首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of microbial pathogens still relies primarily on culture and phenotypic methods, which is labour-intensive and time-consuming. In this study, identification of bacteria with valid standard identification using BD Phoenix, API panels and other recommended procedures is compared to identification with matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry using the MALDI Biotyper (Bruker Daltonics) in the setting of a routine NHS diagnostic microbiology laboratory. In total, 928 bacterial isolates obtained from blood (n=463), wounds and pus (n=208), respiratory tract (n=100), faeces (n=86) and urines (n=71) were analysed. There were 721 (77.7%) isolates with a MALDI Biotyper score > or =2.0, indicating secure genus and probable species identification; and 149 (16.1%) isolates with a score > or =1.7 and <2.0 indicating probable genus identification. The isolates with scores of > or =2.0 and > or =1.7 comprised 31 and 33 genera and 65 and 67 species, respectively. Overall, 99.4% and 99.1% of organism identifications were in agreement between the MALDI Biotyper and conventional identification at the genus level, and 89.3% and 87.8% at species level when analysing organisms with MALDI Biotyper scores > or =2.0 and > or =1.7, respectively. With many but not all organisms, identification at the genus level is sufficient; however, MALDI Biotyper separation of 208 staphylococci into Staphylococcus aureus and coagulase-negative staphylococci was always correct when scores were > or =1.7. First results were obtained after 5-10 min and analysis of a full 96-well target plate was completed in approximately 90 min. Substantial savings of between pounds 1.79 and pounds 2.56 per isolate, depending on the cost model of acquisition of the MALDI Biotyper system and number of isolates tested, would be realised when all 928 isolates were identified using the MALDI Biotyper and disk-susceptibility testing when compared to the cost for 618 Phoenix ID panels and 158 API panels and disk-susceptibility tests only (i.e., not taking into account costs incurred for identification of the remaining 152 mixed isolates). Microbial identification by MALDI Biotyper offers a rare opportunity for significant cost-neutral or even cost-saving quality improvements in medical diagnostics.  相似文献   

2.
As routine identification of coagulase-negative staphylococci is problematic, the performance of automated ribotyping was evaluated for identification of coagulase-negative staphylococci other than Staphylococcus epidermidis. In total, 177 isolates were tested, comprising 149 isolates from blood samples, 15 isolates that were not identified by internal transcribed spacer (ITS)-PCR in a previous study, and 13 reference strains. The identification results were compared with those obtained by the API 20 Staph system, with standard phenotypic and molecular methods as reference. Most (n = 166; 93.8%) isolates were identified correctly by automated ribotyping. For 61 isolates, API 20 Staph and ribotyping were in agreement, but for 105 isolates, ribotyping provided correct identification and API 20 Staph did not. Four isolates not identified by automated ribotyping were recognised correctly by API 20 Staph. The remaining seven isolates could not be identified by either of the two methods. Automated ribotyping was able to distinguish Staphylococcus capitis reliably from Staphylococcus caprae. The results demonstrate the value of automated ribotyping for identification of coagulase-negative Staphylococcus (CoNS) isolates from human sources and may help to clarify the clinical relevance of CoNS species. In addition, automated ribotyping was able to detect polymorphisms that may be useful for epidemiological purposes within S. capitis, Staphylococcus hominis, Staphylococcus haemolyticus, Staphylococcus simulans, S. caprae, Staphylococcus warneri, Staphylococcus lugdunensis, Staphylococcus schleiferi, Staphylococcus sciuri, Staphylococcus pasteuri and Staphylococcus xylosus.  相似文献   

3.
A total of 212 coagulase-negative Staphylococcus strains recovered prospectively during 119 surgeries for proven or suspected bone and joint infection (BJI) were identified by sodA sequencing. These strains were identified as 151 Staphylococcus epidermidis isolates, 15 S. warneri isolates, 14 S. capitis isolates, 9 S. hominis isolates, 6 S. lugdunensis isolates, 5 S. haemolyticus isolates, 4 S. caprae isolates, 4 S. pasteuri isolates, 3 S. simulans isolates, and 1 S. cohnii isolate. Only S. epidermidis, S. lugdunensis, S. capitis, and S. caprae were found to be infecting organisms and were involved, respectively, in 35 (81.4%), 3 (7.0%), 3 (7.0%), and 2 (4.6%) cases of BJI.  相似文献   

