首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelets contain a well-developed and dynamic cytoskeleton composed mainly of actin and actin-associated proteins. Upon platelet activation there is rapid polymerisation of actin and a marked reorganisation of the platelet cytoskeleton. Cytochalasins are agents that interfere with the polymerisation of actin, and it has recently been discovered that cytochalasin H (CyH) is particularly effective as an inhibitor of the cytoskeletal reorganisation that occurs in platelets following activation by adenosine diphosphate (ADP). Here we have used CyH to inhibit platelet cytoskeletal reorganisation and to determine its effects on various aspects of platelet function. Experiments were performed in hirudinized platelet-rich plasma (PRP) or whole blood obtained from human volunteers. PRP was treated with 10 w M CyH or vehicle, then activated by ADP. The effect of CyH on cytoskeletal reorganisation was determined by SDS-PAGE of the Triton X-100 insoluble cytoskeletons and quantitated by densitometry. Platelet aggregation and aggregate stability in PRP were measured by monitoring changes in light absorbance; aggregation was measured in whole blood via platelet counting. Shape change, P-selectin expression and changes in intracellular calcium were measured using flow cytometry. CyH prevented the normal incorporation of actin, f -actinin and actin-binding protein into the cytoskeleton that occurred following ADP activation, and incorporation of myosin was markedly reduced. Aggregation was only partially inhibited but, more dramatically, the rate of disaggregation following addition of certain agents that interfere with fibrinogen binding to glycoprotein IIb/IIIa on the surface of platelets was markedly increased. The ADP-induced shape change was also inhibited. CyH had no effect on calcium mobilisation. Curiously, expression of P-selectin was potentiated by CyH, suggesting a modulatory role of the cytoskeleton in platelet secretory activity. The results suggest that cytoskeletal reorganisation plays an important role in platelet shape change and aggregation and contributes in a major way to the stability of the aggregates that form.  相似文献   

2.
Platelets contain a well-developed and dynamic cytoskeleton composed mainly of actin and actin-associated proteins. Upon platelet activation there is rapid polymerisation of actin and a marked reorganisation of the platelet cytoskeleton. Cytochalasins are agents that interfere with the polymerisation of actin, and it has recently been discovered that cytochalasin H (CyH) is particularly effective as an inhibitor of the cytoskeletal reorganisation that occurs in platelets following activation by adenosine diphosphate (ADP). Here we have used CyH to inhibit platelet cytoskeletal reorganisation and to determine its effects on various aspects of platelet function. Experiments were performed in hirudinized platelet-rich plasma (PRP) or whole blood obtained from human volunteers. PRP was treated with 10 microM CyH or vehicle, then activated by ADP. The effect of CyH on cytoskeletal reorganisation was determined by SDS-PAGE of the Triton X-100 insoluble cytoskeletons and quantitated by densitometry. Platelet aggregation and aggregate stability in PRP were measured by monitoring changes in light absorbance; aggregation was measured in whole blood via platelet counting. Shape change, P-selectin expression and changes in intracellular calcium were measured using flow cytometry. CyH prevented the normal incorporation of actin, alpha-actinin and actin-binding protein into the cytoskeleton that occurred following ADP activation, and incorporation of myosin was markedly reduced. Aggregation was only partially inhibited but, more dramatically, the rate of disaggregation following addition of certain agents that interfere with fibrinogen binding to glycoprotein IIb/IIIa on the surface of platelets was markedly increased. The ADP-induced shape change was also inhibited. CyH had no effect on calcium mobilisation. Curiously, expression of P-selectin was potentiated by CyH, suggesting a modulatory role of the cytoskeleton in platelet secretory activity. The results suggest that cytoskeletal reorganisation plays an important role in platelet shape change and aggregation and contributes in a major way to the stability of the aggregates that form.  相似文献   

