首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery.This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts.  相似文献   

2.
The impact of motor and sensory nerve architecture on nerve regeneration   总被引:3,自引:0,他引:3  
Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve's Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. To define the role of nerve architecture, we evaluated regeneration through acellular motor and sensory nerve grafts. Thirty-six Lewis rats underwent tibial nerve repairs with 5 mm double-cable motor or triple-cable sensory nerve isografts. Grafts were harvested and acellularized in University of Wisconsin solution. Control animals received fresh motor or sensory cable isografts. Nerves were harvested after 4 weeks and histomorphometry was performed. In 6 animals per group from the fresh motor and sensory cable graft groups, weekly walking tracks and wet muscle mass ratios were performed at 7 weeks. Histomorphometry revealed more robust nerve regeneration in both acellular and cellular motor grafts. Sensory groups showed poor regeneration with significantly decreased percent nerve, fiber count, and density (p < 0.05). Walking tracks revealed a trend toward improved functional recovery in the motor group. Gastrocnemius wet muscle mass ratios show a significantly greater muscle mass recovery in the motor group (p < 0.05). Nerve architecture (size of SC basal lamina tubes) plays an important role in nerve regeneration in a mixed nerve gap model.  相似文献   

3.
Acellular nerve allograft preserves the basilar membrane tube and extracellular matrix, which pro-motes selective regeneration of neural defects via bridging. In the present study, a Sprague Dawley rat sciatic nerve was utilized to prepare acellular nerve allografts through the use of the chemical extraction method. Subsequently, the allograft was transplanted into a 10-mm sciatic nerve defect in Wistar rats, while autologous nerve grafts from Wistar rats served as controls. Compared with autologous nerve grafts, the acellular nerve allografts induced a greater number of degenerated nerve fibers from sural nerves, as well as a reduced misconnect rate in motor fibers, fewer acetyl-choline esterase-positive sural nerves, and a greater number of carbonic anhydrase-positive sen-sory nerve fibers. Results demonstrated that the acellular nerve allograft exhibited significant neural selective regeneration in the process of bridging nerve defects.  相似文献   

4.
Autologous, cellular nerve grafts are commonly used to bridge nerve gaps in the clinical setting. Sensory nerves are most often selected for autografting because of their relative ease of procurement and low donor site morbidity. A series of recent reports conclude that sensory isografts are inferior to motor and mixed nerve isografts for the repair of a mixed nerve defect in rat. The aim of the present study was to determine if the disparity reported with cellular graft subtypes exists for detergent decellularized, chondroitinase ABC processed nerve grafts. We hypothesized that processing removes or neutralizes the inferior properties attributed to sensory nerve grafts. Saphenous (cutaneous branch), femoral quadriceps (muscle branch) and tibial (mixed trunk) nerve grafts 5 mm in length were used in tensionless reconstruction of syngenic rat tibial nerves. Nerve regeneration through the grafts and into the recipient distal nerve was evaluated 21 days after grafting by two methods, toluidine blue staining of semi-thin sections (myelinated axons) and neurofilament-immunolabeling (total axons). Contrary to previous reports using this grafting scheme, we found no significant difference in the myelinated axon counts for the three cellular graft subtypes. Moreover, total axon counts indicated cellular saphenous nerve grafts were more effective than the quadriceps and tibial nerve grafts. A similar though less pronounced trend was found for the decellularized processed grafts. These findings indicate that nerve graft composition (sensory and motor) has no substantial impact on the short-term outcome of nerve regeneration in a mixed nerve repair model.  相似文献   

5.
Artificial nerve grafts are needed to reconstruct massive defects in the peripheral nervous system when autologous nerve grafts are not available in sufficient amounts. Nerve grafts containing Schwann cells display a suitable substrate for long-distance regeneration. We present here a comprehensive analysis of the in vivo effects of different isoforms of fibroblast growth factor-2 (FGF-2) on peripheral nerve regeneration across long gaps. FGF-2 isoforms were provided by grafted, genetically modified Schwann cells over-expressing 18-kDa-FGF-2 and 21-/23-kDa-FGF-2, respectively. Functional tests evaluated motor and sensory recovery. Additionally, morphometrical analyses of regenerated nerves were performed 3 and 6 months after grafting. Distinct regeneration promoting effects of the different FGF-2 isoforms were found. 18-kDa-FGF-2 mediated inhibitory effects on the grade of myelination of regenerating axons, whereas 21-/23-kDa-FGF-2 mediated early recovery of sensory functions and stimulation of long-distance myelination of regenerating axons. The results contribute to the development of new therapeutic strategies in peripheral nerve repair.  相似文献   

