首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using MRI techniques, we show here that normalization of tumor vessels in recurrent glioblastoma patients by daily administration of AZD2171-an oral tyrosine kinase inhibitor of VEGF receptors-has rapid onset, is prolonged but reversible, and has the significant clinical benefit of alleviating edema. Reversal of normalization began by 28 days, though some features persisted for as long as four months. Basic FGF, SDF1alpha, and viable circulating endothelial cells (CECs) increased when tumors escaped treatment, and circulating progenitor cells (CPCs) increased when tumors progressed after drug interruption. Our study provides insight into different mechanisms of action of this class of drugs in recurrent glioblastoma patients and suggests that the timing of combination therapy may be critical for optimizing activity against this tumor.  相似文献   

2.
Pifithrin-alpha (PFTalpha) is a small molecule inhibitor of p53. By reversibly blocking apoptosis in response to DNA damage, PFTalpha protects normal cells from lethal doses of gamma-radiation (Komarov et al., Science, 1999;285:1733-7). We examined the effect of PFTalpha on the chemosensitivity of a human cancer in which cell cycle arrest, not apoptosis, is the principle cellular consequence of p53 activation. This was of interest because E6 silencing of p53 sensitizes U87MG astrocytic glioma cells to BCNU and temozolomide (TMZ), cytotoxic drugs that are modestly helpful in the treatment of aggressive astrocytic gliomas. We observed that exposure of U87MG cells to PFTalpha before cytotoxic chemotherapy attenuated p53-mediated induction of p21WAF1 protein levels, sensitizing U87MG cells to BCNU and TMZ. Sensitization of U87MG cells was associated with G1 arrest, delayed entry into S-phase and decreased repair of DNA damage by BCNU. Our findings suggest that in addition to protecting normal cells from the toxic effects of radiation and chemotherapy, small molecule inhibitors of p53, like PFTalpha, might play a role in clinical oncology by sensitizing certain resistant cancers to cytotoxic chemotherapies.  相似文献   

3.
Malignant glioma is characterised by extensive neovascularisation, principally influenced by vascular endothelial growth factor (VEGF). ZD6474 is a potent inhibitor of VEGF-R2 tyrosine kinase activity, but with additional inhibitory effects on other growth factors. In this study, we have investigated the effects of ZD6474 with regard to tumour growth, neovascularisation, proliferation and apoptosis in the intracerebral rat glioma model, BT4C. ZD6474 (50 and 100 mg kg(-1)) was given as a daily oral gavage. Animals were killed on day 19 and tumour volume was measured. Sections were stained for factor VIII, Ki-67 and for apoptosis. The ability of ZD6474 to inhibit cell growth directly was examined in vitro, using the glioma cell line BT4C and the transformed rat brain endothelial cell line RBE4. Cell growth was analysed with fluorometric microculture cytotoxicity assay to quantify the cytotoxic effects. ZD6474 significantly decreased tumour volume compared to controls. Microvascular density increased after treatment with ZD6474, and tumour cell proliferation index was reduced. There was also an increase in tumour cell apoptosis. In vitro, the growth of both cell lines was significantly reduced. The results reported justify further experimental investigations concerning the effects of ZD6474 in malignant glioma alone or in combination with other modalities.  相似文献   

4.
Alteration of extracellular glycosylation is a hallmark of malignant characteristics. In this study, we revealed that fucosyltransferase 8 (FUT8), an enzyme that mediates the core fucosylation of N-linked glycosylation, is an important regulator of malignant characteristics in human glioma that acts by modifying the activities of both the HGF receptor (MET) and epidermal growth factor receptor (EGFR). mRNA and protein expression levels of FUT8 were frequently upregulated in gliomas, and these events were showed positive correlations with advanced tumor grade, recurrence, and decreased overall survival. Silencing FUT8 expression in glioma cells suppressed cell growth, migration, and invasion, whereas overexpression of FUT8 was sufficient to enhance these phenotypes. Mechanistic investigations revealed that FUT8 was involved in the alteration of fucosylation status that was attached to MET and EGFR, changing MET responses after HGF stimulation, as well as in the transactivation of EGFR. Importantly, altering FUT8 expression or using the fucosylation inhibitor 2F-peracetyl-fucose sensitized the efficacy of of temozolomide (TMZ) therapy. Collectively, these results suggested that FUT8 dysregulation contributed to the malignant behaviors of glioma cells and provide novel insights into the significance of fucosylation in receptor tyrosine kinase activity and TMZ resistance.  相似文献   