3.
Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation.  相似文献   

4.
Chen J  De S  Damron DS  Chen WS  Hay N  Byzova TV 《Blood》2004,104(6):1703-1710
We investigated the role of Akt-1, one of the major downstream effectors of phosphoinositide 3-kinase (PI3K), in platelet function using mice in which the gene for Akt-1 had been inactivated. Using ex vivo techniques, we showed that Akt-1-deficient mice exhibited impaired platelet aggregation and spreading in response to various agonists. These differences were most apparent in platelets activated with low concentrations of thrombin. Although Akt-1 is not the predominant Akt isoform in mouse platelets, its absence diminished the amount of total phospho-Akt and inhibited increases in intracellular Ca(2+) concentration in response to thrombin. Moreover, thrombin-induced platelet alpha-granule release as well as release of adenosine triphosphate from dense granules was also defective in Akt-1-null platelets. Although the absence of Akt-1 did not influence expression of the major platelet receptors for thrombin and collagen, fibrinogen binding in response to these agonists was significantly reduced. As a consequence of impaired alpha(IIb)beta(3) activation and platelet aggregation, Akt-1 null mice showed significantly longer bleeding times than wild-type mice.  相似文献   

5.
Miller  JL; Kupinski  JM; Hustad  KO 《Blood》1986,68(3):743-751
With the exception of the major platelet glycoproteins IIb/IIIa and Ib, which function as receptors for fibrinogen and von Willebrand factor, little is presently known regarding the possible role of other platelet surface proteins in mediating platelet aggregation. We report the production of a murine monoclonal antibody (AG-1) recognizing human platelet membrane surface protein of relatively low molecular weight (mol wt) that may be involved in this process. AG-1 added to human platelet-rich plasma induces dense granule secretion and aggregation, with lag phase and maximal extent of aggregation dependent on antibody concentration. Aggregation induced by AG-1 is inhibited by AG-1 Fab fragments, indicating that the response is not Fc receptor-mediated. Although AG-1 continues to produce platelet shape change in the presence of EDTA, aggregation is fully inhibited and appears to be mediated by fibrinogen binding to glycoproteins IIb/IIIa. AG-1 is a potent stimulus of thromboxane formation, but full inhibition of thromboxane production by 30 mumol/L indomethacin does not significantly inhibit platelet aggregation induced by 25 micrograms/mL AG-1, indicating that aggregation induced by AG-1 may proceed by way of an endoperoxide-independent pathway. Quantitation of AG-1 Fab binding to platelets reveals approximately 65,000 binding sites per platelet. When intact platelets are radioiodinated, immunoprecipitation of NP-40 lysates by AG-1 reveals an intensely labeled protein with an apparent mol wt of approximately 21,000 daltons, and several additional bands in the mol wt range of 22,000 to 28,000 daltons, all sharing the AG-1 epitope. These bands appear to be distinct from glycoprotein IX or from the beta-chains of glycoprotein Ib or IIb. Finally, studies with platelets labeled by the periodate-[3H]borohydride procedure suggest the possibility of complex formation between subpopulations of glycoprotein Ib and the low-mol-wt glycoproteins recognized by AG-1.  相似文献   

6.
Antibody-derived GPIIb-IIIa antagonists, such as the c7E3 Fab fragment abciximab, have been shown to inhibit platelet procoagulant activity as well as platelet aggregation. Whether low-molecular-weight peptide-derived and peptidomimetic antagonists also inhibit platelet procoagulant activity in a similar manner has not been fully investigated. We compared the effects of the antibody-derived antagonists c7E3 Fab and m10E5 IgG, the peptide-derived antagonists eptifibatide, MK-852 and RGDS, and the peptidomimetic RO44--9883 on platelet procoagulant activity and on the stimulated cytosolic calcium increases that promote procoagulant activity. Procoagulant activity was measured as prothrombinase activity in gel-filtered platelets, activated by collagen plus thrombin or collagen alone, with and without stirring. The stimulated increases in cytosolic calcium were measured in parallel samples of platelets loaded with fura-2AM. Both c7E3 and m10E5 inhibited prothrombinase activity by 40--50% under all conditions of activation tested and inhibited cytosolic calcium increases to a similar extent in stirred, but not unstirred, platelets. The low-molecular-weight antagonists caused significantly less inhibition of prothrombinase activity in collagen plus thrombin-stimulated platelets, and produced no inhibition but rather a slight enhancement of activity in platelets stimulated by collagen alone. These antagonists also had little or no effect on the cytosolic calcium increases in stirred platelets. These differential effects of antibody-derived versus non-antibody GPIIb-IIIa antagonists on procoagulant activity may be a factor contributing to the differing anti-thrombotic effects of these antagonists seen in clinical trials.  相似文献   