6.
The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit.  相似文献   

7.
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent nerve(donor nerve).However,the motor-sensory specificity after end-to-side neurorrhaphy remains unclear.This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy.Thirty rats were randomized into three groups:(1) end-to-side neurorrhaphy using the ulnar nerve(mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve;(2) the sham group:ulnar nerve and cutaneous antebrachii medialis nerve were just exposed;and(3) the transected nerve group:cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied.At 5 months,acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group,and none of the myelinated axons were stained in either the sham or transected nerve groups.Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%.In contrast,no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment.These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.  相似文献   

8.
Peripheral nerve repair: 30 centuries of scientific research   总被引:2,自引:0,他引:2  
INTRODUCTION: Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART: Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION: This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.  相似文献   

9.
Chu TH  Du Y  Wu W 《Experimental neurology》2008,212(2):562-565
In the present study, we compared the effects of implanting peripheral sensory nerve and motor nerve on motoneuron survival and regeneration after spinal root avulsion in adult rats. Our results showed that 116% more motoneurons regenerated axons into the motor than the sensory nerve graft and 59% of motoneurons survived in the motor nerve-implanted group compared to 48% in the sensory nerve-implanted group. We demonstrated by real time PCR that levels of BDNF and GDNF mRNA were significantly higher in the motor than the sensory nerve five days after implantation into the spinal cord. This may account for the superiority of motor over sensory nerve in promoting motor axon regeneration and motoneuron survival. Lastly, we also showed that implanting two sensory nerves enhances motoneuron regeneration over implanting a single nerve.  相似文献   

10.
The inhibitory growth environment of myelin and extracellular matrix proteoglycans in the central nervous system may be overcome by elevating neuronal cAMP or degrading inhibitory proteoglycans with chondroitinase ABC (ChABC). In this study, we asked whether similar mechanisms operate in peripheral nerve regeneration where effective Wallerian degeneration removes myelin and extracellular proteoglycans slowly. We repaired transected common peroneal (CP) nerve in rats and either elevated cAMP in the axotomized neurons by subcutaneous rolipram, a specific inhibitor of phosphodiesterase IV, and/or promoted degradation of proteoglycans in the distal nerve stump by local ChABC administration. Rolipram treatment significantly increased the number of motoneurons that regenerated axons across the repair site at 1 and 2 weeks, and increased the number of sensory neurons that regenerated axons across the repair site at 2 weeks. Local application of ChABC had a similar effect to rolipram treatment in promoting motor axon regeneration, the effect being no greater when rolipram and ChABC were administered simultaneously. We conclude that blocking inhibitors of axon regeneration by elevating cAMP or degrading proteoglycans in the distal nerve stump promotes peripheral axon regeneration after surgical repair of a transected nerve. It is likely that elevated cAMP is sufficient to encourage axon outgrowth despite the inhibitory growth environment such that simultaneous enzymatic proteoglycan degradation does not promote more axon regeneration than either elevated cAMP or proteoglycan degradation alone.  相似文献   

11.
Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length,it still has some shortcomings,such as insufficient donors and secondary injury.Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects.However,the effects on extended nerve defects remain poorly understood.In this study,we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment(20 mm)sciatic nerve defects in adult rats.The results showed that treatment markedly promoted the recovery of motor and sensory functions.The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed.In addition,the regenerated sciatic nerve reconnected the motor endplate with the target muscle.Therefore,this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits.This provides a promising method for the clinical treatment of extended peripheral nerve injury.This study was approved by the Animal Ethics Committee of Capital Medical University,China(approval No.AEEI-2017-033)on March 21,2017.  相似文献   

12.
Peripheral nerve defects result in severe denervation presenting sensory and motor functional incapacitation. Currently, a satisfactory therapeutic treatment promoting the repair of injured nerves is not available. As shown in our previous study, acellular nerve xenografts (ANX) implanted with bone marrow stromal cells (BMSCs) replaced allografts and promoted nerve regeneration. Additionally, granulocyte‐colony stimulating factor (G‐CSF) has been proven to mobilize supplemental cells and enhance vascularization in the niche. Thus, the study aimed to explore whether the combination of G‐CSF and BMSC‐laden ANX exhibited a synergistic effect. Adult Sprague‐Dawley (SD) rats were randomly divided into five groups: ANX group, ANX combined with G‐CSF group, BMSCs‐laden ANX group, BMSCs‐laden ANX combined with G‐CSF group and autograft group. Electrophysiological parameters and weight ratios of tibialis anterior muscles were detected at 8 weeks post‐transplantation. The morphology of the regenerated nerves was assayed, and growth‐promoting factors present in the nerve grafts following G‐CSF administration or BMSCs seeding were also investigated. Nerve regeneration and functional rehabilitation induced by the combination therapy were significantly advanced, and the rehabilitation efficacy was comparable with autografting. Moreover, the expression of Schwann cell markers, neurotrophic factors and neovessel markers in the nerve grafts was substantially increased. In conclusion, G‐CSF administration and BMSCs transplantation synergistically promoted the regeneration of ANX‐bridged nerves, which offers a superior strategy to replace autografts in repairing peripheral nerve injuries.  相似文献   