4.
A 4-year prospective study compared the accuracy of the STAPH-IDENT system (bioMérieux Vitek, Inc., Hazelwood, Mo.) with that of the reference procedure of the Centers for Disease Control and Prevention for the identification of Staphylococcus species, Stomatococcus mucilaginosus, and Micrococcus species. The study compared the results from 1,106 cultures (500 eye cultures, 217 strains submitted for reference identification, and 389 known stock strains) representing 21 species of the family Micrococcaceae. The overall agreement of genus and species identifications was 81.1%. The percent agreement for the five most common clinical isolates was as follows: Staphylococcus epidermidis, 97.1% (517 isolates); Staphylococcus hominis, 82.5% (57 isolates); Staphylococcus aureus, 77.2% (162 isolates); Staphylococcus haemolyticus, 75.8% (61 isolates); and Staphylococcus warneri, 64.1% (39 isolates). The lowest percent agreement was with Staphylococcus cohnii (11.1%; (9 isolates). Of the 217 isolates sent to the Centers for Disease Control and Prevention for identification, 60.4% (131) were correctly identified by the STAPH-IDENT system. Of these, S. epidermidis accounted for 23.9%, S. aureus accounted for 15.6%, S. warneri accounted for 6.9%, Staphylococcus lugdunensis accounted for 6.5%, S. haemolyticus accounted for 5.5%, and S. hominis accounted for 4.1%. The STAPH-IDENT system did not perform adequately when dealing with commonly encountered organisms and is unsuitable for identifying uncommon isolates.  相似文献   

5.
The emergence of coagulase-negative staphylococci not only as human pathogens but also as reservoirs of antibiotic resistance determinants requires the deployment and development of methods for their rapid and reliable identification. Internal transcribed spacer-PCR (ITS-PCR) was used to identify a collection of 617 clinical staphylococcal isolates. The amplicons were resolved in high-resolution agarose gels and visually compared with the patterns obtained for the control strains of 29 staphylococcal species. Of the 617 isolates studied, 592 (95.95%) were identified by ITS-PCR and included 11 species: 302 isolates of Staphylococcus epidermidis, 157 of S. haemolyticus, 79 of S. aureus, 21 of S. hominis, 14 of S. saprophyticus, 8 of S. warneri, 6 of S. simulans, 2 of S. lugdunensis, and 1 each of S. caprae, S. carnosus, and S. cohnii. All species analyzed had unique ITS-PCR patterns, although some were very similar, namely, the group S. saprophyticus, S. cohnii, S. gallinarum, S. xylosus, S. lentus, S. equorum, and S. chromogenes, the pair S. schleiferi and S. vitulus, and the pair S. piscifermentans and S. carnosus. Four species, S. aureus, S. caprae, S. haemolyticus, and S. lugdunensis, showed polymorphisms on their ITS-PCR patterns. ITS-PCR proved to be a valuable alternative for the identification of staphylococci, offering, within the same response time and at lower cost, higher reliability than the currently available commercial systems.  相似文献   

6.
Six commercial agglutination tests designed for the identification of Staphylococcus aureus were compared by using a strain collection which included 512 staphylococci representing 33 species (318 isolates of Staphylococcus aureus [including 144 oxacillin resistant], 46 S. epidermidis isolates, 15 S. haemolyticus isolates, 12 S. saprophyticus isolates, 29 S. schleiferi isolates, 30 S. lugdunensis isolates, and 62 other coagulase-negative staphylococci). This group also included a proportion of strains with unusual phenotypes (e.g., 19 coagulase-negative S. aureus isolates, 26 clumping factor-negative S. aureus isolates, and 4 S. aureus isolates each with a double deficiency). The overall sensitivity for identification of typical and atypical S. aureus was high with the Staphaurex Plus test (Murex Biotech) (99.7%), the Pastorex Staph Plus test (Sanofi Diagnostics Pasteur) (99.7%), and the Slidex Staph Plus test (bioMérieux) (100%). The overall rate of specificity was affected by the unusual inclusion in this study of a high proportion of non-S. aureus species, such as S. lugdunensis and S. schleiferi, which express a clumping factor and therefore produce a positive result with the agglutination tests.  相似文献   

