蚀纯钛表面和亲水性喷砂酸蚀纯钛表面对成骨细胞增殖、分化等生物学行为的影响。方法:纯钛片表面分别采用光滑处理(smooth pretreated Ti,PT)、大颗粒喷砂酸蚀表面处理(sand-blasted,large-grit,acid-etched,SLA)及亲水性化学活化大颗粒喷砂酸蚀表面处理(chemically-modified SLA,modSLA/SLActive),在表面接种MC3T3-E1成骨细胞,采用MTT、碱性磷酸酶半定量测试以及茜素红染色检测其对成骨细胞增殖、分化的影响,并采用实时荧光定量PCR检测成骨细胞在不同材料表面骨功能基因表达的差异。应用SAS 9.0软件包对数据进行统计学分析。结果:与光滑钛表面相比,普通喷砂酸蚀钛表面能通过促进ALP、钙基质的分泌和成骨功能基因(Runx2、OSX、OCN和OPN)的表达而显著抑制成骨细胞增殖并促进其分化。在表面粗糙度的基础上增加亲水性,可使这一效应更加明显。结论:表面粗糙度和亲水性是影响成骨细胞生物学行为的重要因素,粗糙钛表面能显著抑制成骨细胞增殖,促进其分化,亲水性的粗糙钛表面促进成骨细胞分化的作用更加显著。  相似文献   

4.
OBJECTIVE: The purpose of this study was to characterize the etching behavior of titanium in concentrated sulfuric acid and discuss its application on surface modification of titanium for biological use. METHODS: Commercially pure titanium (cpTi) plate was etched in 48% H2SO4 at RT -90 degrees C for 0.25-8 h. The weight loss was derived from the weight differences before and after etching. The surfaces after etching were characterized by surface roughness, X-ray diffractometry, and scannning electron spectroscopy. The apparent activation energy of the dissolution of cpTi into acid was derived from an Arrhenius plot of the rate of weight loss versus the acid temperature. RESULTS: The surface roughness of cpTi increased with the acid temperature and etching time. The surface roughness was strongly related to the weight loss. The weight loss increased drastically with the acid temperature after an initial period, which shortened with increasing acid temperature. The apparent activation energy for the dissolution of cpTi in H2SO4 was derived as 67.8 kJ/mol. SIGNIFICANCE: This study indicates that etching with concentrated sulfuric acid is an effective way to modify the surface of titanium for biological applications.  相似文献   

5.
Initially, implant surface analyses were performed on 10 machined implants and on 10 sandblasted and acid-etched implants. Subsequently, sandblasted and acid-etched implant cytotoxicity (using L929 mouse fibroblasts), morphologic differences between cells (osteoblast-like cells MG63) adhering to the machined implant surfaces, and cell anchorage to sandblasted and acid-etched implant surfaces were evaluated. Results indicated that acid etching with 1% hydrofluoric acid/30% nitric acid after sandblasting eliminated residual alumina particles. The average roughness (Ra) of sandblasted and acid-etched surfaces was about 2.15 microns. Cytotoxicity tests showed that sandblasted and acid-etched implants had non-cytotoxic cellular effects and appeared to be biocompatible. Scanning electron microscopic examination showed that the surface roughness produced by sandblasting and acid etching could affect cell adhesion mechanisms. Osteoblast-like cells adhering to the machined implants presented a very flat configuration, while the same cells adhering to the sandblasted and acid-etched surfaces showed an irregular morphology and many pseudopodi. These morphologic irregularities could improve initial cell anchorage, providing better osseointegration for sandblasted and acid-etched implants.  相似文献   

6.
7.
目的:比较兔骨髓基质细胞在3种不同化学蚀刻纯钛表面的早期粘附情况。方法:分别用HNO3、热H2SO4/H2O2、热H2SO4/HCl处理纯钛片30min。采用扫描电子显微镜、X射线光电子能谱对试样表面形貌及成分进行分析。取兔骨髓基质细胞接种于钛片表面,培养30、60、120min,采用荧光显微镜和四唑盐比色法对细胞粘附进行观察和分析。结果:HNO3组表面形貌光滑,平整;H2SO4/HCl、H2SO4/H2O2组表面粗糙。3组钛片表面的主要成分为钛、氧和碳。细胞在H2SO4/HCl、HNO3组表面粘附伸展良好,在H2SO4/H2O2组表面伸展较差。结论:细胞在H2SO4/H2O2组表面的粘附不及H2SO4/HCl组,甚至不如HNO3组。  相似文献   

