首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ContextDacomitinib and poziotinib, irreversible ErbB family blockers, are often used for treatment of non-small cell lung cancer (NSCLC) in the clinic.ObjectiveThis study investigates the effect of dacomitinib on the pharmacokinetics of poziotinib in rats.Materials and methodsTwelve Sprague–Dawley rats were randomly divided into two groups: the test group (20 mg/kg dacomitinib for 14 consecutive days) and the control group (equal amounts of vehicle). Each group was given an oral dose of 10 mg/kg poziotinib 30 min after administration of dacomitinib or vehicle at the end of the 14 day administration. The concentration of poziotinib in plasma was quantified by UPLC-MS/MS. Both in vitro effects of dacomitinib on poziotinib and the mechanism of the observed inhibition were studied in rat liver microsomes and human liver microsomes.ResultsWhen orally administered, dacomitinib increased the AUC, Tmax and decreased CL of poziotinib (p < 0.05). The IC50 values of M1 in RLM, HLM and CYP3A4 were 11.36, 30.49 and 19.57 µM, respectively. The IC50 values of M2 in RLM, HLM and CYP2D6 were 43.69, 0.34 and 0.11 µM, respectively, and dacomitinib inhibited poziotinib by a mixed way in CYP3A4 and CYP2D6. The results of the in vivo experiments were consistent with those of the in vitro experiments.ConclusionsThis research demonstrates that a drug–drug interaction between poziotinib and dacomitinib possibly exists when readministered with poziotinib; thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of poziotinib in clinical settings.  相似文献   

2.
ContextDehydroandrographolide succinate (DAS) is mainly used in the clinical treatment of various infectious diseases. Its potential effects on platelet aggregation and blood coagulation systems have not been reported systematically.ObjectiveTo explore whether DAS exerts an antithrombotic effect and its internal mechanism.Materials and methodsHuman blood samples and Sprague-Dawley (SD) rats divided into control, aspirin (30 mg/kg), and DAS groups (200, 400 and 600 mg/kg) were used to measure the platelet aggregation rate, coagulation function, coagulation factor activity, and contents of thromboxane B2 (TXB2) and 6-keto-prostaglandin F (6-keto-PGF). The histopathology of the SD rat gastric mucosa was also observed. All rats were administered intragastric or intraperitoneal injections once a day for 3 consecutive days.ResultsCompared to control group, DAS significantly inhibited the platelet aggregation rate (ED50 = 386.9 mg/kg) by decreasing TXB2 levels (1531.95 ± 649.90 pg/mL to 511.08 ± 411.82 pg/mL) and activating antithrombin III (AT-III) (103.22 ± 16.22% to 146.46 ± 8.96%) (p < 0.05). In addition, DAS significantly enhanced the coagulation factors FV (304.12 ± 79.65% to 443.44 ± 75.04%), FVII (324.19 ± 48.03% to 790.66 ± 225.56%), FVIII (524.79 ± 115.47% to 679.92 ± 143.34%), FX (34.90 ± 7.40% to 102.76 ± 29.41%) and FXI (38.12 ± 10.33% to 65.47 ± 34.08%), increased the content of Fg (2.18 ± 0.39 to 3.61 ± 0.37 g/L), shorten the PT (10.42 ± 0.44 to 9.22 ± 0.21 s), APTT (16.43 ± 1.4 to 14.07 ± 0.75 s) and TT time (37.04 ± 2.13 to 32.68 ± 1.29 s) (p < 0.05), while the aspirin group showed no such effect on these items but showed reduced activity of FII (89.21 ± 21.72% to 61.83 ± 8.95%) and FVIII (524.79 ± 115.47% to 306.60 ± 29.96%) (p < 0.05). Histopathological changes showed aspirin-induced gastric mucosa haemorrhage and the protective effect of DAS in the gastric mucosa.ConclusionsDAS is more suitable than aspirin in thromboprophylaxis treatment, which provides a reliable theoretical and experimental basis for its clinical application.  相似文献   

