首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study was carried out with a view to enhance dissolution rate of poorly water-soluble drug glipizide (GZ) (BCS class II) using polyethylene glycol (PEG) 6000, PEG 8000 and poloxamer (PXM) 188 as carriers. Solid dispersions (SDs) were prepared by melting method using different ratios of glipizide to carriers. Phase solubility study was conducted to evaluate the effect of carrier on aqueous solubility of glipizide. SD was optimized by drug content estimation and in vitro dissolution study and optimised SD was subjected to bulk characterization, Scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD). Preclinical study was performed in mice to study the decrease in blood glucose level from prepared SD compared with pure drug. Due to high solubility and drug release, PXM 188 in weight ratio of 1:2 was optimized. Decrease in blood glucose level in mice from SD was significantly higher (p < 0.05) compared to pure glipizide. Thus, solid dispersion technique can be successfully used for the improvement of the dissolution profile of GZ.  相似文献   

2.
This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6?mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037?mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5–80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN’s release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55–57?°C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61–63?°C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic–hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.  相似文献   

3.
The roles of magnesium oxide (MgO) release from solid dispersions (SDs) in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and water were investigated to elucidate the enhanced dissolution and reduced intestinal damages of telmisartan as a model drug. The polyethylene glycol 6000 (PEG 6000) was used to prepare the SDs. Three SDs were prepared: SD1 (PEG, MgO, TEL), SD2 (PEG 6000, TEL), SD3 (MgO, TEL). The physical mixture (PM) consisting of SD2 and MgO was also prepared. A binary SD without MgO (SD2) was also prepared for comparison in microenvironmental pH (pHM) modulation. The faster MgO released, the less control of pHM and the less enhanced dissolution of TEL were in consequences. SD3 increased dissolution in SIF and water (about 67%). Interestingly, ternary SD1 showed almost complete dissolution in all three media but dissolution of PM was the lowest due to the fast release of MgO and poor modulation of pHM. MgO did not change the drug crystallinity but did have a strong molecular interaction with the drug. Additionally, the SD3-bearing tablet quickly increased pHM but then gradually decreased due to faster release of MgO while the SD1-bearing tablet gradually increased pHM at all fractional dimensions of the tablet by the MgO slowly released. The pHM of PM-bearing tablets was not varied as a function of time. Thus, the MgO-bearing SD1 also minimized gastrointestinal tissue damage caused by the model drug.  相似文献   

4.
To improve its oral absorption, rapidly dissolving ibuprofen solid dispersions (SD) were prepared in a relatively easy, simple, quick, inexpensive, and reproducible manner, characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). They were evaluated for solubility, in vitro release, and oral bioavailability of ibuprofen in rats. Loss of individual surface properties during melting and resolidification as revealed by SEM indicated the formation of effective SDs. Absence or shifting toward the lower melting temperature of the drug peak in SDs and physical mixtures in DSC study indicated the possibilities of drug-polymer interactions. However, no such interactions in the solid state were confirmed by FTIR spectra that showed the presence of drug crystalline in SDs. Quicker release of ibuprofen from SDs in rat intestine resulted in a significant increase in AUC and Cmax, and a significant decrease in Tmax over pure ibuprofen. Preliminary results from this study suggested that the preparation of fast-dissolving ibuprofen SDs by low temperature melting method using PEG 6000 as a meltable hydrophilic polymer carrier could be a promising approach to improve solubility, dissolution, and absorption rate of ibuprofen.  相似文献   

