首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundRenal cell carcinoma (RCC) accounts for 3 % of cancer patients. Early detection influences the therapeutic strategy and significantly improves patients’ survival rates. Stable existing circulating miRNAs could be a promising diagnostic biomarker.MethodsPreviously our team demonstrated the anti-tumor effect of miR-20b-5p, miR-30a-5p and miR-196a-5p in RCC tissue and cell lines. Here, based on 110 RCC patients and 110 health control, we investigated serum expression of these three miRNAs in the testing set and the validation set separately by using quantitative real-time PCR. A three-miRNA panel with high diagnostic efficiency was constructed. Correlations between these miRNAs and clinical parameters were investigated. Additionally, the TCGA dataset and bioinformatic analysis are used for the functional exploration of these miRNAs.ResultsSerum expression levels of miR-20b-5p, miR-30a-5p were significantly reduced in RCC patients, while miR-196a-5p expression level was up-regulated (p < 0.001). miR-20b-5p, miR-30a-5p and miR-196a-5p had moderate diagnostic ability for RCC (AUC = 0.807, 0.766 and 0.719 in the testing set, respectively). The AUC of the three-miRNA panel was 0.949 in the testing set and 0.938 in the validation set. Specifically, the serum expression level of miR-196a-5p was significantly down-regulated in RCC patients with higher Fuhrman grade (p = 0.051). TCGA dataset analysis showed that the three-miRNA panel probably participated in RCC by targeting ITGA4 and NRP2.ConclusionThe three-miRNA panel could serve as a promising non-invasive biomarker for RCC detection.  相似文献   

2.
BackgroundLong non-coding RNA (lncRNA) TMPO antisense RNA 1 (TMPO-AS1) is reported to be oncogenic in prostate cancer and lung cancer. This study aims to investigate the expression and biological function of it in retinoblastoma (RB), and explore its regulatory role for miR-199a-5p and hypoxia-inducible factor-1α (HIF-1α).MethodsPaired RB samples were collected, and the expression levels of TMPO-AS1, miR-199a-5p and HIF-1α were examined by quantitative real-time polymerase chain reaction (qRT-PCR); TMPO-AS1 overexpressing plasmids and TMPO-AS1 shRNA were transfected into HXO-RB44 and SO-Rb50 cell lines respectively, and then proliferation, migration and invasion of RB cells were detected by CCK-8 assay and Transwell method. qRT-PCR and western blot were used to analyze the regulatory function of TMPO-AS1 on miR-199a-5p and HIF-1α; luciferase reporter gene assay was used to determine the regulatory relationship between miR-199a-5p and TMPO-AS1.ResultsTMPO-AS1 was significantly up-regulated in cancerous tissues of RB samples (relatively expression: 2.97 vs 3.93, p < 0.001), negatively correlated with miR-199a-5p (r=-0.4813, p < 0.01). There was one binding site on TMPO-AS1 for miR-199a-5p. After transfection of TMPO-AS1 shRNAs into RB cells, the proliferation, migration and invasion of cancer cells was significantly inhibited, while TMPO-AS1 had opposite effects; TMPO-AS1 was also demonstrated to regulate the expression of HIF-1α on both mRNA and protein levels via negatively regulating miR-199a-5p.ConclusionTMPO-AS1 is abnormally up-regulated in RB tissues, and it can modulate the proliferation and migration of RB cells. It has the potential to be the “ceRNA” to regulate HIF-1α expression by sponging miR-199a-5p.  相似文献   

