首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tri-block-coupling polymer of stearyl poly(ethylene oxide)-4,4′-methylene diphenyl diisocyanate-stearyl poly(ethylene oxide)(MSPEO), was used as a surface modifying additive (SMA) and the MSPEO-modified poly(ether urethane) (PEU) surfaces were prepared by the process of dipcoating. The surface analysis by XPS revealed the surface enrichment of poly(ethylene oxide) (PEO). On the coating-modified surfaces, the bovine serum albumin (BSA) adsorption, respectively, from the low and high BSA bulk concentration solutions was correspondingly characterized by the methods of radioactive 125I-probe and ATR-FTIR. The bovine serum fibrinogen (Fg)-adsorption from the Fg bulk solution and the BSA-Fg competing adsorption from the BSA-Fg binary solutions were also characterized by radioactive 125I-probe. The reversible BSA-selective in situ adsorption on MSPEO-modified PEU surfaces were achieved, and the performance of blood compatibility on the coating-modified surfaces was also confirmed, respectively, by plasma recalcification time (PRT) and prothrombin time (PT) tests.  相似文献   

2.
根据傅立叶变换红外光谱测试法(FT-IR)的基本原理,利用衰减全反射傅半叶变换红外光谱(ATR-FT-IR),建立了对材料表面蛋白质吸附行为的定量分析方法。并且,采用该方法对牛清血蛋白(BSA)在聚醚氨酯(PEU)涂覆改性材料表面的静态吸附进行了定量表征。所使用的两种表面改性剂(SMA)分别是三嵌段偶联物:十八烷基聚氧乙烯-4,4'-二苯甲烷二异氰酸酯-十八烷基聚氧乙烯(简称MSPEO);及另外一种Cibacron Blue F3G-A端基的同类三嵌段偶联物(简称cibaMPEO)。BSA表面吸附实验由静态等温吸附与静态吸附动力学两部分组成。研究结果表明,BSA于MSPEO及cibaMPEO改性基材表面吸附量明显增加,从而确证了这两种SMA对于BSA的特异吸附作用。  相似文献   

3.
Protein-resistant polyurethane (PU) surfaces were prepared by sequentially grafting poly(2-hydroxyethyl methacrylate) (poly(HEMA)) and poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) via surface-initiated atom transfer radical polymerization (s-ATRP). The chain lengths of poly(HEMA) and poly(OEGMA) were regulated via the ratio of monomer to sacrificial initiator in solution. The surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS). The protein resistant properties of the surfaces were assessed by single and binary adsorption experiments with fibrinogen (Fg), lysozyme (Lys), and lactalbumin (Lac). The adsorption of all three proteins on the sequentially grafted poly(HEMA)-poly(OEGMA) surfaces (PU/PH/PO) was greatly reduced compared with the unmodified PU. Adsorption decreased with increasing poly(OEGMA) chain length. On the PU/PH/PO surface with longest poly(OEGMA) chain length (~100), the decrease in Lys adsorption was in the range of 95-98% and the decrease in Fg and Lac adsorption was >99% compared with the unmodified PU. Adsorption from binary protein solutions showed that the PU/PH/PO surfaces resisted these proteins more or less equally, that is, independent of protein size.  相似文献   