7.
The stimulation of human platelets with physiological agonists results in the incorporation of several proteins into the cytoskeleton, fibrinogen binding, and platelet aggregation. We recently demonstrated that the Ras-related low molecular weight GTP-binding protein Rap2B associates with the cytoskeleton in activated platelets and that this interaction requires platelet aggregation. In the present study we demonstrate that agonist-induced actin polymerization is necessary for the translocation of Rap2B to the cytoskeleton, suggesting that Rap2B interacts with the newly formed actin filaments. Moreover, the association of Rap2B with Triton X-100-insoluble material from platelets was totally blocked by treatment of intact platelets with monoclonal antibodies against the fibrinogen receptor glycoprotein IIb-IIIa. Platelets from patients affected by Glanzmann thrombastenia, a genetic disorder in which platelet plasma membranes lack glycoprotein IIb-IIIa but possess normal levels of Ras-related proteins, failed to incorporate Rap2B into the cytoskeleton upon activation by thrombin. Comparative immunoblotting revealed that the translocation of Rap2B to the cytoskeleton during platelet aggregation was accompanied by the simultaneous translocation of glycoprotein IIb-IIIa. Moreover, the cytoskeleton from aggregated platelets contained Rap2B and glycoprotein IIb-IIIa in comparable amounts. These results demonstrate the association of Rap2B and glycoprotein IIb-IIIa and their translocation to the cytoskeleton in aggregated human platelets.  相似文献   

8.
Schmidt VA  Scudder L  Devoe CE  Bernards A  Cupit LD  Bahou WF 《Blood》2003,101(8):3021-3028
Human blood platelets are anucleate cells whose response to extracellular stimuli results in actin cytoskeleton rearrangements, thereby providing the critical initial step in the regulation of hemostasis. The serine protease alpha-thrombin, known to activate platelets by cleavage of a family of protease-activated receptors (PARs), is the most potent physiologic activator of human platelets, though downstream effector proteins uniquely linked to platelet cytoskeletal actin polymerization remain largely uncharacterized. The gene encoding the putative rac1/cdc42 effector protein IQGAP2 was identified within the PAR gene cluster at 5q13, flanked telomeric by PAR1 and encompassing PAR3. Immunofluorescence microscopy demonstrated IQGAP2 expression in filopodial extensions of activated platelets and colocalized with F-actin in lamellipodia and filopodia of IQGAP2-transfected COS1 cells. Platelet activation by alpha-thrombin, but not saturating concentrations of fibrillar collagen or adenosine 5'-diphosphate, uniquely assemble an IQGAP2/arp2/3-actin cytoplasmic complex, an association regulated by guanosine triphosphate rac1 ([GTP]rac1) but not by [GTP]cdc42. Likewise, only thrombin-activated platelets resulted in rapid translocation of IQGAP2 to the platelet cytoskeleton. These observations identify a physiologic scaffolding function for IQGAP2 and establish the presence of a functional genomic unit in humans uniquely evolved to regulate thrombin-induced platelet cytoskeletal actin reorganization.  相似文献   

9.
ADP and epinephrine-induced release of platelet fibrinogen   总被引:2,自引:0,他引:2  
Kaplan  KL; Dauzier  MJ; Rose  S 《Blood》1981,58(4):797-802
Human platelets gel-filtered into Tyrode's buffer containing 1 mM Mg++ and 0.35% bovine serum albumin were studied to determine whether they would undergo biphasic aggregation and release of alpha-granule proteins in response to adenosine diphosphate (ADP) or epinephrine without addition of exogenous fibrinogen. Fibrinogen concentration in the supernatant of unaggregated gel-filtered platelets was less than 1 pmole/ml. With addition of ADP or epinephrine, biphasic aggregation was seen, with release of platelet fibrinogen, beta-thromboglobulin, and platelet factor 4. Fibrinogen concentration in the supernatant after aggregation ranged from 15 to 70 pmole/ml. Release of the alpha-granule proteins by epinephrine was coincidental with release of the dense granule adenine nucleotides. Aggregation and alpha-granule protein release by both ADP and epinephrine were inhibited by added Ca++ at 1-- 2 mM. The ability of gel-filtered platelets to undergo ADP- and epinephrine-induced aggregation and release in the absence of exogenous fibrinogen suggests that released platelet fibrinogen may be able to fulfill the requirement for fibrinogen in ADP- and epinephrine-induced platelet aggregation and release.  相似文献   