3.
目的筛选和验证靶向调控c-SKI并与纤维化相关的microRNA(miRNA)。方法生物信息学方法预测并结合文献报道,筛选出靶向c-SKI的候选miRNAs,RT-qPCR检测人心肌成纤维细胞(HCFBs)中候选miRNAs和c-SKI的表达,筛选出抑制作用最显著的miRNA;构建c-SKI-3′-UTR野生型(c-SKI-wt)和突变型(c-SKI-mut)载体,分别与miR-155a-5p/miR-17a-5p的模拟物、抑制剂及对照在人胚肾上皮细胞(HEK293T)中共转染,双萤光素酶报告系统检测各组荧光素酶活性;接着,分别将miR-155a/miR-17a-5p mimics和inhibitor转染至人心肌成纤维细胞(HCFBs),Western blot检测各组细胞c-SKI的表达。结果 1)经筛选miR-155a-5p和miR-17a-5p对c-SKI的抑制作用最明显(P<0.01);2)与NC组相比,miR-155a-5p/miR-17a-5p mimics组萤光素酶活性均显著下降(P<0.05),miR-155a-5p/miR-17a-5p inhibitor组萤光素酶活性均明显增强(P<0.05);3)与NC组相比,miR-155a-5p/miR-17a-5p mimics组中c-SKI蛋白表达显著下调,miR-155a-5p/miR-17a-5p inhibitor组中c-SKI的表达显著上调(P<0.01)。结论 miR-155a-5p和miR-17a-5p可分别靶向结合c-SKI的3′-UTR,在HCFBs中负性调控c-SKI的表达。  相似文献   

4.
PurposeVascular calcification (VC) is a common complication of end-stage renal disease (ESRD). This study aimed to examine changes in the expression of miR-21-5p in ESRD patients with VC and to explore its clinical value in predicting the occurrence and progression of uremic VC.Materials and Methods120 ESRD patients were divided into patients without VC group (n=38) and patients with VC group (n=82). All patients were followed up for 2 years to evaluate VC progression. qRT-PCR was used to detect serum miR-21-5p levels. Receiver operating characteristic curves were constructed to assess diagnostic value. Kaplan-Meier and log-rank methods were utilized to calculate associations between VC progression and risk factors.ResultsSerum miR-21-5p levels were significantly higher in ESRD patients with VC than in those without VC and increased progressively with increasing disease severity. Serum miR-21-5p levels were able to distinguish patients with VC from those without VC, with an area under the curve value of 0.883, a sensitivity of 81.7%, and a specificity of 84.2%. After 2 years of follow-up, miR-21-5p expression had increased in patients with worse VC severity, compared with those with stable VC severity. Patients with high miR-21-5p levels were more likely to develop more severe VC, indicating an association between miR-21-5p and VC progression (log-rank p=0.002). Multivariable Cox regression analysis suggested that serum miR-21-5p is an independent predictive factor of VC progression in ESRD patients (hazard ratio=2.064, 95% confidence interval=1.225–3.478, p=0.006).ConclusionmiR-21-5p is overexpressed in the serum of ESRD patients with VC. Our results suggest that overexpression of miR-21-5p is closely associated with VC progression.  相似文献   

5.
The clinical role and potential molecular mechanisms of microRNA-449c-5p (miR-449c-5p) in hepatocellular carcinoma (HCC) tissues remains unclear. Combining multiple bioinformatic tools, we studied the miR-449c-5p expression levels in HCC tissues and explored possible target genes and related signaling pathways. First, miR-449c-5p expression data from microarrays provided by publicly available sources were mined and analyzed using various meta-analysis methods. Next, genes that were downregulated after miR-449c-5p mimic transfection into HCC cells were identified, and in silico methods were used to predict potential target genes. Several bioinformatic assessments were also performed to evaluate the possible signaling pathways of miR-449c-5p in HCC. Five microarrays were included in the current study, including GSE98269, GSE64632, GSE74618, GSE40744 and GSE57555. The standard mean difference was 0.44 (0.07–0.80), and the area under the curve was 0.68 (0.63–0.72), as assessed by meta-analyses, which consistently indicated the upregulation of miR-449c-5p in HCC tissues. A total of 2244 genes were downregulated after miR-449c-5p mimic transfection into an HCC cell line, while 5217 target genes were predicted by in silico methods. The overlap of these two gene pools led to a final group of 428 potential target genes of miR-449c-5p. These 428 potential target genes were primarily enriched in the homologous recombination pathway, which includes DNA Polymerase Delta 3 (POLD3). Data mining with Oncomine and the Human Protein Atlas showed a decreasing trend in POLD3 mRNA and protein levels in HCC tissue samples. This evidence suggests that miR-449c-5p could play an essential role in HCC through various pathways and that POLD3 could be a potential miR-449c-5p target. However, these in silico findings should be validated with further experiments.  相似文献   