5.
The poor solubility and wettability of Candesartan cilexetil (CAN) leads to poor dissolution and hence, low bioavailability after oral administration. The aim of the present study was to improve the solubility and dissolution rate and hence the permeability of CAN by preparing solid dispersions/inclusion complexes. Solid dispersions were prepared using PEG 6000 [hydrophilic polymer] and Gelucire 50/13 [amphiphilic surfactant] by melt agglomeration (MA) and solvent evaporation (SE) methods in different drug-to-carrier ratios, while inclusion complexes were made with hydroxypropyl-β-cyclodextrin (HP-β-CD) [complexing agent] by grinding and spray drying method. Saturation solubility method was used to evaluate the effect of various carriers on aqueous solubility of CAN. Based on the saturation solubility data, two drug-carrier combinations, PEG 6000 (MA 1:5) and HP-β-CD (1:1 M grinding) were selected as optimized formulations. FTIR, DSC, and XRD studies indicated no interaction of the drug with the carriers and provided valuable insight on the possible reasons for enhanced solubility. Dissolution studies showed an increase in drug dissolution of about 22 fold over the pure drug for PEG 6000 (MA 1:5) and 12 fold for HP-β-CD (1:1 M grinding). Ex-vivo permeability studies revealed that the formulation having the greatest dissolution also had the best absorption through the chick ileum. Capsules containing solid dispersion/ complex exhibited better dissolution profile than the marketed product. Thus, the solid dispersion/inclusion complexation technique can be successfully used for enhancement of solubility and permeability of CAN.  相似文献   

6.
This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC0–24?h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.  相似文献   

7.
Solid dispersions and physical mixtures of Zolpidem in polyethylene glycol 4000 (PEG 4000) and 6000 (PEG 6000) were prepared with the aim to increase its aqueous solubility. These PEG based formulations of the drug were characterized in solid state by FT-IR spectroscopy, X-ray powder diffraction, and differential scanning calorimetry. By these physical determinations no drug-polymer interactions were evidenced. Both solubility and dissolution rate of the drug in these formulations were increased. Each individual dissolution profile of PEG based formulation fitted Baker-Lonsdale and first order kinetic models. Finally, significant differences in ataxic induction time were observed between Zolpidem orally administered as suspension of drug alone and as solid dispersion or physical mixture. These formulations, indeed, showed almost two- to three-fold longer ataxic induction times suggesting that, in the presence of PEG, the intestinal membrane permeability is probably the rate-limiting factor of the absorption process. Copyright  相似文献   

8.
To improve its oral absorption, rapidly dissolving ibuprofen solid dispersions (SD) were prepared in a relatively easy, simple, quick, inexpensive, and reproducible manner, characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). They were evaluated for solubility, in vitro release, and oral bioavailability of ibuprofen in rats. Loss of individual surface properties during melting and resolidification as revealed by SEM indicated the formation of effective SDs. Absence or shifting toward the lower melting temperature of the drug peak in SDs and physical mixtures in DSC study indicated the possibilities of drug-polymer interactions. However, no such interactions in the solid state were confirmed by FTIR spectra that showed the presence of drug crystalline in SDs. Quicker release of ibuprofen from SDs in rat intestine resulted in a significant increase in AUC and C(max), and a significant decrease in T(max) over pure ibuprofen. Preliminary results from this study suggested that the preparation of fast-dissolving ibuprofen SDs by low temperature melting method using PEG 6000 as a meltable hydrophilic polymer carrier could be a promising approach to improve solubility, dissolution, and absorption rate of ibuprofen.  相似文献   

9.

Background and the purpose of the study

The purpose of the present investigation was to characterize and evaluate solid dispersions (SD) of indomethacin by using a novel carrier sucrose fatty acid ester (SFE 1815) to increase its in vitro drug release and further formulating as a tablet.

Methods

Indomethacin loaded SD were prepared by solvent evaporation and melt granulation technique using SFE 1815 as carrier in 1:0.25, 1:0.5 1:0.75 and 1:1 ratios of drug and carrier. Prepared SD and tablets were subjected to in vitro dissolution studies in 900 mL of pH 7.2 phosphate buffer using apparatus I at 100 rpm. The promising SD were further formulated as tablets using suitable diluent (DCL 21, Avicel PH 102 and pregelatinised starch) to attain the drug release similar to that of SD.. The obtained dissolution data was subjected to kinetic study by fitting the data into various model independent models like zero order, first order, Higuchi, Hixon-Crowell and Peppas equations. Drug and excipient compatibility studies were confirmed by fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy.