4.
Protein adsorption to poly(ethylene oxide) surfaces.   总被引:5,自引:0,他引:5  
Surfaces containing poly(ethylene oxide) (PEO) are interesting biomaterials because they exhibit low degrees of protein adsorption and cell adhesion. In this study different molecular weight PEO molecules were covalently attached to poly(ethylene terephthalate) (PET) films using cyanuric chloride chemistry. Prior to the PEO immobilization, amino groups were introduced onto the PET films by exposing them to an allylamine plasma glow discharge. The amino groups on the PET film were next activated with cyanuric chloride and then reacted with bis-amino PEO. The samples were characterized by scanning electron microscopy, water contact angle measurements, gravimetric analysis, and electron spectroscopy for chemical analysis (ESCA). The adsorption of 125I-labeled baboon fibrinogen and bovine serum albumin was studied from buffer solutions. Gravimetric analysis indicated that the films grafted with the low-molecular-weight PEO contained many more PEO molecules than the surfaces grafted with higher-molecular-weight PEO. The high-molecular-weight PEO surfaces, however, exhibited greater wettability (lower water contact angles) and less protein adsorption than the low-molecular-weight PEO surfaces. Adsorption of albumin and fibrinogen to the PEO surfaces decreased with increasing PEO molecular weight up to 3500. A further increase in molecular weight resulted in only slight decreases in protein adsorption. Protein adsorption studies as a function of buffer ionic strength suggest that there may be an ionic interaction between the protein and the allylamine surface. The trends in protein adsorption together with the water contact angle results and the gravimetric analysis suggest that a kind of "cooperative" water structuring around the larger PEO molecules may create an "excluded volume" of the hydrated polymer coils. This may be an important factor contributing to the observed low protein adsorption behavior.  相似文献   

5.
We have studied the influence of oxygen radio frequency glow discharge (RfGD) on the surface and bulk properties of poly(D,L-lactic acid) (PDLLA) and the effect of this surface modification on both protein adsorption and bone cell behavior. PDLLA films were characterized before and after plasma surface modification by water contact angle, surface energy, and adhesion tension of water as well as by scanning electron microscopy (SEM), X-ray electron spectroscopy (XPS), and Fourier transform infra-red (FTIR) spectroscopy. RfGD-films showed an increase in hydrophilicity and surface energy when compared with untreated films. Surface morphological changes were observed by SEM. Chemical analysis indicated significant differences in both atomic percentages and oxygen functional group. Protein adsorption was evaluated by combining solute depletion and spectroscopic techniques. Bovine serum albumin (BSA), fibronectin (FN), vitronectin (VN), and fetal bovine serum (FBS) were used in this study. RfGD-treated surfaces adsorbed more BSA and FN from single specie solutions than FBS that is a more complex, multi-specie solution. MG63 osteoblast-like cells and primary cultures of fetal rat calvarial (FRC) cells were used to assess both the effect of RfGD treatment and protein adsorption on cell attachment and proliferation. In the absence of preadsorbed proteins, cells could not distinguish between treated and untreated surfaces, with the exception of MG63 cells cultured for longer periods of time. In contrast, the adsorption of proteins increased the cells' preference for treated surfaces, thus indicating a crucial role for adsorbed proteins in mediating the response of osteogenic cells to the RfGD-treated PDLLA surface.  相似文献   

6.
Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with 100nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end-group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating.  相似文献   

7.
Previous investigations have demonstrated that the inflammatory cell derived enzyme, cholesterol esterase (CE) could degrade polyurethanes (PUs) by hydrolyzing ester and urethane bonds. Studies that have investigated the development of protective coatings for PUs have reported that the polymer degradation of polyester-urethanes (PESUs) can be reduced with the use of fluorine containing surface modifying macromolecules (SMMs). Since these latter studies were carried out in the presence of relatively pure enzyme, it has not been shown if SMMs would still provide an enhanced inhibitory effect if surfaces were pre-exposed to plasma proteins. This would be more representative of the in vivo scenario since protein adsorption would occur before the appearance of monocyte-derived macrophages which would be a primary source of esterase activities. The current investigation has focused on studying the influence of fibrinogen (Fg) as a simple model of protein adsorption in order to assess the effect of CE in combination with protein on polyether-urethane (PEU) surfaces. The materials were prepared with and without SMMs, and were pre-coated with Fg prior to carrying out biodegradation studies. The pre-adsorption of Fg onto the modified and non-modified surfaces provided a significant delay in the hydrolytic action of CE onto the PEU substrates. However, the effect was gone by 70 days and by the 126th day of incubation, both Fg coated and non-Fg coated groups had the same level of degradation. The difference between Fg coated and non-coated substrates was much smaller for materials containing SMMs. In addition, the pre-adsorption of Fg did not alter the SMMs' ability to provide a more biostable surface over the 4 month incubation period.  相似文献   