13.
BACKGROUND:Artificial materials composed of acellular heterogeneous nerves can resolve donor shortage problems for the repair of peripheral nerve defects.However,it remains unclear whether artificial materials can overcome immunological rejection of heterogeneous nerve grafts and obtain similar effects as allogeneic nerve grafts.OBJECTIVE:To analyze regeneration and immunological rejection of defective sciatic nerves in rats through the use of acellular heterogeneous nerve grafts.DESIGN,TIME AND SETTING:A randomized,controlled study was performed at the Department of Anatomy,China Medical University and the Experimental Center,First Affiliated Hospital,China Medical University between January and December 2008.MATERIALS:TritonX-100 (Sigma,USA) and deoxycholate (Pierce,USA) were used.METHODS:Bilateral sciatic nerves were collected from adult rabbits and treated with TritonX-100 and sodium deoxycholate to prepare acellular sciatic nerves,which were used to bridge 1 -cm defective sciatic nerves in adult rats.MAIN OUTCOME MEASURES:The lymphocyte percentage in leukocytes was quantified following hemocyte staining.Neural regeneration and the recovery of motor end plates in the gastrocnemius muscle were observed under optical and electronic microscopy following toluidine blue staining,as well as acetylcholinesterase and succinate dehydrogenase histochemical staining.RESULTS:There was no significant difference in the lymphocyte percentage in leucocytes between transplanted and normal rats (P > 0.05).At 3 months after surgery,the rat toes on the operated side were separated and the rats could walk.In addition,the footplates exhibited an escape response when acupunctured.A large number of regenerated nerve fibers were observed in the transplant group,and acetylcholinesterase-positive motor end plates were visible in fibers of the gastrocnemius muscle.CONCLUSION:Acellular heterogeneous nerve transplants for the repair of defective sciatic nerves in rats promote neural regeneration without significant immunological rejection.  相似文献   

14.
A novel allograft paradigm was used to test whether adult mammalian central axons regenerate within a peripheral nerve environment containing intact sensory axons. Retinal ganglion cell axon regeneration was compared following anastomosis of dorsal root ganglia grafts or conventional peripheral nerve grafts to the adult rat optic nerve. Dorsal root ganglia grafts comprised intact sensory and degenerate motor axons, whereas conventional grafts comprised both degenerating sensory and motor axons. Retinal ganglion cell axons were traced after 2 months. Dorsal root ganglia survived with their axons persisting throughout the graft. Comparable numbers of retinal ganglion cells regenerated axons into both dorsal root ganglia (1053+/-223) and conventional grafts (1323+/-881; P>0.05). The results indicate that an intact sensory environment supports central axon regeneration.  相似文献   

15.
OBJECTIVE: In rats the available techniques for evaluation of sensory nerve conduction are limited. We report a new method of sensory nerve conduction of the plantar nerve using needle electrodes as the recording electrodes behind the medial malleolus and ring electrodes as the stimulating electrodes around the three middle toes. METHODS: We performed this sensory nerve conduction test in 25 rats during their growth over a 6 weeks' period and compared this method with the motor nerve conduction and H-reflex sensory nerve conduction of the tibial nerve in 10 rats, and with the motor and mixed nerve conductions of the tail nerve in 15 rats. RESULTS: There was a highly or moderately significant correlation between the body weight and sensory nerve conduction velocity (NCV) of the plantar nerve, mixed NCV and motor NCV of the tail nerve, indicating a growth-related increase in the NCV. The growth-related increase in the NCV was not observed in the motor and H-reflex sensory nerve conductions of the tibial nerves. CONCLUSIONS: This test is simple and reliable and can be used for the sensory nerve conduction test in rats.  相似文献   