Results

The in vitro dissolution data exhibited superior release from formulation S6 with 1:0.5 drug and carrier ratio using solvent evaporation technique than other SDs prepared at different ratio using solvent evaporation and melt granulation technique. The in vitro drug release was also superior to that of the physical mixtures prepared at same ratio and also superior to SD prepared using common carriers like polyvinyl pyrollidone and PEG 4000 by solvent evaporation technique. Tablets (T8) prepared with DCL21 as diluent exhibited superior release than the other tablets. The tablet formulation (T8) followed first order release with Non-Fickian release.

Conclusion

SFE 1815 a novel third generation carrier can be used for the preparation of SD for the enhancement of in vitro drug release of indomethacin an insoluble drug belonging to BCS class II.  相似文献   

10.
Solid dispersions (SDs) containing the anthelmintic compound albendazole (ABZ) and either Pluronic 188 (P 188) or polyethylene glycol 6000 (PEG 6000) as hydrophilic carriers were formulated. Drug–polymers interactions in solid state were investigated using different techniques.

Only a 4% of total ABZ was dissolved at 5 min post-incubation, reaching dissolution rates of 32.8% (PEG 6000) and 69.4% (P 188) in SDs. In this way, P 188 was substantially more efficient as ABZ dissolution promoter in comparison to PEG 6000, especially at the initial stages of the dissolution processes (<30 min).

An increased systemic availability (p < 0.001) was obtained when ABZ was administered as ABZ-P 188 SDs, with a 50% enhancement in systemic exposure (AUC values) compared to treatment with an ABZ suspension. Consistently, the Cmax increased 130% (p < 0.001) following treatment with P 188 based SD ABZ formulation. For the ABZ-PEG 6000 SD formulation, the favorable effect on ABZ systemic availability did not reached statistical significance compared to the control group.

The study reported here showed the utility of pharmacokinetic assays performed on mice as a model for preliminary drug formulation screening studies.  相似文献   

11.
Polyethylene glycol (PEG) 6000-based solid dispersions (SDs), by incorporating various pharmaceutical excipients or microemulsion systems, were prepared using a fusion method, to compare the dissolution rates and bioavailabilities in rats. The amorphous structure of the drug in SDs was also characterized by powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The ketoconazole (KT), as an antifungal agent, was selected as a model drug. The dissolution rate of KT increased when solubilizing excipients were incorporated into the PEG-based SDs. When hydrophilic and lipophilic excipients were combined and incorporated into PEG-based SDs, a remarkable enhancement of the dissolution rate was observed. The PEG-based SDs, incorporating a self microemulsifying drug delivery system (SMEDDS) or microemulsion (ME), were also useful at improving the dissolution rate by forming a microemulsion or dispersible particles within the aqueous medium. However, due to the limited solubilization capacity, these PEG-based SDs showed dissolution rates, below 50% in this study, under sink conditions. The PEG-based SD, with no pharmaceutical excipients incorporated, increased the maximum plasma concentration (Cmax) and area under the plasma concentration curve (AUC(0-6h)) two-fold compared to the drug only. The bioavailability was more pronounced in the cases of solubilizing and microemulsifying PEG-based SDs. The thermograms of the PEG-based SDs showed the characteristic peak of the carrier matrix around 60 degrees C, without a drug peak, indicating that the drug had changed into an amorphous structure. The diffraction pattern of the pure drug showed the drug to be highly crystalline in nature, as indicated by numerous distinctive peaks. The lack of the numerous distinctive peaks of the drug in the PEG-based SDs demonstrated that a high concentration of the drug molecules was dissolved in the solid-state carrier matrix of the amorphous structure. The utilization of oils, fatty acid and surfactant, or their mixtures, in PEG-based SD could be a useful tool to enhance the dissolution and bioavailability of poorly water-soluble drugs by forming solubilizing and microemulsifying systems when exposed to gastrointestinal fluid.  相似文献   