5.
6.
The development of tyrosine kinase inhibitors (TKIs) for the treatment of chronic myelogenous leukemia (CML) was based on the discovery that CML stem and progenitor cells overexpress the abnormal fusion protein kinase BCR-ABL. The prototype TKI, imatinib, selectively inhibits BCR-ABL, as well as several other kinases, including stem cell factor receptor (KIT), discoidin domain receptor (DDR), platelet-derived growth factor receptor (PDGFR), and colony-stimulating factor receptor-1 (CSF-1R). Although the management of CML improved dramatically with the introduction of imatinib, not all patients benefit from treatment because of resistance or intolerance. Consequently, research efforts have focused on developing more potent TKIs with the ability to circumvent imatinib resistance. Nilotinib, a second-generation oral TKI, was rationally designed based on the crystal structure of imatinib to be highly active against a wide range of imatinib-resistant BCR-ABL mutants and is approved for the treatment of newly diagnosed or imatinib-resistant or -intolerant CML, and has shown superiority over imatinib in first-line treatment for newly diagnosed CML. Furthermore, the activity of nilotinib against KIT and PDGFRα has led to its evaluation in advanced gastrointestinal stromal tumors (GIST). The purpose of this review is to describe the development of nilotinib, providing a structural explanation for the differential activity of nilotinib and imatinib in GIST. Activity of nilotinib against KIT and PDGFR and emerging evidence of differences in cellular uptake between nilotinib and imatinib are discussed.  相似文献   

7.
Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor   总被引:1,自引:0,他引:1  
A tyrosine protein kinase inhibitor, erbstatin, showed no antineoplastic effect on L-1210 mouse leukemia when it was injected alone. Erbstatin was found to be inactivated by incubation in serum, but not in dialyzed serum. It was also inactivated in reconstituted serum containing dialyzed serum components and ferric or ferrous ion. Because erbstatin was considered to be inactivated by the ferric or ferrous ion in serum, foroxymithine, which is a potent chelator for the ferric ion, was given to the mice together with erbstatin. Administration of both erbstatin and foroxymithine showed antineoplastic activity against L-1210 leukemia.  相似文献   

8.
PURPOSE: Vascular endothelial growth factor (VEGF) is a major mitogen for endothelial cells and enhances vascular permeability. Enhanced VEGF secretion is found in human cancers and correlates with increased tumor neovascularization. ZD6474 is a p.o. bioavailable, VEGF flk-1/KDR receptor (VEGFR-2) tyrosine kinase inhibitor with antitumor activity in many human cancer xenografts and is currently in Phase I clinical development. EXPERIMENTAL DESIGN: We tested the effects of ZD6474 on EGFR phosphorylation in cell expressing functional epidermal growth factor receptor (EGFR) and the antiproliferative and the proapoptotic activity of ZD6474 alone or in combination taxanes in human cancer cell lines with functional EGFR but lacking VEGFR-2. The antitumor activity of this drug was also tested in nude mice bearing established GEO colon cancer xenografts. RESULTS: ZD6474 causes a dose-dependent inhibition of EGFR phosphorylation in mouse NIH-EGFR fibroblasts and human MCF-10A ras breast cancer cells, two cell lines that overexpress the human EGFR. ZD6474 treatment resulted in a dose-dependent inhibition of soft agar growth in seven human cell lines (breast, colon, gastric, and ovarian) with functional EGFR but lacking VEGFR-2. A dose-dependent supra-additive effect in growth inhibition and in apoptosis in vitro was observed by the combined treatment with ZD6474 and paclitaxel or docetaxel. ZD6474 treatment of nude mice bearing palpable GEO colon cancer xenografts (which are sensitive to inhibition of EGFR signaling) induced dose-dependent tumor growth inhibition. Immunohistochemical analysis revealed a significant dose-dependent reduction of neoangiogenesis. The antitumor activity of ZD6474 in GEO tumor xenografts was also found to be enhanced when combined with paclitaxel. Tumor regression was observed in all mice after treatment with ZD6474 plus paclitaxel, and it was accompanied by a significant potentiation in inhibition of angiogenesis. Six of 20 mice had no histological evidence of tumors after treatment with ZD6474 plus paclitaxel. CONCLUSIONS: This study suggests that in addition to inhibiting endothelial cell proliferation by blocking VEGF-induced signaling, ZD6474 may also be able to inhibit cancer cell growth by blocking EGFR autocrine signaling. These results provide also a rationale for the clinical evaluation of ZD6474 combined with taxanes in cancer patients.  相似文献   