7.
Several species belonging to Staphylococcus genus, other than Staphylococcus aureus and Staphylococcus epidermidis (non Sau/ non Sep species), exhibit increasing abilities as opportunistic pathogens in the colonisation of periprosthetic tissues. Consequently, the availability of means for accurate identification is crucial to assess the pathogenic characteristics and to clarify clinical relevance of the individual species. Here, 146 clinical staphylococcal isolates belonging to non Sau/ non Sep species from prosthesis-associated orthopedic infections were analyzed by conventional enzymatic galleries and by automated ribotyping. Twelve different species were recognised: S. capitis, S. caprae, S. cohnii, S. equorum, S. haemolyticus, S. hominis, S. lugdunensis, S. pasteuri, S. sciuri, S. simulans, S. warneri, S. xylosus. Ribotype identifications were compared with the phenotypes obtained by the Api 20 Staph system and/or ID 32 Staph system. ID 32 Staph profiles were more consistent with ribotyping results than Api Staph profiles. Across the different staphylococcal species investigated, correct identifications with Api Staph were 45%, while with ID 32 Staph they were 59%. It has, however, to be mentioned that ID 32 Staph was mostly applied to discriminate unmatched ribotyping and Api Staph identifications, thus to a subpopulation of strains with "atypical" metabolic profile. Automated ribotyping provided a correct identification for 91% of the isolates. These results confirm automated ribotyping as a convenient rapid technique, still subject to improvements, which will accurately and rapidly recognise the newly emerging staphylococcal pathogens in implant-related orthopedic infections.  相似文献   

8.
Among coagulase-positive staphylococci of animal origin, the members of the Staphylococcus intermedius-group (SIG: S. intermedius, Staphylococcus pseudintermedius and Staphylococcus delphini) are important opportunistic pathogens in different animal hosts and occasionally in humans. However, the unambiguous species diagnosis of SIG is often challenging. Therefore, matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) -based SIG-identification with Bruker Microflex LT in combination with Biotyper 3.0 software (Bruker Daltonics, Bremen, Germany) was evaluated using (i) the original database content and (ii) the database after extension with distinct hierarchical clustered reference spectra for 60 SIG. A convenience sample comprising 200 isolates was used to compare both database performances. As a result, 17 isolates initially diagnosed as S. intermedius with the current content of the Bruker database were identified as S. pseudintermedius by applying the in-house reference spectra extended version. Furthermore, a significant improvement (average rise of log score value: 0.24) of the SIG identification score values was achieved, emphasizing that further sequence-based refinement of the Bruker database content allows improvement of MALDI-TOF MS-based identification.  相似文献   

9.
Identification of anaerobic bacteria using phenotypic methods is often time-consuming; methods such as 16S rRNA gene sequencing are costly and may not be readily available. We evaluated 253 clinical isolates of anaerobic bacteria using the Bruker MALDI Biotyper (Bruker Daltonics, Billerica, MA) matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system with a user-supplemented database and an on-plate formic acid-based preparation method and compared results to those of conventional identification using biochemical testing or 16S rRNA gene sequencing. A total of 179 (70.8%) and 232 (91.7%) isolates were correctly identified to the species and genus levels, respectively, using manufacturer-recommended score cutoffs. MALDI-TOF MS offers a rapid, inexpensive method for identification of anaerobic bacteria.  相似文献   

10.
Staphylococcus aureus and the coagulase-negative staphylococci are commonly responsible for peritonitis in renal patients undergoing continuous ambulatory peritoneal dialysis. To simulate growth conditions in vivo, staphylococci isolated from peritoneal infections were cultured in used human peritoneal dialysate (HPD). Immunoblotting experiments using cell wall preparations from these staphylococci revealed the presence of the host iron-binding glycoprotein transferrin bound to S. aureus, S. epidermidis, S. capitis, S. haemolyticus, and S. hominis but not to S. warneri or S. saprophyticus. Similar results were obtained by incubating broth-grown staphylococci with human transferrin, although, in contrast to S. aureus, the coagulase-negative staphylococci bound more transferrin after growth in iron-restricted broth. To determine whether the staphylococci express a saturable specific receptor for human transferrin, the interaction of human 125I-transferrin with the staphylococci was examined. Both S. aureus and S. epidermidis bound the radiolabelled iron-saturated ligand in a time- and concentration-dependent manner. From competition binding assays, the affinity (Kd) and number of receptors were estimated for S. epidermidis (Kd, 0.27 microM; 4,200 receptors per cell) and S. aureus (Kd, 0.28 microM; 4,200 receptors per cell). S. epidermidis but not S. aureus receptor activity was partially iron regulated. Human apotransferrin and iron-saturated transferrin and rabbit and rat transferrins competed equally well for the staphylococcal receptor. Bovine and porcine transferrins and ovotransferrin as well as human and bovine lactoferrins were much less effective at competing with human transferrin. Treatment of whole staphylococci with protease abolished transferrin binding, indicating the involvement of cell surface protein. Western blots (immunoblots) of cell wall preparations probed with human transferrin revealed the presence of a 42-kDa transferrin-binding protein common to both S. aureus and S. epidermidis. On Western strip blots, the binding of human transferrin to this protein was blocked by labelled human transferrin but not by albumin, immunoglobulin G, or bovine transferrin or ovotransferrin. To assess the conservation of the 42-kDa transferrin-binding protein, cell wall proteins of S. epidermidis, S. haemolyticus, S. capitis, S. hominis, S. warneri, and S. saprophyticus were Western blotted and probed with human transferrin. Only S. warneri and S. saprophyticus lacked the 42-kDa wall protein, consistent with their inability to bind transferrin. These data show that the staphylococci express a specific receptor for human transferrin based at least in part on a common 42-kDa cell wall protein.  相似文献   