12.
The objective of the current investigation was to enhance the solubility and dissolution rate of loratadine using solid dispersions (SDs) with Gelucire 50/13. SDs of loratadine using Gelucire 50/13 as carrier were prepared by the solvent evaporation method, characterized for drug content, dissolution behavior, and physicochemical characteristics by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) studies. At 10 % concentration of Gelucire 50/13, the increase in solubility was around 100-fold compared with pure drug. The solubility of loratadine in the presence of Gelucire 50/13 in water showed linear increase with increasing concentrations of Gelucire indicating AL-type solubility diagrams. The mean dissolution time (MDT) of loratadine decreased after preparation of SDs with Gelucire 50/13 indicating increased dissolution rate. FTIR studies showed the stability of loratadine and the absence of a well-defined interaction. DSC and XRD studies revealed the amorphous state of loratadine in SDs which was further confirmed from SEM. From the dissolution parameters, it is evident that the solubility and dissolution rate of loratadine was enhanced by SDs with Gelucire 50/13.  相似文献   

13.
Solid dispersions (SDs) of aloe‐emodin (AE) and polyethylene glycol 6000 (PEG6000) with different drug loadings were prepared, characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) and evaluated for solubility and in vitro release. The oral bioavailability of AE from SD in rats was compared with the crystalline drug. Plasma concentrations of AE were determined by HPLC. After administration of crystalline AE (35 mg·kg?1) in rats, the AUC0‐600 and Cmax were 393.6±77.1 mg·min·l?1 and 1.87±0.30 mg·l?1, respectively. For the PEG6000 SD of AE, AUC0‐600 and Cmax were boosted to 1310.5±111.9 mg·min·l?1 and 5.86±0.47 mg·l?1, respectively. The results indicated that the oral bioavailability of AE was increased significantly. Simultaneously, the Tmax value of AE for AE crystalline was decreased from 75.6±17.3 min to 44.8±14.8 min for SD. The earlier Tmax for AE from SD indicated the higher extent of absorption for SD due to their improved dissolution rate in rat intestine. This SD approach can therefore be used to enhanced dissolution and bioavailability for poorly water‐soluble drugs. Drug Dev Res, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
This work investigated the feasibility of developing benznidazole (BZL) tablets, allowing fast, reproducible, and complete drug dissolution, by compressing BZL-Polyethylene Glycol (PEG) 6000 physical mixtures (PMs) and solid dispersions (SDs). SDs were prepared by the solvent evaporation method at different drug:polymer ratios (w/w). BZL-PEG 6000 formulations were characterized by X-ray diffraction (XRD), scanning electron microscopy, and dissolution studies. The preparation of SD-based BZL tablets by the wet granulation method was carried out and the influence of pregelatinized starch (PS) and starch (S) on the disintegration time and drug dissolution rate was analyzed. SDs showed a significant improvement in the release profile of BZL as compared with the pure drug. As demonstrated by XRD, the crystalline character of BZL remained almost unaltered in both PMs and SDs. BZL release from the PEG 6000 tablets increased by the presence of PS instead S. Unexpectedly, the BZL release from tablets containing PMs was almost equal as compared with the BZL release from tablets containing SDs. In conclusion, the results suggest that PEG 6000 and PS are suitable additives for the development of BZL tablets with enhanced dissolution behavior through the preparation of ordinary PMs, instead the laborious SDs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1016–1023, 2013  相似文献   