3.
4.
ContextAlpinetin, the major active constitutes of Alpinia katsumata Hayata (Zingiberaceae), has been demonstrated to possess the activity of anti-breast cancer. Cytochrome P450 enzymes (CYP450s) plays vital roles in the biotransformation of various drugs.ObjectiveTo assess the effect of alpinetin on the activity of CYP450s and estimate the inhibition characteristics.Materials and methodsThe activity of CYP450s was evaluated in pooled human liver microsomes with corresponding substrates and marker reactions. The effect of alpinetin was compared with blank control (negative control) and corresponding inhibitors (positive control). The dose-dependent and time-dependent experiments were conducted in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM alpinetin and incubated for 0, 5, 10, 15, and 30 min.ResultsAlpinetin suppressed CYP3A4, 2C9, and 2E1 activity. All the inhibitions were significantly influenced by alpinetin contration with the IC50 values of 8.23 μM (CYP3A4), 12.64 μM (CYP2C9), and 10.97 μM (CYP2E1), respectively. The inhibition of CYP3A4 was fitted with the non-competitive model with a Ki value of 4.09 μM and was time-dependent with KI and Kinact values of 4.67 min and 0.041 μM−1, respectively. While CYP2C9 and 2E1 were inhibited by alpinetin competitively with Ki values of 6.42 (CYP2C9) and 5.40 μM (CYP2E1), respectively, in a time-independent manner.Discussion and conclusionThe in vitro inhibitory effect of alpineticn on CYP3A, 2C9, and 2E1 implied the potential interaction of alpinetin or its origin herbs with the drugs metabolised by those CYP450s, which needs further in vivo validation.  相似文献   

5.
ContextSuccinic acid and irbesartan are commonly used drugs in cardiovascular disease treatment. The interaction might occur during their co-administration, which was still unclear.ObjectiveTo reveal the effect of succinic acid on the metabolism of irbesartan and its potential mechanism.Materials and methodsThe Sprague-Dawley rats (n = 6) were treated with a single dose of 30 mg/kg irbesartan (control) or the co-administration with the pre-treatment of 200 mg/kg succinic acid for 7 d. The effect of succinic acid on the metabolic stability and the activity of CYP2C9 was evaluated in rat liver microsomes.ResultsSuccinic acid increased the AUC (5328.71 ± 959.31 μg/L × h vs. 3340.23 ± 737.75 μg/L × h) and prolonged the half-life of irbesartan (from 12.79 ± 0.73 h to 20.59 ± 6.35 h). The Tmax (2.83 ± 0.75 h vs. 3.83 ± 1.10 h) and clearance rate (3.46 ± 1.13 L/h/kg vs. 6.91 ± 1.65 L/h/kg) of irbesartan was reduced by succinic acid. Consistently, succinic acid improved the metabolic stability (half-life from 23.32 ± 3.46 to 27.35 ± 2.15 min, intrinsic clearance rate from 59.43 ± 6.12 to 50.68 ± 5.64 μL/min/mg protein). Succinic acid was also found to inhibit the activity of CYP2C9 with the IC50 value of 13.87 μM.Discussion and conclusionsSuccinic acid increased the system exposure of irbesartan via inhibiting CYP2C9. The experiment design of this study also provides a reference for the further validation of this interaction in humans.  相似文献   

6.
ContextLycium barbarum L. (Solanaceae) seed oil (LBSO) exerts LBSO exerts protective effects in the testis in vivo and in vitro via upregulating SIRT3.ObjectiveThis study evaluates the effects and mechanism of LBSO in the d-galactose (d-gal)-induced ageing testis.Materials and methodsMale Sprague Dawley (SD) rats (n = 30, 8-week-old) were randomly divided into three groups: LBSO group (n = 10) where rats received subcutaneous injection of d-gal at 125 mg/kg/day for 8 weeks and intragastric administration of LBSO at 1000 mg/kg/day for 4 weeks, ageing model group (n = 10) received 8-week-sunbcutaneous injection of d-gal, and control group (n = 10) with same administration of normal saline. Lentivirus had established TM4 cells with SIRT3 overexpression or silencing before LBSO intervened in vitro.ResultsTreatment with LBSO, the levels of INHB and testosterone both increased, compared to ageing model. In vitro, we found the ED50 of LBSO was 86.72 ± 1.49 and when the concentration of LBSO at 100 μg/mL to intervene TM4 cells, the number of cells increased from 8120 ± 676.2 to 15251 ± 1119, and the expression of SIRT3, HO-1, and SOD upregulated. However, HO-1 and SOD were dysregulated by silencing SIRT3. On the other hand, the expression of AMPK and PGC-1α upregulated as an effect of SIRT3 overexpression by lentivirus, meanwhile the same increasing trend of that being found in cells treated with LBSO, compared to control group.Discussion and conclusionsLBSO alleviated oxidative stress in d-gal-induced sub-acutely ageing testis and TM4 cells by suppressing the oxidative stress to mitochondria via SIRT3/AMPK/PGC-1α.  相似文献   