8.
Effects of implant microtopography on osteoblast cell attachment   总被引:2,自引:0,他引:2  
PURPOSE: The overall aim of this project was to study osteoblast cell attachment on titanium surfaces with varying surface roughness. MATERIALS AND METHODS: Commercially pure titanium surfaces were prepared by polishing through 600-grit sandpaper, sandblasting, or sandblasting followed by acid etching to produce surfaces of varying roughness, as determined by scanning electron microscopy and atomic force microscopy. In vitro cell attachment of MC3T3-E1 osteoblasts was performed on the prepared surfaces in both serum-containing and serum-free media conditions. RESULTS: Cell attachment was directly related to the average surface roughness, with the highest levels of cell attachment observed on sandblasted and sandblasted-acidetched surfaces. Similar patterns of cell attachment were observed when serum-free conditions were employed. CONCLUSIONS: Combined surface analytical and cell/molecular biological techniques are powerful tools to broaden our understanding of biological events occurring at the implant-tissue interface. Data acquired from these in vitro techniques provide a translational application to in vivo clinical models leading to the next generation of dental implants.  相似文献   

9.
目的:研究不同粗化处理对超细晶纯钛表面性能及成骨细胞黏附和增殖的影响.方法:将超细晶纯钛棒切割为直径7 mm、厚度2mm的试件,按不同喷砂压力(0.2~0.8 MPa)分组,对其表面进行喷砂酸蚀处理,对照组为普通纯钛.通过表面形貌、粗糙度、亲水性研究材料的表面性能,然后将大鼠胚胎成骨细胞(MC3T3-E1)接种到各组钛片表面,观察细胞初期黏附形态,测定其增殖密度.结果:超细晶纯钛粗化处理后,表面呈现出由喷砂和酸蚀所形成的大小不同的弹坑状双层结构.随着喷砂压力增大,超细晶纯钛表面坑孔直径和粗糙度逐渐增大,但二者均小于普通纯钛对照组(P<0.05).超细晶纯钛亲水性也随喷砂压力变化而改变,当喷砂压力为0.6 MPa时表现出最佳表面亲水性能.接种细胞后,实验组细胞初期黏附形态优于对照组,当喷砂压力为0.6 MPa时细胞增殖密度最大.结论:对超细晶纯钛喷砂酸蚀处理,喷砂压力为0.6 MPa时,材料表面形貌优于普通纯钛,粗糙度适宜,亲水性良好,更有利于细胞黏附和增殖.  相似文献   

10.
纯钛种植体表面多孔结构的制备与分析   总被引:9,自引:1,他引:8  
目的:利用喷砂、双重酸蚀和H2O2法构建粗化、改性种植体表面并对其形貌进行分析。方法:商业纯钛片经磨平、喷砂、清洗后分为6组,分别采用不同方法进行处理,从而得到不同的表面形貌。用扫描电镜(FSEM)观察表面形貌,能谱分析表面元素组成,X射线衍射(XRD)分析表面成分。结果:钛片表面经喷砂、超声清洗后.表面嵌有大量的喷砂颗粒,经低浓度HF/HNO3酸蚀后,仍有部分残留;同时,钛片表面形成大量纳米级孔洞。经高浓度HF/HNO3酸蚀后完全去除喷砂颗粒,钛片表面形成大量微米级孔洞。钛片再经HCl和H2SO4混合液酸蚀后,可以完全去除喷砂颗粒,同时得到多级孔洞结构。H2O2法处理,可使粗化表面得到锐钛矿晶相结构的TiO2层。结论:通过改变HF/HNO3浓度,可以得到不同孔径的孔洞;双重酸蚀处理,可以完全去除喷砂颗粒,并得到多级孔洞结构。H2O2法可将粗化表面的非晶态TiO2结晶转变为锐钛矿晶相结构。  相似文献   