10.
Vezza  R; Roberti  R; Nenci  GG; Gresele  P 《Blood》1993,82(9):2704-2713
Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.  相似文献   

11.
Platelet activation by adenosine diphosphate (ADP) results in changes in the composition of the large cytoskeletal fragments that can be isolated following solubilization of platelets with Triton X-100 and low speed centrifugation. Here we have used several different agents that modify platelet responses to investigate some of the factors that affect these cytoskeletal changes. All the experiments involved use of hirudinized platelet-rich plasma in which TXA, synthesis and release of dense body constituents does not occur following platelet activation with ADP. ADP alone caused a significant and sustained increase in the cytoskeletal content of actin binding protein (ABP), myosin, α-actinin, a 66K protein and actin, and a significant decrease in a 31K protein. In the presence of MK-852 or GR 144053 (GpIIbDIIa antagonists), in samples merely left unstirred and in Glanzmann's thrombasthesenia, ADP produced no increase in ABP or the 66K protein and no decrease in the 31K protein. The increase in myosin and α-actinin became reversible but there was still incorporation of actin into the cytoskeleton. In the presence of ARL 66096 (a P(2T) purinoceptor antagonist that inhibits aggregation but not shape change) there was no increase in ABP or the 66K protein and no decrease in the 31K protein. ARL 66096 also prevented incorporation of α-actinin and actin. As with MK-852, myosin incorporation became reversible. Iloprost inhibited all the cytoskeletal changes, the effects of MgCI(2) were similar to those of MK-852, and acetylsalicylic acid (ASA) had no effect. In some experiments MK-852, ARL 66096, iloprost or MgCI, were added 0.5 min after the ADP. They all produced disaggregation and this was accompanied by reversal of the changes in the composition of the cytoskeleton that had occurred initially on stimulating the platelets with ADP. The results suggest that: (1) myosin is incorporated into the cytoskeleton transiently during shape change; (2) ADP interaction with the P(2T) receptor leads to incorporation of α-actinin and actin into the cytoskeleton as well as platelet aggregation; (3) further incorporation of α-actinin and myosin and incorporation of ABP and the 66K protein occur consequent to fibrinogen binding and platelet aggregation; (4) displacement of the 31K protein from the cytoskeleton is also a consequence of fibrinogen binding and platelet aggregation; (5) platelet disaggregation is accompanied by reversal of any cytoskeletal changes that have already occurred; (6) continuous occupation of the P(2T) receptor is required for maintenance of the cytoskeletal changes; (7) CAMP inhibits and reverses cytoskeletal assembly; and (8) MgCl(2) acts similarly to a GpIIb/IIIa antagonist under these experimental conditions.  相似文献   