9.
Constitutively active internal tandem duplication (ITD) in the juxtamembrane domain of Fms-like tyrosine kinase 3 (FLT3), a type III receptor tyrosine kinase, is the most common molecular defect associated with acute myeloid leukemia. Its presence confers a poor outcome in patients with acute myeloid leukemia who receive conventional chemotherapy. FLT3-ITD has therefore been considered to be an attractive molecular target for a novel therapeutic modality. We describe here the identification and characterization of Ki23819 as a novel FLT3 inhibitor. Ki23819 suppressed proliferation and induced apoptosis of FLT3-ITD-expressing human leukemia cell lines. The growth-inhibitory effect of Ki23819 on MV4-11 cells was superior to that of SU11248, another FLT3 inhibitor (IC(50)<1 vs 3-10 nM). Ki23819 inhibited the autophosphorylation of FLT3-ITD more efficiently than that of wild-type FLT3. FLT3-ITD-dependent activation of the downstream signaling proteins ERK and STAT5 was also inhibited within similar concentration ranges. Thus, Ki23819 is a potent in vitro inhibitor of FLT3.  相似文献   

10.
王章桂  孙国平 《现代肿瘤医学》2007,15(12):1857-1860
表皮生长因子受体(epidermal growth factor receptor,EGFR)在细胞的信号转导、细胞增殖和分化中发挥着重要的作用,对多种肿瘤的发生和发展也具有重要影响,抑制该受体活性可以有效抑制肿瘤的生长。以此为靶点的抗肿瘤药物的开发,在多种肿瘤治疗中取得了令人鼓舞的疗效。  相似文献   

11.

Purpose

An important question in the sequencing of anti-cancer therapies in patients with glioblastoma (GBM) is whether concurrent anti-angiogenesis therapies improve or impair brain concentrations of concomitantly administered cytotoxic therapies. The purpose of this study is to assess the intratumoral disposition of temozolomide (TMZ) via microdialysis before and after bevacizumab in an intracranial GBM xenograft model.

Methods

Microdialysis probes were placed within tumor and contralateral brain in athymic rats bearing U87 intracerebral gliomas. TMZ (50?mg/kg oral) was administered 10?days thereafter. Extracellular fluid (ECF) was collected for 6?h. BEV was administered (10?mg/kg IV), and TMZ was re-dosed (50?mg/kg oral) 36?h thereafter with additional ECF collection. All ECF samples were assessed for TMZ concentration with liquid chromatography?Ctandem mass spectrometry.

Results

Tumor TMZ mean area under the concentration?Ctime curve (AUC0?C??) was 3.35???g?h/mL pre-BEV. Post-BEV, tumor mean TMZ AUC0?C?? was 3.98???g?h/mL. In non-tumor brain, mean TMZ AUC0?C?? pre-BEV was 3.22???g?h/mL and post-BEV was 3.34???g?h/mL.

Conclusions

There were no statistically significant changes in TMZ pharmacokinetics before or after BEV in the athymic rat U87 intracranial glioma model. BEV and TMZ are being investigated as a combination therapy in several ongoing studies for patients with glioma. These data reassuringly suggest that BEV does not significantly change the ECF tumor concentrations of TMZ in either tumor-bearing or normal brain when dosed 36?h prior to TMZ.  相似文献   

12.
表皮生长因子受体酪氨酸激酶抑制剂的研究进展   总被引:1,自引:0,他引:1  
王章桂  孙国平 《陕西肿瘤医学》2007,15(12):1857-1860
表皮生长因子受体(epidermal growth factor receptor,EGFR)在细胞的信号转导、细胞增殖和分化中发挥着重要的作用,对多种肿瘤的发生和发展也具有重要影响,抑制该受体活性可以有效抑制肿瘤的生长。以此为靶点的抗肿瘤药物的开发,在多种肿瘤治疗中取得了令人鼓舞的疗效。  相似文献   