11.
PURPOSE: The purpose of this study was to compare properties of roughened and polished titanium with respect to their ability to attach to cells and bind to protein as well as their cell spreading behavior. MATERIALS AND METHODS: Three different titanium surface treatments were compared for their ability to support cell attachment and spreading: sandblasted and acid-etched, resorbable blast media, and machine-polished titanium. The surface of the materials was characterized for surface roughness, surface energy, and surface chemistry. Osteoblast-like MG-63 cells were tested for in vitro attachment and spreading in the presence of serum proteins. Cell attachment was assessed by direct counting, dye binding, and microculture titanium assays. Cell spreading was determined by measuring area/cell in phalloidin-AlexaFluor 488 stained cells. Absorption of bovine serum albumin was determined by assay. RESULTS: Scanning electron micrography and x-ray diffractometry confirmed increased surface roughness of the roughened materials. All 3 materials had similar albumin binding kinetics. Three different methods confirmed that roughened surfaces enhance early cell attachment to titanium in the presence of serum. Cells spread better on smoother machined surfaces than on the roughened surfaces. CONCLUSION: Roughened titanium surfaces exhibited better early cell attachment than smooth surfaces in the presence of serum. The cells attached to roughened titanium were less spread than those attached to machined titanium. Although albumin binding was not different for roughened surfaces, it is possible that roughened surfaces preferentially bound to serum adhesive proteins to promote early cell attachment.  相似文献   

12.
目的研究纯钛钛片经喷砂及喷砂酸蚀处理后,表面氧化膜金相结构和化学成分的变化及对成骨细胞黏附和生长特性的影响。方法将直径为15 mm、厚度为1 mm的纯钛钛片分4组进行表面处理:1)机械打磨组(S0);2)喷砂组(SB);3)喷砂酸蚀1组(SLA1);4)喷砂酸蚀2组(SLA2)。采用电子探针分析仪及X射线衍射仪检测4组钛片表面氧化膜的厚度、化学成分以及金相结构,扫描电镜观察其表面微观形态。而后将成骨细胞培养于4组钛片表面,采用MTT法分析比较4组钛片表面对成骨细胞黏附率以及增殖率的影响。结果与S0组相比,SB、SLA1、SLA2组的粗糙度明显增大(P<0.05)。SB、SLA1、SLA2组间表面平均粗糙度差异无统计学意义(P>0.05)。酸蚀处理使喷砂形成的氧化膜变薄,密度减低,且结构发生改变:原有的金红石型TiO2峰消失,锐钛矿型TiO2减少。在表面平均粗糙度相同条件下,SB组钛片表面氧化膜均匀致密,有利于成骨细胞早期的黏附和增殖。结论喷砂和喷砂酸蚀处理均增加了钛片表面的粗糙度,有利于成骨细胞的黏附和增殖,但酸蚀使TiO2喷砂表面的氧化膜层变薄,在平均粗糙度不变的情况下,单纯喷砂表面成骨细胞的黏附和增殖优于喷砂酸蚀处理表面。  相似文献   

13.
目的:研究喷砂酸蚀(SLA)对钛及钛铌锆锡合金(Ti-24Nb-4Zr-7.9Sn,TNZS)表面形貌的影响,观察合金的形貌学特征,评价其生物相容性。方法:将试样分为钛机械打磨并抛光组(Ti组),钛铌锆锡机械打磨并抛光组(TNZS组),钛喷砂酸蚀组(Ti-SLA组)和钛铌锆锡喷砂酸蚀组(TNZS-SLA组),共4组。通过扫描电镜观察各组试样的表面形貌,3D激光共聚焦显微镜和接触角测量仪测量各组试样表面的粗糙度与亲水性。接种MC3T3-E1小鼠前成骨细胞于各组试样表面,检测细胞在试样表面的粘附、增殖与矿化的能力,评估其生物相容性。结果:SLA处理后在材料表面形成纳米级及微米级的凹坑,产生均匀分布的粗糙结构,经过处理后材料仍保持亲水性。细胞在TNZS组上短期粘附明显高于其它组(P<0.05),TNZS-SLA组细胞增殖、分化能力均明显高于其它组(P<0.05)。结论:喷砂酸蚀后材料表面相对于光滑材料表面能更有效的促进成骨细胞在其表面增殖、分化,经喷砂酸蚀的钛铌锆锡合金具有良好的细胞相容性。  相似文献   