12.
The mechanism through which human blood platelets interact with gram- negative bacteria with well-defined structural variations in endotoxic lipopolysaccharide was studied. Secretion of 14C-serotonin and aggregation of platelets separated from plasma proteins were observed on challenge with rough mutant Re595 of Salmonella minnesota possessing a glycolipid outer layer composed of Lipid A and 2-keto-3-deoxyoctonate (KDO) but lacking heptose phosphate in the core and O-polysaccharide in its outer portion. Both 14C-serotonin secretion and platelet aggregation were concentration-dependent, with a half-maximum response at the ratio of one bacterial colony-forming unit (CFU) to two platelets. The aggregation of human platelets induced by mutant Re595 was divalent cation-dependent and required secretion of ADP and fibrinogen from platelet storage granules because it was inhibited by chelators, by the ADP-splitting enzyme apyrase, and by monospecific antifibrinogen Fab fragments. The synthetic peptide analog of the platelet receptor recognition site on the gamma chain of fibrinogen, gamma 400-411, inhibited platelet aggregation induced by mutant Re595 (IC50 160 mumol/L), whereas serotonin secretion was unaffected. Tetrapeptide, RGDS, analogous to human fibrinogen alpha chain (alpha 572-575) and to the cell adhesion site of fibronectin, also inhibited aggregation induced by mutant Re595 (IC50 60 mumol/L). Secretion of 14C- serotonin was preceded by a very rapid phosphorylation of a platelet protein of mol wt 47,000, which is associated with protein kinase C activation. Myosin light chain (mol wt 20,000) was also phosphorylated. Both phosphoproteins were dephosphorylated while secretion was reaching maximum. Furthermore, release of 3H-arachidonic acid from platelet phospholipids and generation of thromboxane B2 via the cyclooxygenase pathway were observed. Inhibition of this pathway with acetylsalicylic acid (10(-4) mol/L) or indomethacin (5 X 10(-4) mol/L) reduced 14C- serotonin secretion and platelet aggregation. The role of Lipid A in the interaction of mutant Re595 with human platelets was deduced from the inhibitory effect of the Lipid A-binding protein present in Limulus amebocyte lysate. Likewise, polymyxin B, known to complex with Lipid A, was inhibitory. The reactivity of mutant Re595 toward platelets was attenuated by mild acid hydrolysis, during which KDO was dissociated from the glycolipid, and by alkaline hydrolysis, which breaks ester- linked fatty acids in Lipid A. In contrast to mutant Re595, strain S218 of S minnesota bearing "complete" endotoxic lipopolysaccharide did not induce secretion and aggregation of human platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Kovacsovics  TJ; Hartwig  JH 《Blood》1996,87(2):618-629
In resting platelets, the GPIb-IX complex, the receptor for the von Willebrand factor (vWF), is linked to underlying actin filaments by actin-binding protein (ABP-280). Thrombin stimulation of human platelets leads to a decrease in the surface expression of the GPIb-IX complex, which is redistributed from the platelet surface into the open canalicular system (OCS). Because the centralization of GPIb-IX is inhibited by cytochalasin, it is believed to be linked to actin cytoskeletal rearrangements that take place during platelet activation. We have further characterized the mechanism of GPIb-IX centralization in platelets in suspension. Following thrombin stimulation, GPIb-IX shifts from the membrane skeleton of the resting cell to the cytoskeleton of the activated cell in a reaction sensitive to cytochalasin B. The cytoskeletal association of GPIb-IX involves ABP- 280, as it correlates with the incorporation of ABP-280 into the activated cytoskeleton and because no dissociation of the ABP-280/GPIb- IX complexes is detected after thrombin activation. However, the incorporation of GPIb-IX into the cytoskeleton is complete within 1 minute, whereas GPIb-IX centralization requires 5 to 10 minutes for completion. The movement of GPIb-IX to the cytoskeleton of activated platelets is therefore necessary, but not sufficient for GPIb-IX centralization. Blockage of cytosolic calcium increases induced by thrombin by loading with the cell permeant calcium chelator Quin-2 AM inhibited GPIb-IX centralization by 70%, but did not prevent its association with the activated cytoskeleton. Quin-2 loading did, however, decrease the incorporation of myosin II into the activated cytoskeleton. The role of myosin II was further probed using the myosin light chain kinase (MLCK) inhibitor wortmannin. Wortmannin prevents myosin II association to the activated cytoskeleton and inhibits GPIb- IX centralization by 50%, without affecting actin assembly or the association of GPIb-IX to the cytoskeleton. Only micromolar concentrations of wortmannin, high enough to inhibit MLCK, prevent GPIb- IX centralization. These results indicate that thrombin-induced GPIb-IX centralization requires a minimum of two steps, one associating GPIb-IX to the activated cytoskeleton and the second requiring myosin II activation. The involvement of myosin II implies that GPIb-IX/ABP-280 complexes, linked to actin filaments, are pulled into the cell center, and that platelets may exert contractile tension on vWF bound to its receptor.  相似文献   

14.
Davies  GE; Cohen  CM 《Blood》1985,65(1):52-59
Human platelets were tested for the presence of proteins immunologically cross-reactive with red cell spectrin and protein 4.1. As assessed by indirect immunofluorescence microscopy, platelets were specifically reactive with affinity-purified rabbit antisera against red cell spectrin and protein 4.1. The immunoreactive platelet constituents were further analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis, followed by electrophoretic transfer to nitrocellulose paper and immunoperoxidase staining. We found that whole platelets, membranes, and cytoskeletal preparations isolated by Triton X-100 extraction contain small amounts of proteins reacting with anti-spectrin or anti-protein 4.1 antiserum. The immunoreactive spectrin-like platelet protein has an apparent molecular weight of 240,000 and comigrates with the alpha-subunit of red cell spectrin. The major immunoreactive protein 4.1-like constituent has an apparent molecular weight of 78,000, which is slightly less than that of red cell protein 4.1. We conclude that platelets contain a spectrin- like protein which, by analogy with red cell spectrin, may have a role in membrane-cytoskeletal attachment. The properties and function of the platelet protein 4.1-like constituent are not yet known.  相似文献   