11.
Consecutive record review over a 63-month period revealed 229 Staphylococcus lugdunensis isolates, or 10.1% of the staphylococcal species that were not Staphylococcus aureus or Staphylococcus epidermidis. A total of 155 S. lugdunensis specimens were isolated from sites over the entire bodies of the 143 patients studied. The most common clinical diagnoses were skin and skin structure infections (55.4%) and blood and vascular catheter infections (17.4%). For 40% of the reviewed specimens, S. lugdunensis was the sole agent isolated, and for 60% of specimens, S. lugdunensis was isolated as part of mixed flora. In only 15.4% of clinically reviewed specimens was S. lugdunensis clearly a culture contaminant or colonizing organism. The pattern of human infection identified in this study emphasizes the predominance of skin and soft tissue S. lugdunensis infections over deep serious infections such as endocarditis, peritonitis, infected hip prosthesis, and osteomyelitis and vascular-associated infections. S. lugdunensis should be included along with S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus saprophyticus as a coagulase-negative species of Staphylococcus pathogenic for humans.  相似文献   

12.
Although staphylococci are identified by phenotypic analysis in many clinical laboratories, these results are often incorrect because of phenotypic variation. Genetic analysis is necessary for definitive species identification. In the present study, we developed a simple multiplex-PCR (M-PCR) for species identification of human-associated staphylococci, which were as follows: Staphylococcus aureus, S. capitis, S. caprae, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, and S. warneri. This method was designed on the basis of nucleotide sequences of the thermonuclease (nuc) genes that were universally conserved in staphylococci except the S. sciuri group and showed moderate sequence diversity. In order to validate this assay, 361 staphylococcal strains were studied, which had been identified at the species levels by sequence analysis of the hsp60 genes. In consequence, M-PCR demonstrated a sensitivity of 100% and a specificity of 100%. By virtue of simplicity and accuracy, this method will be useful in clinical research.  相似文献   

13.
In this study, the performances of two matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) systems, MALDI Biotyper (Bruker Daltonics) and VITEK MS (bioMérieux), were evaluated in the identification of viridans group streptococci. Two collections of isolates were tested with both methods. From a panel of type collection strains (n?=?54), MALDI Biotyper gave correct species-level identification for 51/54 (94 %) strains and 37/54 (69 %) strains for the VITEK MS in vitro diagnostic (IVD) method. Additionally, a collection of blood cultures isolates which had been characterized earlier with partial sequencing of 16S rRNA (n?=?97) was analyzed. MALDI Biotyper classified 89 % and VITEK MS 93 % of these correctly to the group level. Comparison of species-level identification from the blood culture collection was possible for 36 strains. MALDI Biotyper identified 75 % and VITEK MS 97 % of these strains consistently. Among the clinical isolates, MALDI Biotyper misidentified 36 strains as Streptococcus pneumoniae. Nevertheless, our results suggest that the current MALDI-TOF methods are a good alternative for the identification of viridans streptococci and do perform as well as or better than commercial phenotypical methods.  相似文献   

