首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A complement regulatory protein (CRP) of Trypanosoma cruzi was evaluated as a vaccine candidate in a murine model of experimental T. cruzi infection. Recombinant CRP derived from an Escherichia coli expression system and a plasmid encoding the full-length crp structural gene under the control of a eukaryotic promoter were used to immunize BALB/c mice. Immunization with both protein and DNA vaccines resulted in a Th1-type T-cell response, comparable antibody titers, and similar immunoglobulin G isotype profiles. Only mice immunized with the crp DNA plasmid produced antibodies capable of lysing the parasites in the presence of complement and were protected against a lethal challenge with T. cruzi trypomastigotes. These results demonstrate the superiority of DNA immunization over protein immunization with the recombinant CRP. The work also supports the further investigation of CRP as a component of a multigene, anti-T. cruzi DNA vaccine.  相似文献   

2.
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease.  相似文献   

3.
Antigens of the epimastigote stage of Trypanosoma cruzi were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and examined for their ability to bind antibodies in sera from humans infected with this organism or infected with one or both of the related protozoa Leishmania braziliensis and Leishmania donovani by protein blot analysis and enzyme-linked immunosorbent assay. Most of the antigens were bound by antibodies against each one of the organisms. A group of antigens with Mrs between 31,000 and 21,000 were bound by antibodies against T. cruzi only. These antigens were isolated and used in an enzyme-linked immunosorbent assay for the differential diagnosis of Chagas' disease, with excellent results. All sera from individuals proven to be infected with T. cruzi reacted with the antigens, whereas none of the sera from individuals proven to be infected with L. braziliensis or L. donovani reacted with the antigens, even when tested at a low dilution. Biochemical characterization of the isolated antigens revealed the presence of protein and carbohydrate. The reactivity of the isolated antigens with antibodies was completely abolished by pronase and partially abolished by sodium periodate. Protein blot analysis of sera from mice immunized with the antigens revealed a major large band with an Mr between 31,000 and 21,000 and a minor band with an Mr of 45,000, suggesting sharing of epitopes between antigens of different Mrs. These sera did not agglutinate or lyse live epimastigotes. Indirect immunofluorescent antibody tests with live and dead epimastigotes revealed that antibodies in the sera only bound to Formalin-killed organisms.  相似文献   

4.
Repeated immunizations of CF1 mice with irradiated noninfectious Trypanosoma cruzi trypomastigotes resulted in partial protection against infection with live parasites. It also induced a limited number of antibody species that were reactive in Western blots with trypomastigote but not with epimastigote or amastigote polypeptides. These antibody species were strongly reactive with a 100,000-dalton polypeptide and much less reactive with at least two polypeptides greater than 200,000 daltons. Immunization with epimastigotes induced antibodies against a 57,000-dalton epimastigote-specific polypeptide but did not induce protective immunity.  相似文献   

5.
Cruzipain, the major cysteinyl proteinase of Trypanosoma cruzi, is expressed by all developmental forms and strains of the parasite and stimulates potent humoral and cellular immune responses during infection in both humans and mice. This information suggested that cruzipain could be used to develop an effective T. cruzi vaccine. To study whether cruzipain-specific T cells could inhibit T. cruzi intracellular replication, we generated cruzipain-reactive CD4(+) Th1 cell lines. These T cells produced large amounts of gamma interferon when cocultured with infected macrophages, resulting in NO production and decreased intracellular parasite replication. To study the protective effects in vivo of cruzipain-specific Th1 responses against systemic T. cruzi challenges, we immunized mice with recombinant cruzipain plus interleukin 12 (IL-12) and a neutralizing anti-IL-4 MAb. These immunized mice developed potent cruzipain-specific memory Th1 cell responses and were significantly protected against normally lethal systemic T. cruzi challenges. Although cruzipain-specific Th1 responses were associated with T. cruzi protective immunity in vitro and in vivo, adoptive transfer of cruzipain-specific Th1 cells alone did not protect BALB/c histocompatible mice, indicating that additional immune mechanisms are important for cruzipain-specific immunity. To study whether cruzipain could induce mucosal immune responses relevant for vaccine development, we prepared recombinant attenuated Salmonella enterica serovar Typhimurium vaccines expressing cruzipain. BALB/c mice immunized with salmonella expressing cruzipain were significantly protected against T. cruzi mucosal infection. Overall, these data indicate that cruzipain is an important T. cruzi vaccine candidate and that protective T. cruzi vaccines will need to induce more than CD4(+) Th1 cells alone.  相似文献   

