首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co‐segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene.  相似文献   

2.
Dominant mutations in the GJB2 gene encoding connexin 26 (Cx26) can cause non-syndromic hearing impairment alone or in association with palmoplantar keratoderma (PPK). We have identified the novel G224A (R75Q) mutation in the GJB2 gene in a four-generation family from Turkey with autosomal dominant inherited hearing impairment and PPK. The age of onset and progression of hearing loss were found to be variable among affected family members, but all of them had more severe impairment at higher hearing frequencies. Interestingly, the novel R75Q mutation affects the same amino acid residue as described recently in a small family (R75W) with profound prelingual hearing loss and PPK. However, the R75W mutation was also observed in a control individual without PPK and unknown hearing status. Therefore, the nature of the R75W mutation remains ambiguous. Our molecular findings provide further evidence for the importance of the conserved R75 in Cx26 for the physiological function of the inner ear and the epidermal cells of the skin.  相似文献   

3.
Prevalent connexin 26 gene (GJB2) mutations in Japanese   总被引:19,自引:0,他引:19  
The gene responsible for DNFB1 and DFNA3, connexin 26 (GJB2), was recently identified and more than 20 disease causing mutations have been reported so far. This paper presents mutation analysis for GJB2 in Japanese non-syndromic hearing loss patients compatible with recessive inheritance. It was confirmed that GJB2 mutations are an important cause of hearing loss in this population, with three mutations, 235delC, Y136X, and R143W, especially frequent. Of these three mutations, 235delC was most prevalent at 73%. Surprisingly, the 35delG mutation, which is the most common GJB2 mutation in white subjects, was not found in the present study. Our data indicated that specific combinations of GJB2 mutation exist in different populations.  相似文献   

4.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

5.
Mutations of the GJB2 gene, encoding Connexin 26, are the most common cause of hereditary congenital hearing loss in many countries, and account for up to 50% of cases of autosomal-recessive non-syndromic deafness. By contrast, only a few GJB2 mutations have been reported to cause an autosomal-dominant form of non-syndromic deafness. We report on a family from southern Italy in whom dominant, non-syndromic, post-lingual hearing loss is associated with a novel missense mutation in the GJB2 gene. Direct sequencing of the gene showed a heterozygous G-->A transition at nucleotide 535, resulting in an aspartic acid to asparagine amino acid substitution at codon 179 (D179N). This mutation occurred in the second extracellular domain (EC2), which would seem to be very important for connexon-connexon interaction.  相似文献   

6.
Fifty to eighty percent of autosomal recessive congenital severe to profound hearing impairment result from mutations in a single gene, GJB2, that encodes the protein connexin 26. One mutation of this gene, the 35delG allele, is particularly common in white populations. We report evidence that the high frequency of this allelic variant is the result of a founder effect rather than a mutational hot spot in GJB2, which was the prevailing hypothesis. Patients homozygous for the 35delG mutation and normal hearing controls originating from Belgium, the UK, and the USA were genotyped for different single nucleotide polymorphisms (SNPs). Four SNPs mapped in the immediate vicinity of GJB2, while two were positioned up to 76 kb from it. Significant differences between the genotypes of patients and controls for the five SNPs closest to GJB2 were found, with nearly complete association of one SNP allele with the 35delG mutation. For the most remote SNP, we could not detect any association. We conclude that the 35delG mutation is derived from a common, albeit ancient founder.


Keywords: connexin 26; GJB2; 35delG; founder effect  相似文献   

7.
Mutations in the Cx26 gene have been shown to cause autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNB1 locus on chromosome 13q12. Using direct sequencing, we screened the Cx26 coding region of affected and nonaffected members from seven ARNSHL families either linked to the DFNB1 locus or in which the ARNSHL phenotype cosegregated with markers from chromosome 13q12. Cx26 mutations were found in six of the seven families and included two previously described mutations (W24X and W77X) and two novel Cx26 mutations: a single base pair deletion of nucleotide 35 resulting in a frameshift and a C-to-T substitution at nucleotide 370 resulting in a premature stop codon (Q124X). We have developed and optimized allele-specific PCR primers for each of the four mutations to rapidly determine carrier and noncarrier status within families. We also have developed a single stranded conformational polymorphism (SSCP) assay which covers the entire Cx26 coding region. This assay can be used to screen individuals with nonsyndromic hearing loss for mutations in the CX26 gene. Hum Mutat 11:387–394, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Although more than 50% of recessive non-syndromic deafness is attributed to mutations in the connexin 26 (Cx26) gene, only a few reported families have shown dominant transmission of the trait. The W44C mutation was originally reported in two families from the same geographic region of France, which exhibited dominant non-syndromic hearing loss. In this report, we describe a third family with early-onset severe-to-profound non-syndromic hearing loss segregating with the W44C mutation. Our observation places W44C among recurrent mutations in the Cx26 gene and emphasizes the importance of screening for this as well as other Cx26 mutations in autosomal dominant families.  相似文献   