8.
Nonspecific protein adsorption, particularly fibrinogen (Fg), is thought to be an initiating step in the foreign body response (FBR) to biomaterials by promoting phagocyte attachment. In previous studies, we therefore prepared radiofrequency glow discharge (ethylene oxide)-like tetraglyme (CH(3)O(CH(2)CH(2)O)(4)CH(3)) coatings adsorbing <10 ng/cm(2) Fg and showed that they had the expected low monocyte adhesion in vitro. However, when these were implanted in vivo, many adherent inflammatory cells and a fibrous capsule were found, suggesting the role of alternative proteins, such as activated complement proteins, in the FBR to these materials. We therefore investigated complement interactions with the tetraglyme surfaces. First, because of its well-known role in complement C3 activation, we measured the hydroxyl group (-OH) content of tetraglyme, but found it to be low. Second, we measured C3 adsorption to tetraglyme from plasma. Low amounts of C3 adsorbed on tetraglyme, although it displayed higher binding strength than the control surfaces. Finally, complement activation was determined by measuring C3a and SC5b-9 levels in serum after incubating with tetraglyme, as well as other surfaces that served as positive and negative controls, namely poly(vinyl alcohol) (PVA) hydrogels, Silastic sheeting, and poly(ethylene glycol) self-assembled monolayers with different end groups. Despite displaying low hydroxyl group concentration, relatively high C3a and SC5b-9 levels were found in serum exposed to tetraglyme, similar to the values in our positive control, PVA. Our results support the conclusion that complement activation by tetraglyme is a possible mechanism involved in the FBR to these biomaterials.  相似文献   

9.
A series of ionogenic poly(HEMA) membranes which were prepared by bulk copolymerization of 2-hydroxyethylmethacrylate (HEMA) and anionic or cationic comonomers, acrylic acid (AA), and dimethylaminoethylmethacrylate (DMAEMA), were characterized by equilibrium swelling measurements, surface free energies, and protein adsorption studies. It was found that their equilibrium water content (EWC) values are greater than 40% which increases with increasing comonomer concentration. That is why the surface free energy is approximately the same (~60 erg cm-2) for all surfaces and does not depend mainly on the composition of the polymer matrix. The adsorption of two plasma proteins that have received much attention, i.e. BSA and fibrinogen, on these membranes was followed by fluorimetric measurements as a function of time. The uptake of proteins from dilute solutions appeared to be directly related to the type and density of surface charge, and also structural properties of the proteins.  相似文献   

10.
Ji J  Feng L  Barbosa MA 《Biomaterials》2001,22(22):3015-3023
An ideal surface for many biomedical applications would resist non-specific protein adsorption while at the same time triggering a specific biological pathway. Based on the approach of selectively binding albumin to free fatty acids, stearyl groups were immobilized onto poly(styrene) backbone via poly(ethylene oxide) side chains. X-ray photoelectron spectroscopy (XPS) analysis indicates substantial surface enrichment of the stearyl poly(ethylene oxide) (SPEO). In an aqueous environment, the surface rearrangement is limited, as proved by dynamic contact angle tests. The comb-like copolymer presents a special hydrophobic surface with high SPEO surface density, which may be due to the 'tail like' SPEO architecture at the copolymer/water interface. Protein adsorption tests confirm that the comb-like surfaces adsorb high levels of albumin and resist fibrinogen adsorption very significantly. The surfaces prepared in this research attract and reversibly bind albumin due to the synergistic action of the PEO chains and the stearyl end groups.  相似文献   

11.
The adhesion of marrow stromal osteoblasts and the adsorption of fetal bovine serum (FBS) proteins to end-capped poly(D,L-lactic acid) 50:50 (PLA50) of molecular weight 17,000 (PLA5017), non-end-capped PLA50 of molecular weight 11,000 (PLA5011h), and a diblock copolymer made of poly(ethylene glycol)-monomethyl ether of molecular weight 5,000 and PLA50 of molecular weight 20,000 (Me. PEG5-PLA20) were investigated. Cell attachment and proliferation on both PLA50 polymers were equally good. The block copolymer did not allow the proliferation of cells. However, the attached cells were highly differentiated and metabolically active in contrast to the cells on PLA50. Moreover, surface analysis studies using electron spectroscopy revealed that FBS proteins adsorbed well from aqueous solutions to the PLA50 surfaces while they adsorbed substantially less to the block copolymer. These results suggest that Me.PEG-PLA block copolymers may be used to regulate protein adsorption and, therefore, cell adhesion by varying the block composition of the copolymer.  相似文献   