6.
Ovarian cancer (OvCa) has the highest morbidity among all gynecologic cancers worldwide, and its distant metastasis is one of main causes for the poor prognosis of OvCa patients. Our previous studies have reported that DAAM1-involved signaling pathways play vital roles in metastasis of breast cancer. However, whether DAAM1 participates in OvCa migration and/or invasion is still unknown. The impact of DAAM1 on cell migration and invasion in OvCa was evaluated by wound healing assay and Boyden chamber assay. The specific miRNA targeting DAAM1 was predicted by bioinformatics methods and verified by dual-luciferase activity assay. The miR-208a-5p expression levels in OvCa tissues and the impacts of miR-208a-5p on cell migration and invasion were also assessed, respectively. High expression of DAAM1 was associated with distant metastasis in OvCa. Silence of DAAM1 by siRNA blocked the migration and invasion of OVCAR-3 cells. MiR-208a-5p directly targeted DAAM1 and was shown a decreased expression in metastatic OvCa tissues. Elevated expression of miR-208a-5p inhibited the migration and invasion of OVCAR-3 cell which can be rescued by DAAM1 overexpression. Our data suggest that miR-208-5p/DAAM1 axis participates in OvCa migration and invasion and may be a novel clinical target to limit OvCa metastasis.  相似文献   

7.
Background: Influenza is a serious worldwide disease that captures global attention in the past few years after outbreaks. The recent discoveries of microRNA (miRNA) and its unique expression profile in influenza patients have offered a new method for early influenza diagnosis. The aim of this study was to examine the utility of miRNAs for the diagnosis of influenza.Methods: Thirteen selected miRNAs were investigated with the hosts'' throat swabs (25 H1N1, 20 H3N2, 20 influenza B and 21 healthy controls) by real-time quantitative polymerase chain reaction (RT-qPCR) using U6 snRNA as endogenous control for normalization, and receiver operating characteristic (ROC) curve/Area under curve (AUC) for analysis.Results: miR-29a-3p, miR-30c-5p, miR-34c-3p and miR-181a-5p are useful biomarkers for influenza A detection; and miR-30c-5p, miR-34b-5p, miR-205-5p and miR-449b-5p for influenza B detection. Also, use of both miR-30c-5p and miR-34c-3p (AUC=0.879); and miR-30c-5p and miR-449b-5p (AUC=0.901) are better than using one miRNA to confirm influenza A and influenza B infection, respectively.Conclusions: Given its simplicity, non-invasiveness and specificity, we found that the throat swab-derived miRNAs miR-29a-3p, miR-30c-5p, miR-34b-5p, miR-34c-3p, miR-181a-5p, miR-205-5p and miR-449b-5p are a useful tool for influenza diagnosis on influenza A and B.  相似文献   

8.
Recently, an increasing number of studies have reported that dysregulation of circular RNA (circRNA) expression plays critical roles in the progression of several cancers, including colorectal cancer (CRC). However, the detailed molecular mechanisms of circRNAs involvement in CRC remain largely unknown. Here, we confirmed that the level of circEGFR was significantly increased in CRC tissues compared to matched adjacent non-tumor tissues, and a high level of circEGFR was correlated with poor clinicopathological characteristics and poor prognosis in patients with CRC. Moreover, increased circEGFR expression promoted CRC cell proliferation, migration, and invasion in vitro. Mechanistically, circEGFR acted as a ceRNA for miR-106a-5p to relieve the repressive effect of miR-106a-5p on DDX5 mRNA. Moreover, circEGFR enhanced DDX5 expression, thereby upregulating p-AKT levels. Together, these findings showed that circEGFR promoted CRC cell proliferation, migration, and invasion through the miR-106a-5p/DDX5/AKT axis, and may serve as a promising diagnostic marker and therapeutic target for CRC patients.  相似文献   