14.
目的 对比研究喷砂酸蚀与双重酸蚀钛表面对成骨细胞生物学行为的影响。 方法 在纯钛试件表面分别进行喷砂酸蚀与双重酸蚀处理。以光滑钛表面(Ti)为对照组,喷砂酸蚀钛表面(Ti-SLA)、双重酸蚀钛表面(Ti-DA)为实验组,通过扫描电镜(SEM)、表面接触角测试、X射线光电子能谱(XPS)观察分析三种钛表面的微形貌、润湿性和元素组成。将MC3T3-E1成骨细胞接种于三组试件表面,研究不同钛表面对成骨细胞生物学行为的影响。 结果 SEM观察显示Ti-DA组试件表面形成了较Ti-SLA组更均匀细密的微米级凹坑结构;各组试件的表面接触角无显著差异;XPS分析显示Ti-SLA组试件表面有微量铝元素残留;成骨细胞在三组试件表面的粘附、增殖无显著差异,而Ti-DA组显著促进成骨细胞的分化。 结论 与喷砂酸蚀钛表面相比,双重酸蚀钛表面的微米级凹坑结构更均匀细密,且无铝元素残留,能更有效地促进成骨细胞分化。  相似文献   

15.
BACKGROUND: Titanium-29niobium-13tantalum-4.6zirconium (TiNb) has recently been developed as a new implant material. TiNb is composed of non-toxic elements and has a lower modulus of elasticity than the other titanium alloys. However, its biocompatibility has not been adequately characterized. The aim of this study was to evaluate the biocompatibility of TiNb using an osteoblast-titanium co-culture system. METHODS: MG63 cells were cultured on three kinds of titanium disks: TiNb, pure titanium (pTi), and titanium-6aluminum-4vanadium (TiAl), prepared with two different surfaces, a polished and acid-etched surface and a machined-grooved surface. The surface topography and roughness were evaluated by scanning electron microscopy (SEM). After 48 hours culture, the number of proliferating cells and prostaglandin E2 (PGE2) production in the culture supernatant were determined. RESULTS: There was no significant difference in surface roughness among the three titanium disks with a polished and acid-etched surface. After 48 hours of culture, the number of cells was significantly reduced on pTi and TiAl compared to TiNb and the control. PGE2 production was significantly higher on pTi than on TiAl, TiNb, and the control. We further examined the effect of surface roughness on PGE2 production using machine-grooved titanium disks. While pTi and TiAl stimulated the production of PGE2 depending on surface roughness, roughened TiNb did not affect PGE2 production. CONCLUSIONS: These results suggest that TiNb may exhibit favorable biocompatibility because it has an efficient surface topography for cell proliferation, and the level of PGE2 production does not depend on surface roughness. We conclude that TiNb may be useful as an implant material.  相似文献   

16.
Alterations of the commercially pure titanium (cpTi) surface may be undertaken to improve its biological properties. The aim of this study was to investigate the biocompatibility of cpTi when submitted to a new, porous titanium, surface treatment (porous Ti). Five types of surface treatments, namely sintered microspheres porous titanium (porous Ti), titanium plasma spray (TPS), hydroxyapatite (HA), sandblasted and acid etched (SBAE), and resorbable blast medium, sandblasted with hydroxyapatite (RBM) were made. In the experimental methods, the corrosion potentials were measured over time, and then a linear sweep voltammetric analysis measured the polarization resistances and corrosion currents. For biocompatibility evaluation, MG63 osteoblast-like cells were used. Cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity were evaluated after 2 h, and after 2, 4 and 7 d. Porous Ti and SBAE showed a better corrosion resistance, with a weak corrosion current and a high polarization resistance, than the other surfaces. Cell attachment, cell morphology, cell proliferation, and ALP synthesis were influenced by the surface treatments, with a significant increase observed of the activity of osteoblast cells on the porous coating (porous Ti). Based on these results, it is suggested that the porous Ti surface has a significantly better biocompatibility than the other surface treatments and an excellent electrochemical performance.  相似文献   

17.
目的::研究采用不同表面处理方法对CAD/CAM氧化锆种植体表面显微形貌特征及粗糙度的影响。方法:通过CAD/CAM技术加工氧化锆圆盘与一段式氧化锆种植体( Y-TZP, WIELAND),根据表面处理方式分为终烧结表面、喷砂表面及喷砂加热酸蚀处理表面;标准对照组选用BEGO钛种植体表面。各组圆盘试件及种植体用扫描电子显微镜及Keyence 3D激光显微形貌测量显微镜进行表面显微形貌观察与测量。采用单因素方差分析比较各组统计学差异。结果:各组CAD/CAM氧化锆试件表面显微形貌观察显示,喷砂后表面出现边缘锐利的凹坑及沟槽;喷砂加热酸蚀处理后,氧化锆表面可见纳米级的微小孔隙及沟纹。氧化锆种植体粗糙度测量结果显示:终烧结组的表面粗糙度值(Ra=0.69μm)显著低于其他3组(P<0.001),喷砂组Ra值(Ra=1.30μm)显著低于喷砂加热酸蚀组(Ra=1.49μm)及BEGO钛种植体组(Ra=1.57μm)(P<0.01),而喷砂加热酸蚀组与BEGO钛种植体组则无显著差异(P=0.196)。结论:CAD/CAM氧化锆试件终烧结后喷砂或喷砂加热酸蚀处理均可获得较为理想的表面粗糙度,热酸蚀处理能够改变氧化锆表面的纳米级微观结构。  相似文献   