7.
ContextPogostone possesses various pharmacological activities, which makes it widely used in the clinic. Its effect on the activity of cytochrome P450 enzymes (CYP450s) could guide its clinical combination.ObjectiveTo investigate the effect of pogostone on the activity of human CYP450s.Materials and methodsThe effect of pogostone on the activity of CYP450s was evaluated in human liver microsomes (HLMs) compared with blank HLMs (negative control) and specific inhibitors (positive control). The corresponding parameters were obtained with 0–100 μM pogostone and various concentrations of substrates.ResultsPogostone was found to inhibit the activity of CYP3A4, 2C9, and 2E1 with the IC50 values of 11.41, 12.11, and 14.90 μM, respectively. The inhibition of CYP3A4 by pogostone was revealed to be performed in a non-competitive and time-dependent manner with the Ki value of 5.69 μM and the KI/Kinact value of 5.86/0.056/(μM/min). For the inhibition of CYP2C9 and 2E1, pogostone acted as a competitive inhibitor with the Ki value of 6.46 and 7.67 μM and was not affected by the incubation time.Discussion and conclusionsThe inhibitory effect of pogostone on the activity of CYP3A4, 2C9, and 2E1 has been disclosed in this study, implying the potential risk during the co-administration of pogostone and drugs metabolized by these CYP450s. The study design provides a reference for further in vivo investigations to validate the potential interaction.  相似文献   

8.
ContextGinkgo leaf tablet (GLT), a traditional Chinese herbal formula, is often combined with rosiglitazone (ROS) for type 2 diabetes mellitus treatment. However, the drug-drug interaction between GLT and ROS remains unknown.ObjectiveTo investigate the effects of GLT on the pharmacokinetics of ROS and its potential mechanism.Materials and methodsThe pharmacokinetics of 10 mg/kg ROS with 100/200 mg/kg GLT as single-dose and 10-day multiple-dose administration were investigated in Sprague-Dawley rats. In vitro, the effects of GLT on the activity of CYP2C8 and CYP2C9 were determined in recombinant human yeast microsomes and rat liver microsomes with probe substrates.ResultsThe t1/2 of ROS increased from 2.14 ± 0.38 (control) to 2.79 ± 0.37 (100 mg/kg) and 3.26 ± 1.08 h (200 mg/kg) in the single-dose GLT administration. The AUC0-t (139.69 ± 45.46 vs. 84.58 ± 39.87 vs. 66.60 ± 15.90 h·μg/mL) and t1/2 (2.75 ± 0.70 vs. 1.99 ± 0.44 vs. 1.68 ± 0.35 h) decreased significantly after multiple-dose GLT treatment. The IC50 values of quercetin, kaempferol, and isorhamnetin, GLT main constituents, were 9.32, 7.67, and 11.90 μmol/L for CYP2C8, and 27.31, 7.57, and 4.59 μmol/L for CYP2C9. The multiple-dose GLT increased rat CYP2C8 activity by 44% and 88%, respectively.Discussion and conclusionsThe metabolism of ROS is attenuated in the single dose of GLT by inhibiting CYP2C8 and CYP2C9 activity, and accelerated after the multiple-dose GLT treatment via inducing CYP2C8 activity in rats, indicating that the clinical dose of ROS should be adjusted when co-administrated with GLT.  相似文献   