9.
IntroductionThis study investigated miR-29b-3p’s effects and mechanisms in preeclampsia development.Material and methodsIn this study, we analysed the pathology and expression of miR-29b-3p and B2R mRNA from normal and preeclampsia placenta tissues using hematoxylin and eosin staining and RT-qPCR assay. For cell experiments, we used transwell assay CCK-8, flow cytometry and wound healing assay to determine the effects and correlation of miR-29b-3p and B2R in HTR-8/SVneo cell proliferation, apoptosis, cell cycle, cell invasion and migration in a preeclampsia cell model. Moreover, the mechanisms were determined using Western blot or immunofluorescence in different groups.ResultsClinical analysis revealed that miR-29b-3p gene expression dramatically increased with increasing degree of preeclampsia (p < 0.001 or p < 0.05, respectively). The HTR-8/SVneo cell biological activities of the model group were significantly depressed (p < 0.001). However, with miR-29b-3p inhibitor or B2R transfection, the HTR-8/SVneo cell biological activities significantly recovered (p < 0.001). Western blot assay showed that B2R, VEGF-A, CCND-1, MMP-2 and MMP-9 levels were suppressed in the model group, compared with those in the NC groups (p < 0.001, respectively). With miR-29b-3p inhibitor or B2R transfection, the protein expression levels of B2R, VEGF-A, CCND-1, MMP-2 and MMP-9 dramatically increased (p < 0.001, respectively).ConclusionsThe down-regulation of miR-29b-3p could improve HTR-8/SVneo cell biological activities in a preeclampsia cell model by targeting B2R.  相似文献   

10.
Objectives: Pathological biomarkers and mechanisms of dengue infection are poorly understood. We investigated a new serum biomarker using miRNAs and performed further correlation analysis in dengue-infected patients.Methods: Expression levels of broad-spectrum miRNAs in serum samples from three patients with dengue virus type 1 (DENV-1) and three healthy volunteers were separately analyzed using miRNA PCR arrays. The expressions of the five selected miRNAs were verified by qRT-PCR in the sera of 40 DENV-1 patients and compared with those from 32 healthy controls. Receiver operating characteristic (ROC) curve and correlation analyses were performed to evaluate the potential of these miRNAs for the diagnosis of dengue infection.Results: MiRNA PCR arrays revealed that 41 miRNAs were upregulated, whereas 12 miRNAs were down-regulated in the sera of DENV-1 patients compared with those in healthy controls. Among these miRNAs, qRT-PCR validation showed that serum hsa-miR-21-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were upregulated, whereas hsa-miR-146a-5p was down-regulated in dengue-infected patients compared with healthy controls. ROC curves showed serum hsa-miR-21-5p and hsa-miR-146a-5p could distinguish dengue-infected patients with preferable sensitivity and specificity. Correlation analysis indicated that expression levels of serum hsa-miR-21-5p and hsa-miR-146a-5p were negative and positively correlated with the number of white blood cells and neutrophils, respectively. Functional analysis of target proteins of these miRNAs in silico indicated their involvement in inflammation and cell proliferation.Conclusion: Dengue-infected patients have a broad “fingerprint” profile with dysregulated serum miRNAs. Among these miRNAs, serum hsa-miR-21-5p, hsa-miR-146a-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were identified as promising serum indicators for dengue infection.  相似文献   

11.
Objective: This study aims to investigate the role of TSIX/miR-30a-5p axis in particle-induced osteolysis (PIO).

Method: PIO mouse model was established by the implantation of Co-Cr-Mo metal particles (CoPs). MC3T3-E1 cells received CoPs stimulation. Bone mineral density (BMD) in the skull was detected to evaluate PIO development. The expression of TSIX and miR-30a-5p was detected by using qRT-PCR. Osteoblast apoptosis was measured using flow cytometry. RNA pull-down was used to verify the regulatory relationship between TSIX and miR-30a-5p.

Result: The results showed that BMD of the skull in PIO mice was significantly decreased compared with control mice, which indicated that the PIO model was established successfully. Moreover, CoPs could up-regulate TSIX level, down-regulate miR-30a-5p expression, and promote osteoblast apoptosis in vivo and in vitro. The results also found that TSIX negatively regulated miR-30a-5p expression, and knockdown of TSIX inhibited Runx2 expression. As expected, miR-30a-5p inhibitor could reverse the inhibition of si-TSIX on osteoblast apoptosis.