12.
Surface modification of polyurethane (PUR) surfaces was carried out by using three different amphiphilic polymers. Two of the polymers were graft copolymers, having backbones consisting of poly(methyl methacrylate-co-ethylhexyl acrylate) and poly(styrene-co-acrylamide), respectively, and poly(ethylene oxide) PEO 2000 grafts. The third polymer was a commercially available poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer, Pluronic 9400. The polymers were designated ACRY, STY2, and PE94, respectively. Surface modification was achieved by adsorption of the amphiphilic polymers at PUR surfaces from an aqueous solution, or by blending the amphiphiles into a PUR solution, followed by solution casting of films. The accumulation of the amphiphilic polymers at the PUR surfaces was observed by XPS and contact angle measurements. The ACRY and PE94 polymers were shown to adsorb poorly at the PUR surface, but gave strong surface effects when present in the PUR matrix. Protein adsorption was measured under static as well as under flow conditions. The modified surfaces had generally lower adsorption of blood proteins (HSA, Fg and IgG) than the unmodified PUR surfaces. ACRY blend modified surfaces had the lowest adsorption.  相似文献   

13.
Park JH  Bae YH 《Biomaterials》2002,23(8):1797-1808
In vitro protein adsorption, platelet adhesion and activation on new hydrogel surfaces, composed of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) or poly(dimethyl siloxane) (PDMS), were investigated. By varying PEO length (MW = 2000 or 3400), hydrophobic components (PTMO or PDMS) or polymer topology (block or graft copolymers), various physical hydrogels were produced. Their structures were verified by 1H NMR and ATR-IR and the molecular weights were determined by gel permeation chromatography. The hydrogels were soluble in a variety of organic solvents, while absorbed a significant amount of water with preserved three-dimensional structure by physical crosslinking. The dynamic contact angle measurement revealed that the surface hydrophilicity increased by incorporating longer PEO, PEO grafting, and adopting PDMS as a hydrophobic segment instead of PTMO. It was observed from in vitro protein adsorption study that the hydrogels exhibited significantly lower adsorption of human serum albumin (HSA), human fibrinogen (HFg), and IgG, when compared with Pellethane, a commercial polyurethane taken as a control. The hydrogels were attractive for HSA but not sensitive to HFg and IgG. And more than 65% of the proteins detected on the surfaces of the hydrogels were reversibly detached by being treated with an SDS solution. It was evident that the hydrogels synthesized in this study were much more resistant to platelet adhesion than the control, which might depend on the composition of proteins adsorbed on the surfaces and their degree of denaturation. Among the hydrogels tested, PEO3,4kPDMS exhibited albumin-rich and platelet-resistant surfaces, implying a potential candidate for biomaterial.  相似文献   

14.
The interactions of proteins and platelets with cellulose membranes grafted with poly(ethylene glycol) were studied. The poly(ethylene glycol) grafting was carried out using poly(ethylene glycol)-monoacid and poly(ethylene glycol)-diacid, which have one and two terminal carboxyl groups, respectively. The grafting operates through esterification between the carboxyl groups of poly(ethylene glycol) and the hydroxyl groups on the membrane surface. Both of the poly(ethylene glycol) grafted membranes reduced the complement activation. Adsorption of bovine serum albumin and gamma-globulin increased when the membrane was grafted with poly(ethylene glycol)-diacid, but did not change when it was grafted with poly(ethylene glycol)-monoacid. When platelets were incubated with serum proteins, the platelet adhesion to the membranes slightly decreased by grafting both the poly(ethylene glycol)-diacid and poly(ethylene glycol)-monoacid. The poly(ethylene glycol)-diacid grafted surface showed more clotting than the poly(ethylene glycol)-monoacid grafted and original surfaces.  相似文献   