9.
ContextCyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD).ObjectiveThis study evaluates the effects of cyanidin on IVDD in vitro and in vivo.Materials and methodsNucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1β, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks.ResultsThe IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1β (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1β-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1β-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo.Discussion and conclusionsCyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.  相似文献   

10.
ContextMelicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.ObjectiveThis study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.Materials and methodsMelicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078–10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.ResultsMelicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1–CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2–4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).Discussion and conclusionsThe in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.  相似文献   

11.
ContextUrolithin A (UroA) can inhibit the growth of many human cancer cells, but it has not be reported if UroA inhibits nasopharyngeal carcinoma (NPC) cells.ObjectiveTo explore the inhibitory effect of UroA on NPC and potential mechanism in vitro.Materials and methodsRNA-sequencing-based mechanistic prediction was conducted by comparing KEGG enrichment of 40 μM UroA-treated for 24 h with untreated CNE2 cells. The untreated cells were selected as control. After NPC cells were treated with 20–60 μM UroA, proliferation, migration and invasion of were measured by colony formation, wound healing and transwell experiments. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) were measured by flow cytometry, Hoechst 33342, Rhodamine 123, JC-1 staining and ROS assay methods, respectively. Gene and protein expression were measured by RT-qPCR and Western blotting assay.ResultsRNA-sequencing and KEGG enrichment revealed UroA mainly altered the ECM receptor interaction pathway. UroA inhibited cells proliferation, epithelial–mesenchymal-transition pathway, migration and invasion with IC50 values of 34.72 μM and 44.91 μM, induced apoptosis, MMP depolarization and increase ROS content at a concentration of 40 μM. UroA up-regulated E-cadherin, Bax/Bcl-2, c-caspase-3 and PARP proteins, while inhibiting COL4A1, MMP2, MMP9, N-cadherin, Vimentin and Snail proteins at 20–60 μM. Moreover, co-treatment of UroA (40 μM) and NAC (5 mM) could reverse the effect of UroA on apoptosis-related proteins.Discussion and conclusionsRNA-sequencing technology based on bioinformatic analyses may be applicable for studiying the mechanism of drugs for tumour treatment.  相似文献   

12.
ContextStroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown.ObjectiveTo elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses.Materials and methodsNetwork pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, ‘ischemic stroke’ or ‘stroke’ was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 μg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots.ResultsSHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 μg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6.Discussion and conclusionsThis study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.  相似文献   

13.
ContextBaicalein and simvastatin possess similar pharmacological activities and indications. The risk of their co-administration was unclear.ObjectiveThe interaction between baicalein and simvastatin was investigated to provide reference and guidance for the clinical application of the combination of these two drugs.Materials and methodsThe pharmacokinetics of simvastatin was investigated in Sprague–Dawley rats (n = 6). The rats were pre-treated with 20 mg/kg baicalein for 10 days and then administrated with 40 mg/kg simvastatin. The single administration of simvastatin was set as the control group. The rat liver microsomes were employed to assess the metabolic stability and the effect of baicalein on the activity of CYP3A4.ResultsBaicalein significantly increased the AUC(0–t) (2018.58 ± 483.11 vs. 653.05 ± 160.10 μg/L × h) and Cmax (173.69 ± 35.49 vs. 85.63 ± 13.28 μg/L) of simvastatin. The t1/2 of simvastatin was prolonged by baicalein in vivo and in vitro. The metabolic stability of simvastatin was also improved by the co-administration of baicalein. Baicalein showed an inhibitory effect on the activity of CYP3A4 with the IC50 value of 12.03 μM, which is responsible for the metabolism of simvastatin.Discussion and conclusionThe co-administration of baicalein and simvastatin may induce drug-drug interaction through inhibiting CYP3A4. The dose of baicalein and simvastatin should be adjusted when they are co-administrated.  相似文献   