Conclusion: TSIX played a pivotal role in PIO development by negatively regulating miR-30a-5p.  相似文献   


12.
BackgroundRetinoblastoma (RB) is the most common primary intraocular malignancy in children. Accumulating evidences have clarified that microRNAs (miRNAs) modulated signaling molecules by acting as oncogenes or tumor-suppressor genes in RB. Thus, in our study, we aimed to investigate the function of miR-129-5p in RB cells through PI3K/AKT signaling pathway by targeting PAX6. Two RB cell lines, Y79 and WERI-Rb-1, were selected in our study, followed by transfection of miR-129-5p inhibitor or si-PAX6 to explore the regulatory role of miR-129-5p in RB cell proliferation, invasion and migration.Material and methodsDual-luciferase assay was used for the detection of targeting relationship between miR-129-5p and PAX6. Besides, western blot analysis was applied to detect expression of cell cycle-related factors (CDK2 and Cyclin E) and PI3K/AKT signaling pathway-related factors (p-AKT and AKT). Nude mice tumorigenesis experiment was used to evaluate the effect of miR-129a-5p on RB growth in vivo.ResultsmiR-129-5p was down-regulated in RB cell lines. miR-129-5p directly targeted the 3′-untranslated region of PAX6. Artificial down-regulation of miR-129-5p promoted cell proliferation, migration and invasion in RB cell lines Y79 and WERI-Rb-1, and promoted RB growth in vivo via PI3K/AKT signaling pathway, which could be reversed by transfection with silencing PAX6.ConclusionThis study provides evidences that RB progression was suppressed by overexpressed miR-129-5p via direct targeting of PAX6 through PI3K/AKT signaling pathway, which may provide a molecular basis for better treatment for RB.  相似文献   

13.
Objective: The pancreatic endocrinal system dominates the regulation of blood glucose levels in vivo, and the dysfunction of pancreatic endocrine β-cells is a major cause of the occurrence and development of Type 2 diabetes (T2D). Although microRNA (miRNA) have been found to be key regulators of pancreatic β-cells proliferation, differentiation and apoptosis, the underlying mechanism remains enigmatic. The aim of this study was to identify several novel miRNAs which might be involved in the etiopathogenesis of diabetic β-cells dysfunction.Methods: The miRNA expression profiles in the pancreas of high-fat diet (HFD) fed Zucker diabetic fatty (ZDF) rats and Zucker lean (ZL) rats feed with normal-fat diet (NFD) were detected by using miRNA microarray chip, and individually verified the most significant factors by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to predict the target genes related to each of the identified miRNAs and the functions of these target genes in different metabolic signaling pathways.Results: Compared with the ZL rats, a total of 24 differentially expressed miRNAs were detected in ZDF rats. Among which miR-34a-5p and miR-452-5p were the most significantly up-regulated and down-regulated respectively. These miRNAs have not been reported in rats'' pancreas before. By GO and KEGG enrichment analyses, we found that miR-34a-5p could negatively regulate pancreatic β-cell proliferation through the involvement of Wnt signaling pathway. In addition, it was also found to regulate insulin secretion through the insulin signaling pathway to modulate blood glucose levels. At the same time, miR-452-5p was found to positively regulate the activity of the key rate-limiting enzyme branched-chain α-keto acid dehydrogenase-β (BCKDHB) in the catabolism of branched chain amino acids (BCAA), leading to mitochondrial dysfunction in pancreatic β-cells.Conclusions: miR-34a-5p and miR-452-5p were identified as the novel regulators of pancreatic endocrine dysfunction. These miRNAs might have the potential to be utilized as the new predictive biomarkers for the diagnosis of the occurrence and development of T2D, as well as the therapeutic targets for T2D treatment.  相似文献   