15.
Nevirapine (NVP) was loaded in polycaprolactone (PCL) matrices to produce vaginal inserts with the aim of preventing HIV transmission. NVP dispersions in PCL were prepared, at 10% (w/w) theoretical loading, measured with respect to the PCL content of the matrices, in the form of (1) NVP only, (2) a physical mixture of NVP with polyethylene glycol (PEG) 6000 or (c) a solid dispersion (SD) with PEG produced by co-dissolution in ethanol. Characterisation of SD by differential scanning calorimetry and attenuated total reflectance–Fourier transform infrared spectroscopy suggested transformation of the crystalline structure of NVP to an amorphous form which consequently increased the dissolution rate of drug. A low-loading efficiency of 13% was obtained for NVP-loaded matrices and less than 20% for matrices prepared using physical mixtures of drug and PEG. The loading efficiency was improved significantly to around 40% when a 1:4 NVP–PEG SD was used for matrix production. After 30 days, 40% of the drug content was released from NVP-loaded matrices, 55% from matrices containing 1:4 NVP–PEG physical mixtures and 60% from matrices loaded with 1:4 NVP–PEG SDs. The in vitro anti-viral activity of released NVP was assessed using a luciferase reporter gene assay following the infection of HeLa cells with pseudo-typed HIV-1. NVP released from PCL matrices in simulated vaginal fluid retained over 75% anti-HIV activity compared with the non-formulated NVP control. In conclusion, 1:4 NVP–PEG SDs when loaded in PCL matrices increase drug loading efficiency and improve release behaviour.  相似文献   

16.
杨梅素固体分散体的制备以及体外溶出试验   总被引:1,自引:0,他引:1  
目的运用固体分散技术制备杨梅素固体分散体并提高其体外溶出速率。方法选用PEG6000和PVPK30为载体,采用溶剂法和溶剂-熔融法制备杨梅素固体分散体,采用紫外分光光度法进行含量测定,并进行溶解度、体外溶出试验。结果两种载体的固体分散体均能增加药物的溶解度和溶出速率,杨梅素在载体中以高度分散状态存在。结论以PVPK30为载体的杨梅素固体分散体体外溶解度和溶出速率明显提高。杨梅素固体分散体能显著提高杨梅素的溶出速率。  相似文献   

17.
目的以尼美舒利为难溶弱酸性模型药物,研究提高该类药物释放速率的方法。方法以聚乙二醇6000(PEG6000)为载体,采用熔融法制备尼美舒利固体分散体;测定含不同碱化剂(包括NaOH、KOH、Ca(OH)2、Na2CO3、CaCO3)的尼美舒利固体分散体中药物的释放速率。结果加入碱化剂能显著增加尼美舒利在蒸馏水中的释放度,碱化剂不同,药物的释放度不同;碱化剂的碱性越强,分散体的颜色越深,其吸湿性也相对越大。结论在尼美舒利PEG6000固体分散体中加入碱化剂可显著改善该类药物的体外释放特点,并呈现明显的非pH依赖性。  相似文献   

18.
The objective of the study was enhancement of dissolution of poorly soluble carvedilol by solid dispersions (SDs) with Gelucire 50/13 using solvent evaporation method. The solubility of carvedilol showed linear increase with increasing concentrations of Gelucire indicating AL type solubility diagrams. SDs characterized for physicochemical characteristics using differential scanning calorimetry and X-ray diffractometry revealed transformation of crystalline form of drug to amorphous form which was confirmed by scanning electron micrographs. Further fourier transform infrared spectroscopy results suggested there is no drug carrier interaction. From the dissolution parameters such as mean dissolution time, dissolution efficiency and drug release rate, improved dissolution characteristics for SDs were observed compared with physical mixture and pure drug. Thus SDs of carvedilol in Gelucire 50/13 showed enhanced solubility and dissolution rate compared to pure drug.  相似文献   

19.
目的采用固体分散技术,提高冬凌草甲素的体外溶解性能。方法分别以聚乙二醇6000(PEG6000)、聚乙烯吡咯烷酮K30(PVPK30)为载体,制备冬凌草甲素固体分散体。采用紫外分光光度法进行含量测定,差示热分析法鉴别药物在载体中的存在状态,并进行溶解度、体外溶出速率实验。结果两种载体的固体分散体均能增加药物的溶解度和溶出速率,冬凌草甲素在载体中以高度分散状态存在。结论以PVPK30为载体制备的冬凌草甲素固体分散体体外溶解度和溶出速率明显提高。  相似文献   

20.
Introduction: Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs.

Areas covered: The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize?, closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug–carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, SolumerTM used to prepare stable amorphous SD.

Expert opinion: Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号