6.
To determine if exogenous gamma interferon is effective in immunosuppressed mice infected with Trypanosoma cruzi, recombinant murine gamma interferon was administered to cyclosporin-treated mice with either acute or chronic T. cruzi infection. Gamma interferon significantly decreased parasitemia and prevented death in acutely infected mice. Parasitemias and mortality of mice treated with both gamma interferon and cyclosporin were similar to those of immunocompetent controls. In chronically infected mice, cyclosporin treatment produced significantly more organ explant cultures positive for T. cruzi. Fewer positive cultures, particularly for spleen and heart, were obtained from cyclosporin-treated mice when they also received gamma interferon. Ketoconazole treatment of mice resulted in no positive cultures. Cyclosporin treatment did not prevent activation of peritoneal macrophages by parenteral gamma interferon, nor did it have a consistent effect on serum titers of alpha/beta or gamma interferon in response to a second challenge inoculum of T. cruzi. These data indicate that exogenous gamma interferon suppresses acute and chronic T. cruzi infection in cyclosporin-treated mice but that gamma interferon is not as effective as the relatively specific antimicrobial ketoconazole. Gamma interferon activates macrophages despite cyclosporin treatment, and its effects appear to be tissue specific.  相似文献   

7.
Infective forms of Trypanosoma cruzi were used to evaluate the complement-mediated lysis (CoML) of the parasites in the presence of anti-T. cruzi sera. Parasites released to the supernatant from infected Vero cell monolayers were used. Cultures of 1–3×106 parasites/ml were incubated for 24 h in the presence of 10 Ci/ml of 3H-uridine. Under these conditions 105 parasites used for each determination incorporated about 9600 dpm of the radioactive material. The release of tritium from labelled parasites after incubation with antiserum and complement correlated with the percentage of lysed parasites evaluated by optical microscopy. Normal sera from humans, a guinea pig, a rabbit, and mice were tested as complement sources. Only human sera were suitable for the evaluation of CoML in the presence of antisera, and the levels of lysis attained depended on the serum donor.  相似文献   

8.
Trypanosoma cruzi exhibits a developmentally regulated neuraminidase activity that is inhibited by high-density lipoprotein (HDL). We report here that the infection of culture cells by T. cruzi trypomastigotes is enhanced by HDL in a dose-dependent manner. The enhanced infection is prevented by Vibrio cholerae neuraminidase, an enzyme whose activity is not inhibited by HDL, suggesting that sialic acid is involved in T. cruzi-host interaction. Similar enhancement of infection is also produced by low-density lipoprotein (LDL), which inhibits T. cruzi neuraminidase as well as HDL. Further evidence that the enhancement is due to lipoproteins is provided by the fact that infection of host cells in lipoprotein-deficient medium is less than in normal medium; it can be restored to the higher level by the addition of HDL, LDL or both to the lipoprotein-deficient medium. In view of these results, we propose that HDL and LDL regulate T. cruzi infection in mammalian hosts by inhibiting the parasite neuraminidase activity.  相似文献   

9.
Trypanosoma cruzi invasion of host cells involves several discrete steps: attachment, parasite internalization mediated by recruitment and fusion of host cell lysosomes, and escape from the parasitophorous vacuole to liberate amastigotes to multiply freely in the cytosol. This report describes the initial characterization of the LYT1 gene and the demonstration that the gene product is involved in cell lysis and infectivity. Mutational analysis demonstrated that deletion of LYT1 resulted in attenuation of infection, which was associated with diminished hemolytic activity. Reintroduction of LYT1 restored infectivity in null mutants, confirming the critical role of LYT1 in infection. Additionally, in vitro stage transition experiments with LYT1-deficient lines showed that these parasites converted to extracellular amastigote-like cells and metacyclic trypomastigotes more rapidly than wild-type parasites, suggesting that the diminished infectivity was not a result of the LYT1 deficiency that affected the parasite's ability to complete the life cycle.  相似文献   

10.
Female C57BL/6J mice were infected with Trypanosoma cruzi and subsequently given macrophages or lymphocytes from syngeneic donors which had recovered from the acute infection. Mice which received immune peritoneal macrophages, splenic lymphocytes, or lymph node lymphocytes developed lower mean parasitemias and cumulative mortalities than did recipients of nonimmune cells. Neither peritoneal lymphocytes nor splenic macrophages were protective, however. These studies indicate that splenic and lymph node lymphocytes are effective in transferring protection against T. cruzi, whereas the macrophage is somewhat less effective.  相似文献   