15.
Surface modification using silanated poly(ethylene glycol)s   总被引:2,自引:0,他引:2  
Jo S  Park K 《Biomaterials》2000,21(6):605-616
Surface-grafted poly(ethylene glycol) (PEG) molecules are known to prevent protein adsorption to the surface. The protein-repulsive property of PEG molecules are maximized by covalent grafting. We have synthesized silanated monomethoxy-PEG (m-PEG) for covalent grafting of PEG to surfaces with oxide layers. Two different trialkoxysilylated PEGs were synthesized and characterized. The first trialkoxysilylated PEG was prepared by direct coupling of m-PEG with 3-isocyanatopropyltriethoxysilane through a urethane bond (silanated PEG I). The other silanated PEG (silanated PEG II) containing a long hydrophobic domain between PEG and a silane domain was prepared by reacting m-PEG with 1,6-diisocyanatohexane and 10-undecen-1-ol in sequence before silylation with 3-mercaptopropyl trimethoxysilane. Silanated PEGs I and II were grafted onto glass, a model surface used in our study. The PEG-grafted glass surfaces were characterized by contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Although contact angle did not change much as the bulk concentration of silanated PEG used for grafting increased from 0.1 to 20 mg/ml for both PEGs I and II, the surface atomic concentrations from XPS measurements showed successful PEG grafting. Surface PEG grafting increased concentration of surface carbon but decreased silicone concentration. The high resolution C1s spectra showed higher ether carbon with lower hydrocarbon compositions for the PEG-grafted surfaces compared to the control surface. AFM images showed that more PEG molecules were grafted onto the surface as the bulk concentration used for grafting was increased. AFM images of the dried surfaces showed that the surfaces were not completely covered by PEG molecules. After hydration, however, the surface appears to be covered completely probably due to the hydration of the grafted PEG chains. Glass surfaces modified with silanated PEGs reduced fibrinogen adsorption by more than 95% as compared with the control surface. Silanated PEGs provides a simple method for PEG grafting to the surface containing oxide layers.  相似文献   

16.
A biodegradable polymer network hydrogel with both hydrophobic and hydrophilic components was synthesized and characterized. The hydrophobic and hydrophilic components were a three-arm poly(epsilon-caprolactone) maleic acid (PGCL-Ma, as the hydrophobic constituent) and poly(ethylene glycol) diacrylate macromer (PEGDA, as a hydrophilic constituent), respectively. These two polymers were chemically photo-crosslinked to generate a three-dimensional network structure, which were characterized by FT-IR, DSC and SEM. The swelling property of the networks was studied in phosphate-buffered saline (PBS, pH 7.4). The results of this study showed that a wide-range swelling property was obtained by changing the composition ratio of PGCL-Ma to PEGDA. The in vitro release of bovine serum albumin (BSA) from these hydrogels as a function of the PEGDA to PGCL-Ma composition ratio and incubation time was examined and we found that the incorporation of PEGDA into PGCL-Ma increased the initial burst release of BSA. As the PEGDA component increased, the rate of formation of a loose three-dimensional (3D) network structure increased; consequently, the sustained rate and extent of BSA release increased. We suggest that the release of BSA was controlled by both diffusion of BSA through swelling of the hydrophilic phase during an early stage and degradation of the hydrophobic phase during a late stage; and that the relative magnitude of diffusion versus degradation controlled release depended on composition ratio and immersion time.  相似文献   