18.
目的 探讨多孔钛的骨传导性及其孔隙结构对小鼠前成骨细胞MC3T3-E1早期分化的影响.方法 碳酸氢铵造孔剂结合粉末冶金法制备6组由不同平均孔隙率及不同平均孔径组合的多孔钛试样,即AⅠ(43.1±0.7)%和(154.8±11.9) μm AⅡ:(40.9±1.5)%和(295.6±8.5) μm AⅡ (44.3±1.1)%和(560.4±25.6) μm;BⅠ:(53.3±1.2)%和(191.6±3.7) μm; BⅡ.(51.7±2.7)%和(303.8±8.2) μm; BⅢ:(49.9±3.9)%和(583.1±21.7) μm,Ta2级商业致密纯钛作为对照组;每组3个试样.MC3T3-E1细胞接种于24孔板3h贴壁后置入多孔钛试样,培养3d和5d后激光扫描共聚焦显微镜(LSCM)观察经FITC微丝蛋白荧光探针标记的细胞.MC3T3-E1细胞接种于已置入试样的24孔板,培养7d和14d后测定碱性磷酸酶(alkaline phosphatase,ALP)活性,评价细胞的早期分化能力;培养21d后茜素红染色观察细胞晚期矿化结节.结果 MC3T3-E1细胞贴壁后,5d可长人多孔钛孔内及表面.7d和14d多孔钛组ALP活性显著高于对照组(P<0.05);其中BⅠ组在14d的ALP活性显著高于其它各组(P<0.05).21d多孔钛试样表面及孔隙内均可见钙结节形成.结论 在本实验条件下,多孔钛具有一定的骨传导性;平均孔隙率为53.3%且平均孔径为191.6 μm的多孔钛利于MC3T3-E1细胞的早期分化.  相似文献   

19.
目的:研究喷砂酸蚀对超细晶纯钛表面MC3T3-E1细胞粘附与增殖的影响。方法:将超细晶纯钛棒和纯钛棒切割为直径6 mm,厚度3 mm钛片试件,试验组为喷砂酸蚀超细晶纯钛组,对照组分别为未处理的超细晶纯钛组和喷砂酸蚀纯钛组。在对其表面形貌特征和亲水性进行检测后,在试件表面接种MC3T3-E1细胞,观察细胞的初期粘附情况,测定细胞密度,存活和生长状态。结果:喷砂酸蚀超细晶纯钛后,其表面形成大量微小的弹坑状凹陷,且表面具有良好的亲水性。接种细胞后,喷砂酸蚀超细晶纯钛初期粘附优于对照组;细胞密度在培养中后期优于对照组;而细胞活性在培养中期优于两对照组,培养后期3组间无明显差异。结论:喷砂酸蚀超细晶纯钛的表面性能得到改善,能诱导MC3T3-E1细胞在其表面粘附和增殖,可作为纯钛种植体种植体的替代材料。  相似文献   

20.
This study presents a histomorphometric and biomechanical comparison of bone response to commercially pure titanium screws with 4 different types of surface topographies placed in the tibial metaphysis of 12 rabbits. Each rabbit had 4 implants placed, 2 in each tibia. The 4 surface topographies were a machined surface, a grit-blasted surface, a plasma-sprayed surface, and an acid-etched (Osseotite) surface. After a healing period of 5 weeks, histomorphometric and removal torque data revealed a significantly higher percentage of bone-to-implant contact and removal torque for acid-etched implants compared to machined, blasted, and plasma-sprayed implants. Within the limits of this short-term experimental study, the results indicated that micro-rough titanium surfaces obtained with acid-etching procedures achieved a 33% greater bone-to-implant contact over machined titanium surfaces with an abutment-type roughness and provided enhanced mechanical interlocking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号