14.
15.
MicroRNAs (miRNAs) are well-known candidates for modulating the dysregulated signaling pathways during fibrosis. In this study, we investigated the expression pattern of 16 miRNAs, which have previously been confirmed or predicted to target genes involved in extracellular matrix (ECM) homeostasis. Primary culture of dermal fibroblasts was obtained from skin biopsies of diffused cutaneous SSc (dcSSc) patients and healthy controls. Expression of let-7a, miR-1, miR-15a, miR-17, miR-19a, miR-20a, miR-21, miR-27b, miR-26a, miR-29a, miR-29b, miR29c, miR-141, miR-125a-5p, miR-193a-3p, and miR-200a were quantified by Real-time PCR. Functional analysis of microRNAs was performed using synthetic oligonucleotides. To further confirm the pro- or anti-fibrotic effects of miRNAs, normal fibroblasts were treated with 10 ng/mL of transforming growth factor (TGF)-β to generate an in vitro model of dermal fibrosis. miR-21 and miR-29a were upregulated and downregulated, respectively, in both dcSSc and TGF-β-treated fibroblasts. We observed that restoration of miR-29a expression or blockade of miR-21 function negatively affected collagen production. COL1A1 expression in SSc fibroblasts is more sensitive to changes of miR-29a and miR-21 expression in compare to normal fibroblasts. miR-29a alone was effective to decrease TGF-β-induced collagen production in dermal fibroblasts. miR-21 and TGF-β had synergistic effects on induction of collagen production. However, neither miR-21 nor miR-29a affected alpha smooth muscle actin (α-SMA) expression in the presence or absence of TGF-β in dermal fibroblasts. miR-21 and miR-29a as pro- and anti-fibrotic miRNAs modulate collagen production in an opposing manner. Focusing on miR-21 and miR-29s as therapeutic targets would be effective in patients with SSc or other fibrotic diseases which show aberrant expression of collagen expression.  相似文献   

16.
BackgroundColorectal cancer (CRC) is one of the most common malignancies worldwide usually diagnosed at advanced stages which causes poor prognosis of patients. Therefore, novel diagnostic biomarkers and therapeutic targets are urgently needed.Materials and methodsmiR-424-5p was identified through integrated analysis of three public databases. Loss-of-function experiments in HT29 and SW480 cells and mouse xenograft models were performed to explore the regulatory role of miR-424-5p in CRC. Bioinformatics analysis was used for predicting targets of miR-424-5p and its functional and pathway enrichment analysis.ResultsmiR-424-5p expression was significantly upregulated in CRC tissues and cell lines and associated with prognosis of CRC patients. Experiments in vitro and in vivo showed miR-424-5p promotes CRC cell proliferation and metastasis by directly inhibiting SCN4B. Besides, CRC cells secret miR-424-5p into peripheral blood through exosomes and circulating exosomal miR-424-5p could discriminate CRC patients with early stage from healthy people with AUC value of 0.82.ConclusionsmiR-424-5p serves as an oncogene in CRC and circulating exosomal miR-424-5p is a novel potential diagnostic biomarker of CRC patients.  相似文献   

17.
Abstract

Objective: To investigate the role of miR-146a-5p in the effects of resveratrol (RSV) on inflammatory response in BV2 mouse microglial cells.

Materials and methods: BV2 cells were pretreated by RSV and stimulated with lipopolysaccharide (LPS). Cell Viability was checked using a MTT assay. Real-Time PCR was performed to detect the levels of pro-inflammatory cytokines (tumor necrosisfactor-α-TNF-α, interleukin-1β-IL-1β and interleukin-6 - IL-6) and miR-146a-5p expression. Western blot was used to analyze the protein expression of TNF receptor associated factor 6 (TRAF6) and phospho-nuclear factor kappa B (pNF-κB). Gain-of-function and loss-of-function analysis of miR-146a-5p was performed using transfection of miR-146a-5p mimic and miR-146a-5p inhibitor, respectively.