13.
14.
Aim of the studyAs a rise in mean corpuscular volume (MCV) of the erythrocyte is frequently seen during treatment with imatinib and sunitinib, we investigated whether macrocytosis (MCV > 100 fl) also occurs as a class effect in other tyrosine kinase inhibitors (TKIs) and whether occurrence of macrocytosis is associated with outcome.Materials and methodsIn 533 patients, using 5 TKIs, we investigated if macrocytosis and an increase in MCV were associated with progression-free survival and overall survival (OS) in specific tumour-treatment combinations.ResultsMacrocytosis as well as an increase in MCV from baseline of >10 fl (ΔMCV +10 fl), when included as a time-dependent covariate, were associated with improved OS in patients with renal cell cancer (RCC) treated with sunitinib (macrocytosis, hazard ratio [HR] = 0.61, p = 0.031, and ΔMCV +10 fl, HR = 0.58, p = 0.016).ConclusionIn sunitinib-treated patients with RCC, the occurrence of macrocytosis, or a substantial increase in MCV levels after start of treatment, could potentially serve as a positive prognostic factor for survival, if validated prospectively.  相似文献   

15.
Yang G  Yao Y  Zhou J  Zhao Q 《Oncology reports》2012,27(6):2066-2072
Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.  相似文献   

16.

Purpose

TSU-68 is a low molecular weight inhibitor of the tyrosine kinases for vascular endothelial growth factor receptor 2, platelet-derived growth factor receptor ??, and fibroblast growth factors receptor 1. In this study, we assessed the recommended dose with TSU-68 administration of twice-daily (b.i.d.) or thrice-daily (t.i.d.) after meals for 4?weeks in Japanese patients with solid tumors based on the safety and tolerability and investigated the relationship between angiogenesis biomarker and clinical outcomes.

Methods

The study design was a dose-escalation method with alternating enrollment of b.i.d. administration and t.i.d. administration after meal by traditional three-patient cohort.

Results

We enrolled 24 patients at doses of 200, 400, and 500?mg/m2 b.i.d. or 200 and 400?mg/m2 t.i.d. No dose-limiting toxicity (DLT) occurred in the 200?mg/m2 b.i.d. or t.i.d., and 3 patients experienced DLTs at 400?mg/m2 b.i.d. or 400?mg/m2 t.i.d. As main toxicity, blood albumin decreased, malaise, diarrhea, alkaline phosphatase increased, anorexia, abdominal pain, nausea, and vomiting were observed as almost all grade 1?C2. There were no apparent differences in pharmacokinetic parameters between days 2 and 28 after the repeated b.i.d. and t.i.d. doses. Although tumor shrinkage was not observed, the disease control rate was 41.7%. As an angiogenesis-related factor of stratified analysis, plasma vascular endothelial growth factor and plasminogen activator inhibitor-1 were detected as a significant increase with progressive disease patients.

Conclusions

A recommended dosage of TSU-68 for this administration schedules was estimated to be 400?mg/m2 or less b.i.d.  相似文献   

17.
Topotecan is a topoisomerase (topo) I inhibitor with promising activity in preclinical studies. We hypothesized that low-dose intratumoral delivery of topotecan would be highly effective for gliomas. Human glioma cell lines (U87, U138 and U373) displayed different sensitivities to topotecan (IC50 range: 0.037 M to 0.280 M) in cell culture. The most resistant of the glioma cell lines (U87) was implanted stereotactically into the brains of nude rats. Twelve days later, at which time tumor diameter measured 2 to 2.5 mm, animals were randomized to three groups: group I, intratumoral topotecan infused via osmotic pump (n = 12); group II, intratumoral saline infusion (n = 7); and group III, no treatment (n = 10). Animals were sacrificed when signs of deterioration developed, or at 60 days. Animals in group I had a mean survival time (MST) of > 55 days (range=40–60); whereas, those in groups II and III had MST of 26.1 (range=21–31) and 26.5 (range = 20–30) days, respectively. The differences in survival between group I and each of the other groups were statistically significant (p < 0.0001; Logrank Mantel-Cox). None of the animals that survived 60 days had histological evidence of residual tumor at sacrifice. Measurement of topotecan levels in normal brain revealed cytotoxic concentrations up to 4.5 mm from the site of infusion. This study demonstrates that intratumoral topotecan delivered via an osmotic pump prolongs survival in the U87 human glioma model.  相似文献   

18.
Purpose: Overexpression of the ErbB family of growth factor receptors is present in a wide variety of human tumors and is correlated with poor prognosis. The purpose of this study was to determine the effects of a novel small molecule ErbB tyrosine kinase inhibitor, CI-1033, in combination with ionizing radiation on breast cancer cell growth and survival.