14.
To increase the amount of pirfenidone (PFD) loaded in polyvinyl alcohol (PVA) film embedded soft contact lens (SCL), and evaluate its function of sustaining delivery of drug in vitro and in vivo. Drug loading efficiency within PVA film and SCLs, drug release from SCLs in vitro, and the effects of parameters of SCLs and external environment on drug release in vitro were evaluated by ultraviolet–visible spectrophotometer at 312 nm. Safety of SCLs was evaluated in vitro by transformed human corneal epithelial cell. Safety in vivo was determined by optical coherence tomography and histology of anterior segment of rabbits. Drug release study in tear fluid and aqueous humor were measured by ultra-performance liquid chromatography. SCLs had smooth surface and were fit for experimental rabbits. Amount of PFD in PVA film and SCLs were 153.515 μg ± 12.508 and 127.438 μg ± 19.674, respectively, PFD in PVA film was significantly higher than SCLs (p=.006) and closed to 150 μg (targeting amount of PFD to be loaded). Thickness of SCLs, molecular weight of PVA, and amount of PVA used in SCLs affected drug release in vitro significantly. Thickness of PVA film and amount of drug in SCLs had no effect on drug release rate in vitro. SCLs were safe in vitro and in vivo, PFD released from SCLs could be detected around 12 hours in tears and aqueous humor, and the concentration of drug was higher than eye drop at all detected time points while amount of PFD in SCLs was lower than eye drop. Drug loaded PVA film embedded SCLs may be a promising ocular drug delivery system.  相似文献   

15.
ContextPachymic acid and bavachin are commonly used drugs in the therapy of lung cancer.ObjectiveThe co-administration of pachymic acid and bavachin was investigated to evaluate their potential drug-drug interaction.Materials and methodsThe pharmacokinetics of bavachin (10 mg/kg) was studied in male Sprague-Dawley (SD) rats in the presence of pachymic acid (5 mg/kg) (n = 6). The rats without pre-treatment of pachymic acid were set as the control and the pre-treatment of pachymic acid was conducted for 7 days before the administration of bavachin. The effect of pachymic acid on the activity of CYP2C9 was also estimated in rat liver microsomes with corresponding probe substrates.ResultsPachymic acid influenced the pharmacokinetic profile of bavachin with the increased AUC (32.82 ± 4.61 vs. 19.43 ± 3.26 μg/L/h), the prolonged t1/2 (3.21 ± 0.65 vs. 2.32 ± 0.28 h), and the decreased CLz/F (307.25 ± 44.35 vs. 523.81 ± 88.67 L/h/kg) in vivo. The metabolic stability of bavachin was enhanced by pachymic acid and the transport of bavachin was inhibited by pachymic acid. Pachymic acid was found to inhibit the activity of CYP2C9 with the IC50 of 21.25 µM as well as the activity of P-gp.Discussion and conclusionThe interaction between pachymic acid and bavachin results from the inhibition of CYP2C9 and P-gp. The dose of bavachin should be adjusted when combining with pachymic acid. The study design can be generalized to a broader study population with adjustment in the dose.  相似文献   

16.
ContextSauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation.ObjectiveThis study investigates anti-inflammatory effect of S. brevipes in various inflammation models.Materials and methodsThe aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis.ResultsSb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice.Discussion and conclusionsThis study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.  相似文献   

17.
The aim of this investigation was to develop an etomidate intravenous lipid emulsion (ETM-ILE) and evaluate its properties in vitro and in vivo. Etomidate (ETM) is a hydrophobic drug, and organic solvents must be added to an etomidate injectable solution (ETM-SOL) to aid dissolution, that causes various adverse reactions on injection. Lipid emulsions are a novel drug formulation that can improve drug loading and reduce adverse reactions. ETM-ILE was prepared using high-pressure homogenization. Univariate experiments were performed to select key conditions and variables. The proportion of oil, egg lecithin, and poloxamer 188 (F68) served as variables for the optimization of the ETM-ILE formulation by central composite design response surface methodology. The optimized formulation had the following characteristics: particle size, 168.0 ± 0.3 nm; polydispersity index, 0.108 ± 0.028; zeta potential, −36.4 ± 0.2 mV; drug loading, 2.00 ± 0.01 mg/mL; encapsulation efficiency, 97.65% ± 0.16%; osmotic pressure, 292 ± 2 mOsmol/kg and pH value, 7.63 ± 0.07. Transmission electron microscopy images showed that the particles were spherical or spheroidal, with a diameter of approximately 200 nm. The stability study suggested that ETM-ILE could store at 4 ± 2 °C or 25 ± 2 °C for 12 months. Safety tests showed that ETM-ILE did not cause hemolysis or serious vascular irritation. The results of the pharmacokinetic study found that ETM-ILE was bioequivalent to ETM-SOL. However, a higher concentration of ETM was attained in the liver, spleen, and lungs after administration of ETM-ILE than after administration of ETM-SOL. This study found that ETM-ILE had great potential for clinical applications.  相似文献   