11.
《Immunobiology》2022,227(4):152243
Inflammatory and regulatory cytokines play an important role in the immunopathogenesis of Trypanosoma cruzi infection. Interleukin (IL)-33 is a member of the IL-1 superfamily of cytokines whose expression/production is upregulated following pro-inflammatory stimulation to alert the immune system in response to tissue stress or damage. The aim of this study was to evaluate the inflammatory profile induced in cultured J774 cells stimulated or not with IL-33 (10 ng/mL), with live parasites (1 × 106 metacyclic trypomastigote forms) and/or total antigen, TcAg (100 µg/mL) and with both, IL-33 and TcAg/T. cruzi. The cultures were evaluated at 24 h and 48 h after addition of the stimuli. For this, the supernatants were collected for the measurement of TNF, IL-17, CCL2, and IL-10 by ELISA and of nitrite by the Griess method. TNF, IL-17, and CCL2 concentrations were elevated in the presence of TcAg or live T. cruzi parasites at 24 h, and the addition of IL-33 potentiated these effects at 48 h. In addition, the T. cruzi-amastigote forms reduced in those infected J774 cells stimulated with IL-33 at 48 h. In conclusion, the IL-33 elevated the production of the TNF, IL-17, and CCL2 in cultured J774 cells stimulated with T. cruzi and/or its antigen and reduced the intracellular parasites, providing impetus to new investigations on its potential actions on the parasite-induced inflammation.  相似文献   

12.
The paraflagellar rod proteins (PAR) purified from Trypanosoma cruzi epimastigotes were shown to protect mice against an otherwise lethal challenge inoculum of 10(3) bloodstream-form trypomastigotes. The injection route used for immunization was shown to have a marked impact on the development of protective immunity. Mice receiving subcutaneous (s.c.) injections of PAR proteins had reduced bloodstream parasitemias and showed 100% survival following challenge. In contrast, mice immunized via the intraperitoneal (i.p.) route developed parasitemia levels equivalent to those of unimmunized controls and did not survive infection. Western blotting (immunoblotting) demonstrated that sera from both i.p. and s.c. immunized mice reacted specifically with PAR proteins; however, the antibody titer of the i.p. immunized mice was approximately 64-fold greater than that of the s.c. immunized mice, suggesting that the protective response in the s.c. immunized mice is cell mediated rather than humoral.  相似文献   

13.
Patients with Chagas’ disease remain asymptomatic for many years, presumably by keeping the etiological agent Trypanosoma cruzi in check through protective immunity against. Recently, we found that T. cruzi uses TrkA, a receptor tyrosine kinase responsive to neurotrophin nerve growth factor in vertebrate nervous systems, to invade cells. We also found that TrkA, TrkB, and TrkC, but not T. cruzi, are targets of specific autoantibodies present in the sera of patients with chronic Chagas’ disease. Here we show that TrkA-, TrkB-, and TrkC-specific autoantibodies isolated from the sera of four individuals with chronic indeterminate (asymptomatic) Chagas’ disease potently blocked invasion of Trk-bearing neuronal PC12 cells, neuroglial astrocytes, enteroglial cells, and Schwann cells and Trk-expressing non-neural smooth muscle and dendritic cells. However, these autoantibodies did not inhibit T. cruzi invasion of mutant PC12 cells lacking TrkA or of normal cells lacking Trk receptors, suggesting that autoantibodies interfered with parasite/Trk cross talk to access the intracellular milieu. Passive immunization of susceptible and resistant mouse strains with very small doses of these autoantibodies reduced parasitemia and transferred resistance to an otherwise lethal trypanosome infection. Hence, this exquisitely sensitive and unique regulatory immunity against the host (instead of parasite) could benefit infected individuals by blocking cellular invasion of the obligatory intracellular pathogen, resulting in attenuation of tissue infection and clinical manifestations. Such action is contrary to the horror autotoxicus frequently associated with microbe-related autoimmune responses.  相似文献   

14.
Gamma interferon (IFN-gamma) plays an important role in experimental Trypanosoma cruzi infections, presumably by controlling the early replication of parasites in host macrophages. In this work, we show that NK cells represent an important cell type responsible for the production of most of the IFN-gamma in the early stage of T. cruzi infection and that the in vivo treatment of mice with anti-NK1.1 monoclonal antibody made resistant animals susceptible to the infection. Through in vitro experiments, we demonstrate that normal splenocytes from euthymic or athymic nude mice cultivated for 48 h with live T. cruzi trypomastigotes produced elevated levels of IFN-gamma. In addition, NK-depleted splenocytes show a drastic reduction of IFN-gamma production in response to live T. cruzi trypomastigotes. We also demonstrated that IFN-gamma production is dependent on a factor secreted by adherent cells. Supernatants of spleen cells from athymic nude mice are able to induce IFN-gamma production by normal splenocytes when cultured with trypomastigotes. The addition of anti-interleukin-10 to these cultures resulted in a marked increase in IFN-gamma production. On the other hand, the absence of NK cells led to an increased secretion of interleukin-10 upon in vitro stimulation with T. cruzi. Taken together, these results suggest that NK cells are the major source of IFN-gamma that could be involved in limiting the replication of T. cruzi in host macrophages during the early acute phase of the infection.  相似文献   