15.
To investigate the signaling processes induced by recombinant thrombopoietin, we used human platelets to recently show that thrombopoietin induces rapid tyrosine phosphorylation of Jak2, Tyk2, Shc, Stat3, Stat5, and other proteins in human platelets. Because the apparent molecular weight of a major tyrosine-phosphorylated protein in platelets stimulated by thrombopoietin is approximately 120 kD, we examined the possibility that this could be p120c-cbl, a protein known to be involved in signaling by many growth factors. Specific antisera against p120c-cbl recognized the same 120-kD protein in lysates of Jurkat cells, which are known to express p120c-cbl, and platelets, indicating that platelets have p120c-cbl. Thrombopoietin induced rapid tyrosine phosphorylation of p120c-cbl in platelets. Thrombopoietin also induced tyrosine phosphorylation of p120c-cbl in FDCP cells genetically engineered to express the thrombopoietin receptor, c-Mpl. Interestingly, FDCP cells, expressing a truncated c-Mpl devoid of the box-2 domain, proliferate in response to thrombopoietin. However, no increase in tyrosine phosphorylation of p120c-cbl was observed upon treatment of these cells with thrombopoietin, indicating that in this system tyrosine phosphorylation of p120c-cbl may not be essential for cell proliferation. This suggests that tyrosine phosphorylation of p120c-cbl may be required for nonmitogenic responses induced by thrombopoietin in postmitotic cells such as platelets. On the other hand, p120c-cbl was not significantly tyrosine-phosphorylated upon treatment of platelets with thrombin. However, it became incorporated into the Triton X-100-insoluble, 10,000g-sedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes. p120c-cbl was constitutively associated with a 28-kD adapter protein, Grb2, that was also incorporated into the Triton X-100-insoluble, sedimentable residue dependent on aggregation. Further, we found that p120c-cbl is an endogenous substrate for calpain, a protease that may play a role in postaggregation signaling processes. Our data suggest that p120c-cbl may be involved in signal transduction following ligand binding to c- Mpl through its inducible tyrosine phosphorylation, and it may also be involved in signaling during platelet aggregation by its redistribution to the cytoskeleton.  相似文献   

16.
Interaction of platelet plasma membranes with thrombin-activated platelets   总被引:1,自引:0,他引:1  
Prasanna  HR; Edwards  HH; Phillips  DR 《Blood》1981,57(2):305-312
This study described the binding of platelet plasma membranes to either control or thrombin-activated platelets. Glycoproteins in plasma membranes isolated from human platelets were labeled by oxidation with periodate followed by reduction with [3H]NaBH4. Labeled membranes were incubated with either control or thrombin-activated platelets. The amount of membranes bound was measured by separating platelets with bound membranes from solution by rapid centrifugation through 27% sucrose and determining the amount of radioactivity associated with platelets. Five- to sevenfold more membranes bound to thrombin- activated platelets than to control platelets. This enhanced binding of labeled membranes was completely inhibited by an excess of unlabeled platelet membranes. Human erythrocyte membranes had little affinity for either washed or thrombin-activated platelets and therefore did not compete for platelet-membrane binding. Binding of platelet membranes to thrombin-treated platelets was inhibited by prior incubation of the platelets with PGI2 suggesting that the enhanced binding of membranes was to activated platelets. This study demonstrates that the purified platelet membranes have functional sites that can mediate membrane binding to platelets and that quantitation of membrane binding appears to reflect the increased aggregation capability of activated platelets.  相似文献   