18.
ContextAlzheimer’s disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are promising therapeutic targets for AD.ObjectiveTo evaluate the inhibitory effects of aaptamine on two cholinesterases and investigate the in vivo therapeutic effect on AD in a zebrafish model.Materials and methodsAaptamine was isolated from the sponge Aaptos suberitoides Brøndsted (Suberitidae). Enzyme inhibition, kinetic analysis, surface plasmon resonance (SPR) and molecular docking assays were used to determine its inhibitory effect on AChE and BuChE in vitro. Zebrafish were divided into six groups: control, model, 8 μM donepezil, 5 , 10  and 20 μM aaptamine. After three days of drug treatment, the behaviour assay was performed.ResultsThe IC50 values of aaptamine towards AChE and BuChE were 16.0 and 4.6 μM. And aaptamine directly inhibited the two cholinesterases in the mixed inhibition type, with Ki values of 6.96 ± 0.04 and 6.35 ± 0.02 μM, with Kd values of 87.6 and 10.7 μM. Besides, aaptamine interacts with the crucial anionic sites of AChE and BuChE. In vivo studies indicated that the dyskinesia recovery rates of 5 , 10  and 20 μM aaptamine group were 34.8, 58.8 and 60.0%, respectively, and that of donepezil was 63.7%.Discussion and conclusionsAaptamine showed great potential to exert its anti-AD effects by directly inhibiting the activities of AChE and BuChE. Therefore, this study identified a novel medicinal application of aaptamine and provided a new structural scaffold for the development of anti-AD drugs.  相似文献   

19.
20.
ContextPatients with non-alcoholic steatohepatitis (NASH) may have a simultaneous intake of pravastatin and evodiamine-containing herbs.ObjectiveThe effect of evodiamine on the pharmacokinetics of pravastatin and its potential mechanisms were investigated in NASH rats.Materials and methodsThe NASH model was conducted with feeding a methionine choline-deficient (MCD) diet for 8 weeks. Sprague-Dawley rats were randomised equally (n = 6) into NASH group, evodiamine group (10 mg/kg), pravastatin group (10 mg/kg), and evodiamine (10 mg/kg) + pravastatin (10 mg/kg) group. Normal control rats were fed a standard diet. Effects of evodiamine on the pharmacokinetics, distribution, and uptake of pravastatin were investigated.ResultsEvodiamine decreased Cmax (159.43 ± 26.63 vs. 125.61 ± 22.17 μg/L), AUC0-t (18.17 ± 2.52 vs. 14.91 ± 2.03 mg/min/L) and AUC0-∞ (22.99 ± 2.62 vs. 19.50 ± 2.31 mg/min/L) of orally administered pravastatin in NASH rats, but had no significant effect in normal rats. Evodiamine enhanced the uptake (from 154.85 ± 23.17 to 198.48 ± 26.31 pmol/mg protein) and distribution (from 736.61 ± 108.07 to 911.89 ± 124.64 ng/g tissue) of pravastatin in NASH rat liver. The expression of Oatp1a1, Oatp1a4, and Oatp1b2 was up-regulated 1.48-, 1.38-, and 1.51-fold by evodiamine. Evodiamine decreased the levels of IL-1β, IL-6, and TNF-α by 27.82%, 24.76%, and 29.72% in NASH rats, respectively.Discussion and conclusionsEvodiamine decreased the systemic exposure of pravastatin by up-regulating the expression of OATPs. These results provide a reference for further validation of this interaction in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号