15.
Trypanosoma cruzi is the etiological agent of American trypanosomiasis. Most of the available data on trypanosomatid parasites were obtained from African trypanosomes. Parasitic protozoa polyamine metabolism and transport pathways comprise valuable targets for chemotherapy. T. cruzi cannot synthesize putrescine, but its uptake from the extracellular milieu can promote parasite survival. Nevertheless, little is known about the cell biology of this diamine in T. cruzi. Here we notice that the putrescine analogue 1,4-diamino-2-butanone (DAB) inhibited T. cruzi epimastigotes' in vitro proliferation and produced remarkable mitochondrial destruction and cell architecture disorganization, as assessed by transmission electron microscopy. Mitochondrial damage was confirmed by MTT reduction. We decided to analyze the oxidative stress undergone by DAB-treated parasites. Thiobarbituric-acid-reactive substances were measured to assess lipid peroxidation. Analogue effects were dose-dependent; 5 mM DAB only slightly enhanced peroxidation, whereas 10 mM DAB significantly (P<0.05) diminished it. These data indicate that putrescine uptake by this diamine auxotrophic parasite may be important for epimastigote axenic growth and cellular organization.  相似文献   

16.
The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37°C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4′-,6-diamidino-2′-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated.  相似文献   

17.
Chagas' disease results from infection with Trypanosoma cruzi, a protozoan parasite that establishes systemic intracellular infection after mucosal invasion. We hypothesized that ideal vaccines for mucosally invasive, intracellular pathogens like T. cruzi should induce mucosal type 2 immunity for optimal induction of protective secretory immunoglobulin A (IgA) and systemic type 1 immunity protective against intracellular replication. However, differential mucosal and systemic immune memory could be difficult to induce because of reciprocal inhibitory actions between type 1 and type 2 responses. To test our hypotheses, we investigated the protective effects of type 1 and type 2 biased vaccines against mucosal and systemic T. cruzi challenges. Intranasal vaccinations were given with recombinant interleukin-12 (IL-12)- and IL-4-neutralizing antibody (Ab) for type 1 immune bias, or recombinant IL-4 and gamma interferon-neutralizing Ab for type 2 immune bias. Cytokine RNA and protein studies confirmed that highly polarized memory immune responses were induced by our vaccination protocols. Survival after virulent subcutaneous T. cruzi challenge was used to assess systemic protection. Mucosal protection was assessed by measuring the relative inhibition of parasite replication in mucosal tissues early after oral T. cruzi challenge, using both PCR and quantitative culture techniques. As expected, only type 1 responses protected against systemic challenges (P < 0.01). However, contrary to our original hypothesis, type 1 responses optimally protected against mucosal challenges as well (P < 0.05). Type 1 and type 2 biased vaccines induced similar secretory IgA responses. We conclude that future vaccines for T. cruzi and possibly other mucosally invasive, intracellular pathogens should induce both mucosal and systemic type 1 immunity.  相似文献   

18.
Trypanosoma cruzi infection in B-cell-deficient rats.   总被引:8,自引:1,他引:7       下载免费PDF全文
The effect of neonatally initiated injections of anti-mu rabbit antiserum on immunity of rats against Trypanosoma cruzi infection was investigated in vivo. Anti-mu treatment resulted in a loss of immunoglobulin M (IgM) and IgG2a synthesis and, subsequently, of antibody production. These rats so treated were shown to be significantly more susceptible to the acute phase of the infection than the control rats treated with normal rabbit serum, as measured by increased parasitemia and mortality. These results indicate the essential role of antibodies, probably in association with complement or effector cells or both, in immunity to acute Chagas' disease.  相似文献   

19.
The effect of human-specific antibody on surface membrane antigens of trypomastigotes of Trypanosoma cruzi was studied in vitro by using immunofluorescence methods. Immune sera induced aggregation of surface antigens in trypomastigotes to form polar cell caps.  相似文献   

20.
Intravenous but not intraperitoneal injection of killed Corynebacterium parvum either before or after intraperitoneal infection with the highly reticulotropic Tulahuén strain of Trypanosoma cruzi produced enhanced resistance against the infection in mice. In contrast, C. parvum had no effect when the infection was caused with the predominately myotropic Y strain of T. cruzi. C. parvum given intravenously before immunization with killed culture forms of the Y strain parasite consistently diminished the protective effect against subsequent infection, which could be obtained with antigen alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号