17.
Various poly(vinyl alcohol)/carboxymethyl-chitosan (PVA/CMCS) blend films were prepared by a mechanical blending method and characterized by SEM for their surface and cross-section morphologies. It indicated that blending high CMCS content in PVA plastic led to a rough surface and loose structure. Bovine serum albumin (BSA) and bovine fibrinogen (BFG) were chosen as representative plasma proteins to carry out adsorption tests. Equilibrium adsorption amount of proteins onto the blends decreased with the increase of CMCS content in film matrix, and BSA was more easily adsorbed onto the films than BFG in the same conditions. The blend films also exhibited different trends for BSA and BFG adsorption when pH of the media changed, but maximum adsorption approximately occurred at the isoelectric point of proteins. Moreover, increasing the ionic strength would always decrease the adsorptions of protein onto the films. In animal experiments, it was found that incorporation of CMCS and PVA gave a lower tissue reaction than pure PVA films when they were subcutaneously implanted in Wistar rats. After two weeks subcutaneous implantation, surfaces of PVA became wrinkled and cracked; however, the blend implants exhibited a alveolate porous microstructure.  相似文献   

18.
Various poly(vinyl alcohol)/carboxymethyl-chitosan (PVA/CMCS) blend films were prepared by a mechanical blending method and characterized by SEM for their surface and cross-section morphologies. It indicated that blending high CMCS content in PVA plastic led to a rough surface and loose structure. Bovine serum albumin (BSA) and bovine fibrinogen (BFG) were chosen as representative plasma proteins to carry out adsorption tests. Equilibrium adsorption amount of proteins onto the blends decreased with the increase of CMCS content in film matrix, and BSA was more easily adsorbed onto the films than BFG in the same conditions. The blend films also exhibited different trends for BSA and BFG adsorption when pH of the media changed, but maximum adsorption approximately occurred at the isoelectric point of proteins. Moreover, increasing the ionic strength would always decrease the adsorptions of protein onto the films. In animal experiments, it was found that incorporation of CMCS and PVA gave a lower tissue reaction than pure PVA films when they were subcutaneously implanted in Wistar rats. After two weeks subcutaneous implantation, surfaces of PVA became wrinkled and cracked; however, the blend implants exhibited a alveolate porous microstructure.  相似文献   

19.
M Amiji  K Park 《Biomaterials》1992,13(10):682-692
Fibrinogen adsorption and platelet adhesion on to dimethyldichlorosilane-treated glass and low-density polyethylene were examined. The surfaces were treated with poly(ethylene glycol) and poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymers (Pluronics). Poly(ethylene glycol) could not prevent platelet adhesion and activation, even when the bulk concentration for adsorption was increased to 10 mg/ml. Pluronics containing 30 propylene oxide residues could not prevent platelet adhesion and activation, although the number of ethylene oxide residues varied up to 76. However, Pluronics containing 56 propylene oxide residues inhibited platelet adhesion and activation, even though the number of ethylene oxide residues was as small as 19. Fibrinogen adsorption on the Pluronic-coated surfaces was reduced by more than 95% compared to the adsorption on control surfaces. The ability of Pluronics to prevent platelet adhesion and activation was mainly dependent on the number of propylene oxide residues, rather than the number of ethylene oxide residues. The large number of propylene oxide residues was expected to result in tight interaction with hydrophobic dimethyldichlorosilane-treated glass and low-density polyethylene surfaces and thus the tight anchoring of Pluronics to the surfaces. The presence of 19 ethylene oxide residues in the hydrophilic poly(ethylene oxide) chains was sufficient to repel fibrinogen and platelets by the mechanism of steric repulsion.  相似文献   

20.
The photoresponsive copolymer microspheres [poly(MAIP-co-MMA)] were prepared from the emulsifier-free emulsion copolymerization of 2-[2-(methacryloyloxy) ethyldimethylammonio]-ethyl indolinonaphthooxazine phosphate (MAIP) and methyl methacrylate (MMA). From the kinetics of the copolymerization of MAIP and MMA, it was found that the initial rate of polymerization of MMA increased by the addition of a small amount of MAIP. From the X-ray photoelectron spectroscopy (XPS) measurements MAIP moiety was found to be located on the surface of a particle. The introduction of a MAIP moiety into poly(MMA) microspheres results in a decrease in the amount of bovine serum albumin (BSA) adsorbed. A photoresponsive adsorption of BSA on poly(MAIP-co-MMA) microspheres was observed with spirooxazine-merocyanine photoisomerization caused by UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号