Results: Pretreatment with RSV significantly and dose dependently inhibited LPS-induced production of TNF-α, IL-1β and IL-6 in BV2 cells. MiR-146a-5p was significantly upregulated after LPS treatment, and further increased in RSV and LPS-co-treated cells. MiR-146a-5p overexpression via miR-146a-5p mimic transfection downregulated the mRNA level of TNF-α, IL-1β and IL-6, as well as abrogated the protein expression of TRAF6 and pNF-κB in BV2 cells exposed to LPS. More importantly, the reducion of TNF-α, IL-1β and IL-6 level by RSV were reversed by miR-146a-5p silence via miR-146a-5p inhibitor transfection. Furthermore, silencing miR-146a-5p attenuated the inhibitory effect of RSV on the TRAF6/NF-κB pathway which was activated after induction with LPS. Conclusions: RSV can suppress LPS-induced inflammatory injury via modulating the miR-146a-5p/TRAF6/NF-κB axis in BV2 mouse microglial cells.  相似文献   

18.
The first paper on “inflammaging” published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The “epigenetic revolution” in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21−5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.  相似文献   

19.
ObjectiveCardiac hypertrophy is an adaptive response to physiological and pathological stimuli, the latter of which frequently progresses to valvulopathy, heart failure and sudden death. Recent reports revealed that pyroptosis is involved in regulating multiple cardiovascular diseases progression, including cardiac hypertrophy. However, the underlying mechanisms remain poorly understood. This study aims to extensively investigate the regulation of miR-133a-3p on pyroptosis in angiotensin II (Ang II)-induced cardiac hypertrophyin vitro.MethodsThe in vitro model of cardiac hypertrophy was induced by Ang II, which was validated by qPCR combined with measurement of cell surface area by immunofluorescence assay. CCK-8 assay and Hochest33342/PI staining was performed to assess pyroptosis. Dual luciferase reporter system was used to verify the direct interaction between miR-133a-3p and IKKε. The effects of miR-133a-3p/IKKε on pyroptosis activation and cardiac hypertrophy markers (Caspase-1, NLRP3, IL-1β, IL-18, GSDMD, ASC, ANP, BNP and β-MHC) were evaluated by western blot, ELISA and qPCR.ResultsAng II treatment could induce cardiomyocyte hypertrophy and pyroptosis. The expression of miR-133a-3p was repressed in Ang II-treated HCM cells, and its overexpression could attenuate both pyroptosis and cardiac hypertrophyin vitro. Additionally, IKKε expression was significantly up-regulated in Ang II-induced HCM cells. Dual luciferase reporter system and qPCR validated that miR-133a-3p directly targeted the 3’-UTR of IKKε and suppressed its expression. Moreover, IKKε overexpression impaired the protective function of miR-133a-3p in cardiomyocyte hypertrophy.ConclusionCollectively, miR-133a-3p attenuates Ang II induced cardiomyocyte hypertrophy via inhibition of pyroptosis by targeting IKKε. Therefore, miR-133a-3p up-regulation may be a promising strategy for cardiac hypertrophy treatment.  相似文献   

20.
Osteosarcoma is a highly malignant tumor that occurs in the bone. Previous studies have shown that multiple microRNAs (miRNAs) regulate the development of osteosarcoma. This study aimed to explore the role of miR-629-5p and its target gene, caveolin 1 (CAV1), in osteosarcoma development. To analyze the expression of miR-629-5p and CAV1 mRNA in osteosarcoma tissues and cell lines, qRT-PCR analysis was performed. Dual-luciferase reporter experiments were subsequently performed to validate the relationship between CAV1 and miR-629-5p. CCK8 assay was used to measure osteosarcoma cell proliferation, and wound-healing assay was performed to study their migratory phenotype. Our findings revealed that miR-629-5p was overexpressed in osteosarcoma tissues and cells, and thereby enhanced cell proliferation and migration. Further, we validated that miR-629-5p targets CAV1 mRNA directly. CAV1 expression, which was negatively correlated with miR-629-5p expression, was found to be downregulated in osteosarcoma tissue samples. Moreover, our data showed that an increase in CAV1 level led to a decline in osteosarcoma cell proliferation and migration, which could be rescued by miR-629-5p upregulation. Overall, our study confirmed that miR-629-5p promoted osteosarcoma proliferation and migration by directly inhibiting CAV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号