14.
Synergistic hemolysis exhibited by species of staphylococci.   总被引:4,自引:8,他引:4       下载免费PDF全文
The synergistic hemolysis reactions of 61 reference strains and 189 clinical isolates representing 17 species of staphylococci were examined on plates of Trypticase soy blood agar (BBL Microbiology Systems, Cockeysville, Md.). Some or all of the strains of Staphylococcus aureus, S. epidermidis, S. capitis, S. cohnii, S. haemolyticus, S. hyicus, S. simulans, S. warneri, and S. xylosus produced a delta-hemolysin that gave synergistic, complete hemolysis of washed human, sheep, and ox blood cells in an area of beta-lysin activity from strains of S. aureus and S. intermedius. Strains of the same nine species were positive with a commercial beta-lysin paper disk designed for presumptive identification of group B streptococci; most of these strains also gave synergistic, complete hemolysis with exotoxin from a strain of Corynebacterium pseudotuberculosis. None of the strains of S. auricularis, S. carnosus, S. caseolyticus, S. hominis, S. intermedius, S. saprophyticus, S. sciuri, or S. lentus were positive by any of these tests for synergistic hemolysis. These results indicate that a synergistic hemolysis test could prove very useful for differentiating these species; they also suggest that one role of some of these organisms in human infections could be that of a synergist. Further studies of synergism may clarify the clinical significance of these results.  相似文献   

15.
PCR analysis of the 16S-23S rRNA gene internal transcribed spacer (ITS) followed by microchip gel electrophoresis (MGE) was evaluated for its usefulness in identification of staphylococci. Forty ITS PCR patterns were demonstrated among 228 isolated colonies of Staphylococcus aureus: 26 patterns for methicillin-susceptible S. aureus (MSSA; 91 strains), 11 patterns for methicillin-resistant S. aureus (MRSA; 99 strains), and 3 patterns for both MSSA and MRSA (38 strains). Thirty-seven control strains of coagulase-negative staphylococci (CNS) representing 16 species showed unique ITS PCR patterns (24 patterns) at the species and subspecies levels: two patterns for S. caprae, S. cohnii, S. haemolyticus, and S. saprophyticus; three patterns for S. lugdunensis; four patterns for S. capitis; and one pattern for each of the other CNS species. The combined PCR-MGE method was prospectively adapted to the positive blood culture bottles, and this method correctly identified MSSA and MRSA in 102 (89%) of 114 blood cultures positive for S. aureus on the basis of the ITS PCR patterns. Eight ITS PCR patterns were demonstrated from 166 blood culture bottles positive for CNS. The most frequent CNS species isolated from blood cultures were S. epidermidis (76%), S. capitis (11%), and S. hominis (8%). Overall, all 280 blood culture bottles shown to contain a single Staphylococcus species by routine phenotypic methods were correctly identified by the PCR-MGE method at the species level, whereas the organism failed to be identified in 8 culture bottles (3%) with mixed flora. The PCR-MGE method is useful not only for rapid identification ( approximately 1.5 h) of staphylococci in positive blood culture bottles, but also for strain delineation of S. aureus.  相似文献   

16.
Bacteroides fragilis and related species are important human pathogens involved in mixed infections of different origins. The B. fragilis group isolates are phenotypically very similar, grow more slowly than aerobic bacteria and, accordingly, are frequently misidentifed with classical or automated phenotypical identification methods. Recent taxonomic changes and new species accepted as members of the Bacteroides genus are not included in the different databases of commercially available identification kits. The use of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was therefore evaluated for the species identification of 277 clinical isolates of the Bacteroides genus. Species identification was carried out with MALDI Bruker Daltonik Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) by comparing the mass spectrum of each strain with the mass spectra of the 3260 reference strains currently available. The results of conventional phenotypical identification of the isolates were used as a reference. 16S rRNA gene sequencing was performed for a selection of the strains that gave discrepant results and for all those inconclusively identified by MALDI-TOF MS; 270 isolates (97.5%) were unequivocally identified [log(score) ≥2.0] by comparison with the reference strains present in the MALDI Biotyper database. Of the 23 isolates for which the MALDI-TOF MS species identification differed from the conventional phenotypical identification, 11 were sequenced. The sequencing data confirmed the MALDI-TOF MS result in ten cases and, for the remaining isolate, the sequencing data did not lead to the determination of the species, but only to that of the genus ( Bacteroides sp.). The discriminating power and identification accuracy of MALDI-TOF MS proved to be superior to that of biochemical testing for Bacteroides thetaiotaomicron , Bacteroides ovatus and Bacteroides uniformis .  相似文献   