16.
An in vivo preparation is presented to study the rate and time course of motor and sensory axonal regeneration. The cut ends of a transected sciatic nerve were inserted into each end of a 5-6 mm non-toxic and bioresorbable nerve guide tube to create a 4 mm nerve gap in adult mice. Subsequently, cell bodies in the ventral spinal cord and L3-L5 dorsal root ganglia that had regenerated axons across the gap were retrogradely labeled with horseradish peroxidase (HRP). The HRP was applied 3 mm distal to the nerve guide and was accessible only to axons that had regenerated through the nerve guide. Labeled cells were counted in 40 micron serial sections at 2, 4 and 6 weeks after initial nerve transection. The results indicate a significant increase in the number of labeled motor and sensory cell bodies over time. By 6 weeks after transection, approximately two thirds as many ventral horn motor cells and one third as many dorsal root ganglion sensory cells were labeled as in control non-transected animals. These data serve as a baseline to compare differential effects of additives to the nerve guide lumen in terms of sensory and motor neuron response.  相似文献   

17.
Introduction: This study evaluated whether Schwann cells (SCs) from different nerve sources transplanted into cold‐preserved acellular nerve grafts (CP‐ANGs) would improve functional regeneration compared with nerve isografts. Methods: SCs isolated and expanded from motor and sensory branches of rat femoral and sciatic nerves were seeded into 14mm CP‐ANGs. Growth factor expression, axonal regeneration, and functional recovery were evaluated in a 14‐mm rat sciatic injury model and compared with isografts. Results: At 14 days, motor or sensory‐derived SCs increased expression of growth factors in CP‐ANGs versus isografts. After 42 days, histomorphometric analysis found CP‐ANGs with SCs and isografts had similar numbers of regenerating nerve fibers. At 84 days, muscle force generation was similar for CP‐ANGs with SCs and isografts. SC source did not affect nerve fiber counts or muscle force generation. Conclusions: SCs transplanted into CP‐ANGs increase functional regeneration to isograft levels; however SC nerve source did not have an effect. Muscle Nerve 49 : 267–276, 2014  相似文献   

18.
End-to-side (ETS) nerve repair, in which the distal stump of a transected nerve is coapted to the side of an uninjured donor nerve, offers a technique for repair of peripheral nerve injuries where the proximal nerve stump is unavailable or a significant nerve gap exists. Details of animal models are explored including motor and sensory regeneration to further clarify the mechanism of collateral sprouting while eliminating false positive results from contaminating axons. Some experimental studies support the conclusion that sensory or motor reinnervation may be derived from collateral sprouting while others suggest that reinnervation requires an injury to the donor nerve. Clinical experience with ETS neurorrhaphy includes management of upper extremity nerve injury, facial reanimation, reconstruction following tumor ablation, and the prevention of neuroma formation. Our interpretation of the ETS literature suggests that sensory axons may sprout without deliberately attempting to injure them, while motor axons regenerate only in response to a deliberate injury. Experimental and clinical experience with ETS neurorrhaphy has rendered mixed results. Our interpretation of the literature suggests that the success of this technique is dependent upon axonal injury of motor and possibly sensory nerves. While continued clinical and laboratory experimentation with ETS nerve repair is warranted, it should not yet replace more established techniques of nerve repair.  相似文献   

19.
Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Static and moving two-point discriminations and Semmes-Weinstein Monofilaments were used to evaluate sensory recovery 6–12 months and 14–35 months after repair of digital nerves with muscle-in-vein in 7 cases. Both follow-ups were performed after clinical signs of progressing regeneration disappeared. In 4 of 7 cases, a further recovery of both two-point discriminations and in another case of only the static two-point discrimination of 1–3 mm could be found between the short-term and long-term follow-up examination. Moreover, a late recovery of both two-point discriminations was demonstrated in another case. Four of 7 cases showed a sensory improvement by one Semmes-Weinstein Monofilaments. This pilot study suggests that sensory recovery still takes place even when clinical signs of progressing regeneration disappear.  相似文献   

20.
The relative sensitivities of sensory, mixed nerve, and motor conduction studies in assessing ulnar neuropathy at the elbow have not yet been established. Using surface electrodes, we performed conduction studies across the elbow segment in 43 patients with symptoms referable to the ulnar nerve and 40 control subjects. Segmental slowing of motor conduction localized the lesion to the elbow in 14 of 21 patients (67%) with clear evidence of ulnar neuropathy on physical examination but only in 2 of 22 (9%) with subtle or no physical examination abnormalities. The diagnostic yield was increased by the finding of segmental slowing of sensory or mixed nerve conduction across the elbow to 86% and 68%, respectively, for each of the groups. We conclude that surface-recorded sensory and mixed nerve conduction studies appear to be more sensitive than motor studies in the electrodiagnosis of ulnar neuropathy at the elbow and are especially valuable in patients with subtle clinical involvement. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号