17.
A diabetic vasculature promotes cardiovascular diseases via endothelial cell activation induced by advanced glycation end products. It has recently become clear that activated platelets are a hallmark of cardiovascular disease and diabetes progression, by initiating and/or perpetuating the endothelial cell response. However, the role that platelets play in diabetic cardiovascular diseases remains elusive. Our objective was to evaluate the effects of glycated serum albumin on flow induced platelet activation and platelet aggregation. Albumin was glycated for up to 8 weeks. Timed samples of glycated or non-glycated albumin were removed to determine the effects of the extent of glycation on platelet functional changes. Thrombin receptor agonist peptide 6 (TRAP6, residues 42-47 of the thrombin receptor) and collagen I induced platelet aggregation was measured as a time course of glycated albumin incubation. The thrombogenicity of platelets incubated with glycated albumin was also measured under static and dynamic flow conditions using the modified prothrombinase assay. CD41 and CD62P expression was examined using flow cytometry to validate aggregation and activation studies. Platelets subjected to glycated albumin were more susceptible to TRAP6- and collagen-induced aggregation and flow induced activation. The extent of albumin glycation modulates these changes. As the albumin glycation time increased, this enhancement in platelet function was more pronounced. These results indicate that under diabetic conditions activated platelets may act to promote cardiovascular disease progression.  相似文献   

18.
H Deckmyn  E Van Houtte  J Vermylen 《Blood》1992,79(6):1466-1471
We studied a 5-year-old girl presenting with a markedly prolonged bleeding time. Her platelets were refractory to collagen stimulation, but the response to other agonists was normal. There were no coagulation abnormalities as measured by standard tests. Two-dimensional electrophoresis showed no abnormalities of the patient's platelet membrane glycoproteins. When the patient's plasma or purified plasma IgG was mixed with normal platelets, collagen-induced platelet aggregation was blocked. Western blotting showed the presence of an antibody in the patient's plasma directed against a protein of molecular weight 85 to 90 Kd under both reducing and nonreducing conditions. This protein comigrated with glycoprotein (GP) IV immunoprecipitated by OKM5 from 125I-labeled platelets. Immunoprecipitation of 125I-labeled normal platelet glycoproteins with the patient's IgGs also yielded an 85- to 90-Kd protein that migrated on the diagonal following nonreduced/reduced two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Despite similarities in electrophoretic behavior, the antigen was not demonstrated to be GPIV, since purified GPIV was not recognized by the antibody.  相似文献   

19.
Platelet activation and aggregation results in factitious counting and sizing in routine haematology testing. In this study, the possibility of platelet activation in anticoagulated solutions was examined. Whole blood was examined using an automated counter and a flow cytometer before and after strong vortex agitation. Blood treated with ethylenediaminetetraacetic acid (EDTA) exhibited platelet activation both pre- and postagitation but activated platelets did not cause platelet aggregation. With sodium citrate, platelets were only minimally activated both pre- and postagitation. Heparin-treated blood exhibited minimal platelet activation preagitation, but agitation resulted in strong platelet activation and aggregation. Platelet size was increased by agitation in blood with EDTA and with sodium citrate, in association with significant increases in mean platelet volume (MPV) and platelet distribution width (PDW), but MPV and PDW were significantly higher in EDTA solution than in sodium citrate solution. Change in platelet size was observed even in the presence of EDTA, indicating that careful sampling and processing are needed in the collection of specimens. Specimens obtained from patients with EDTA-dependent pseudothrombocytopenia exhibited the same level of activation as controls, although platelets exhibited aggregation in such specimens. In conclusion, platelet activation involving platelet size change can occur in the absence of calcium ions in blood treated with EDTA.  相似文献   

20.
Proteomics, the rapid large-scale analysis of cellular proteins, is becoming an important tool in the study of human platelet biology. A number of investigators have used proteomics techniques to study platelets including two-dimensional gel electrophoresis, protein separation, and mass spectrometry protein identification. Most efforts have focused on: 1) cataloging the spectrum of proteins that comprise the normal platelet "proteome", 2) characterizing proteins released from activated platelets, and 3) identifying phosphoproteins generated upon platelet stimulation. The incorporation of modern proteomics technology to platelet studies will further our understanding of platelet activation, adhesion, and aggregation at the protein level. Moreover, proteomics offers hope that novel biomarkers can be discovered that diagnose inherited and/or acquired platelet disorders, or predict the susceptibility of such individuals to bleeding or thrombosis. Finally, proteomics could lead to identification of novel agents that have therapeutic value. This review discusses the current status and future opportunities of proteomics technologies in platelet science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号