17.
Coagulase-negative Staphylococci isolated from urinary tract infections were identified using the API Staph-Ident System. Organisms were excluded if there was no sign of pyuria or if normal urethral flora was present in significant amounts. While Staphylococcus saprophyticus and Staphylococcus epidermidis accounted for 81% of the isolates from females, 87% of isolates from males were S. epidermidis, Staphylococcus warneri, or Staphylococcus haemolyticus. The females fell into two main age groups, those with infections due to S. saprophyticus (mean age 25 years) and those due to other Staphylococci (mean age 40-49 years). All males were in a single age group (mean age 70-74 years) irrespective of the infecting agent. In males, S. warneri was associated with cellular changes in the bladder. No similar association was apparent with the other organisms. The results suggest that, apart from S. saprophyticus, three species of Staphylococcus (S. epidermidis, S. haemolyticus, S. warneri) account for most urinary tract infections, irrespective of the sex of the patient.  相似文献   

18.
Binding of fibronectin to Staphylococcus strains.   总被引:28,自引:12,他引:16       下载免费PDF全文
Fibronectin, a major protein component of plasma and loose connective tissue has previously been shown to bind to several strains of Staphylococcus aureus. We examined a large number of strains of different species of Staphylococcus with respect to their ability to bind fibronectin. The relative numbers of strains defined as fibronectin-binders among the different species were as follows: S. aureus (22 of 23), S. haemolyticus (5 of 5), S. warneri (8 of 11), S. hyicus (5 of 6), S. hominis (13 of 17), S. saprophyticus (11 of 20), S. epidermidis (4 of 7), and S. simulans (8 of 10). Only three species showed a predominance of nonbinders over binders: S. capitis (4 of 14), S. xylosus (0 of 4), and S. cohnii (3 of 11). These data indicate that staphylococcal species isolated from soft tissue infections frequently have the ability to bind fibronectin and suggest that the ability to bind to this protein may contribute to the virulence of coagulase-positive and coagulase-negative staphylococci.  相似文献   

19.
A total of 148 staphylococci isolated from bovine intramammary infections were used to evaluate the Staph-Zym system (ROSCO, Taastrup, Denmark). The overall accuracy of the system was 91.9%. The system correctly identified all strains of Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus xylosus and 95% of Staphylococcus intermedius strains. Of 33 Staphylococcus hyicus strains, 31 (93.9%) were classified correctly by the Staph-Zym system, as well as 8 (80%) of 10 Staphylococcus chromogenes strains. All 11 Staphylococcus epidermidis strains and the 1 Staphylococcus haemolyticus strain included in the study were identified, but the Staph-Zym system had difficulty distinguishing strains of Staphylococcus warneri and Staphylococcus hominis from other species in the S. epidermidis group. The Staph-Zym system correctly identified all six S. xylosus strains and two of three Staphyloccus sciuri strains. The Staph-Zym system was considered an acceptable alternative to conventional methods for identification of bovine mammary gland isolates.  相似文献   

20.
A set of universal degenerate primers which amplified, by PCR, a 600-bp oligomer encoding a portion of the 60-kDa heat shock protein (HSP60) of both Staphylococcus aureus and Staphylococcus epidermidis were developed. However, when used as a DNA probe, the 600-bp PCR product generated from S. epidermidis failed to cross-hybridize under high-stringency conditions with the genomic DNA of S. aureus and vice versa. To investigate whether species-specific sequences might exist within the highly conserved HSP60 genes among different staphylococci, digoxigenin-labelled HSP60 probes generated by the degenerate HSP60 primers were prepared from the six most commonly isolated Staphylococcus species (S. aureus 8325-4, S. epidermidis 9759, S. haemolyticus ATCC 29970, S. schleiferi ATCC 43808, S. saprophyticus KL122, and S. lugdunensis CRSN 850412). These probes were used for dot blot hybridization with genomic DNA of 58 reference and clinical isolates of Staphylococcus and non-Staphylococcus species. These six Staphylococcus species HSP60 probes correctly identified the entire set of staphylococcal isolates. The species specificity of these HSP60 probes was further demonstrated by dot blot hybridization with PCR-amplified DNA from mixed cultures of different Staphylococcus species and by the partial DNA sequences of these probes. In addition, sequence homology searches of the NCBI BLAST databases with these partial HSP60 DNA sequences yielded the highest matching scores for both S. epidermidis and S. aureus with the corresponding species-specified probes. Finally, the HSP60 degenerate primers were shown to amplify an anticipated 600-bp PCR product from all 29 Staphylococcus species and from all but 2 of 30 other microbial species, including various gram-positive and gram-negative bacteria, mycobacteria, and fungi. These preliminary data suggest the presence of species-specific sequence variation within the highly conserved HSP60 genes of staphylococci. Further work is required to determine whether these degenerate HSP60 primers may be exploited for species-specific microbic identification and phylogenetic investigation of staphylococci and perhaps other microorganisms in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号