Materials & Methods: Growth assays were performed on ErbB-overexpressing human breast cancer cells developed in our laboratory in the presence of 0.1–1.0 μM CI-1033 (Parke Davis). Clonogenic survival assays were performed in the presence of ionizing radiation with or without CI-1033. For some experiments, clonogen numbers, defined as the product of surviving fraction and total number of cells, were calculated at each time point during a course of multifraction radiation.

Results: CI-1033 potently inhibited the growth of ErbB-overexpressing breast cancer cells. A single 48-h exposure of 1 μM CI-1033 resulted in growth inhibition for 7 days, whereas three times weekly administration resulted in sustained growth inhibition. Clonogenic survival was modestly decreased after a 7-day exposure to CI-1033. Exposure to both CI-1033 and radiation (6 Gy) yielded a 23-fold decrease in clonogenic survival compared to radiation alone. In a multifraction experiment, exposure to CI-1033 and three 5-Gy fractions of gamma radiation decreased the total number of clonogens in the population by 65-fold compared to radiation alone.

Conclusion: CI-1033 results in potent growth inhibition and modest cytotoxicity of ErbB-overexpressing breast cancer cells, and has synergistic effects when combined with ionizing radiation. These data suggest that CI-1033 may have excellent clinical potential both alone and in combination with radiation therapy.  相似文献   


19.
Aim of the study The extensive neovascularisation of malignant glioma is mainly influenced by vascular endothelial growth factor (VEGF). The effect of ZD6474, a potent inhibitor of VEGF-receptor-2, was evaluated in combination with either radiotherapy or temozolomide. Methods The effects on glioma growth were investigated in the intracerebral BT4C rat glioma model. ZD6474 30 mg/kg was given alone or in combination with radiotherapy 12 Gy × 1 or with temozolomide 100 mg/kg for 3 days. Two different experiments were performed comparing ZD6474 to radiotherapy or temozolomide. For each experiment 28 animals were randomized into four groups. Results ZD6474 in combination with radiotherapy significantly decreased tumour area by 66% compared with controls whereas the combination with temozolomide decreased tumour area by 74%. Conclusions ZD6474 in combination with two standard modalities in the treatment of malignant glioma, radiotherapy and chemotherapy, markedly decreased the growth of an intracerebral experimental glioma. These results justify further investigations of these therapies in combination. Preliminary parts of this study were presented on EANO, Edinburgh, May 2005 and on ECCO, Paris, October 2005.  相似文献   

20.
Carcinomas are tumors of epithelial origin accounting for over 80% of all human malignancies. A substantial body of evidence implicates oncogenic signaling by receptor tyrosine kinases (RTKs) in carcinoma development. Here we investigated the expression of Sef, a novel inhibitor of RTK signaling, in normal human epithelial tissues and derived malignancies. Human Sef (hSef) was highly expressed in normal epithelial cells of breast, prostate, thyroid gland and the ovarian surface. By comparison, substantial downregulation of hSef expression was observed in the majority of tumors originating from these epithelia. Among 186 primary carcinomas surveyed by RNA in situ hybridization, hSef expression was undetectable in 116 cases including 72/99 (73%) breast, 11/16 (69%) thyroid, 16/31 (52%) prostate and 17/40 (43%) ovarian carcinomas. Moderate reduction of expression was observed in 17/186, and marked reduction in 40/186 tumors. Only 13/186 cases including 12 low-grade and one intermediate grade tumor retained high hSef expression. The association of hSef downregulation and tumor progression was statistically significant (P<0.001). Functionally, ectopic expression of hSef suppressed proliferation of breast carcinoma cells, whereas inhibition of endogenous hSef expression accelerated fibroblast growth factor and epidermal growth factor-dependent proliferation of cervical carcinoma cells. The inhibitory effect of hSef on cell proliferation combined with consistent downregulation in human carcinoma indicates a tumor suppressor-like role for hSef, and implicates loss of hSef expression as a common mechanism in epithelial neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号