9.
Mutations in the GJB2 gene, which encodes the gap junction (GJ) protein connexin26 (Cx26), are the most common cause of inherited non‐syndromic hearing loss (NSHL). We identified two missense mutations, p.D46E (c.138T>G) and p.T86R (c.257C>G), of GJB2 in Korean HL families. The novel p.D46E mutation exhibited autosomal dominant inheritance, while the p.T86R mutation, which is exclusively found in Asians, segregated with an autosomal recessive pattern. Thus, we sought to elucidate the pathogenic nature of such different inherited patterns of HL. We studied protein localization and gap junction functions in cells transfected with wild‐type or mutant Cx26 tagged with fluorescent proteins, which allowed visual confirmation of homozygous or heterozygous mutant GJs. The Cx26‐D46E mutant was targeted to the plasma membrane, but this mutant protein failed to transfer Ca2+ or propidium iodide intercellularly, suggesting disruption of both ionic and biochemical coupling. Heterozygous GJs also showed dysfunctional intercellular couplings and hemichannel opening, confirming the dominant‐negative nature of the p.D46E mutation. The Cx26‐T86R mutant protein did not form GJs, since the mutated protein was confined in the cytoplasm and not transported to the cell membrane. When Cx26‐T86R was co‐expressed with Cx26‐WT, ionic and biochemical coupling was normal, consistent with the recessive nature of the mutation. These studies revealed distinct pathogenic mechanisms of two GJB2 mutations identified in Korean families. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Hearing impairment is the most common sensory disorder worldwide. In a recent study, the authors have shown that a heterozygous missense mutation, p.R184Q, in the connexin 26 (Cx26) is causally related to hearing loss. However, the functional change in the Cx26R184Q mutant remains unknown. This study compared the intracellular distribution and assembly of mutant Cx26R184Q with that of the wild-type (WT) Cx26 and Cx30WT in tet-on HeLa cells and the effect that the mutant protein had on those cells. Fluorescent localization assay of WT Cx26 showed the typical punctuate pattern of gap junction channel between neighboring expression cells. Conversely, the p.R184Q missense mutation resulted in accumulation of the Cx26 mutant protein in the Golgi apparatus rather than in the cytoplasmic membrane. Cx26R184Q coexpressed with either Cx26WT or Cx30WT showed perinuclear localization by bidirectional tet-on expression system, suggesting the impairment of the ability of both WT proteins to intracellular trafficking and targeting to the plasma membrane. Therefore, we proposed that Cx26R184Q has a dominant-negative effect on the function of WT Cx26 and Cx30.  相似文献   

11.
Congenital sensorineural hearing loss affects approximately 1/1,000 live births. Mutations in the gene encoding connexin26 (GJB2) have been described as a major cause of genetic nonsyndromic hearing impairment. Additionally, another gap junction gene, connexin30 (GJB6), was found to be responsible for hereditary hearing loss. We have studied 134 patients with severe to profound hearing loss or deafness and 13 patients with mild to moderate nonsyndromic sensorineural hearing loss in order to evaluate the prevalence of connexin26 and connexin30 mutations in Germany. Mutations in the connexin26 gene were found in 30 patients (22%) with profound to severe hearing impairment whereas only one novel single nucleotide polymorphism (396G-->A) in the connexin30 gene was detected. Among the 13 patients with mild to moderate hearing loss neither mutations in the connexin26 nor in the connexin30 gene could be detected. These results demonstrate that mutations in the connexin26 gene are also a frequent cause of hereditary non-syndromic hearing loss in Germany. Therefore a screening of mutations in the connexin26 gene should be performed in every case of non-syndromic hearing loss of unknown origin.  相似文献   

12.
Mutations in the GJB2 gene are a major cause of non-syndromic recessive hearing loss in many countries. In a significant fraction of patients, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity are identified. This paper reports a novel GJB2 mutation, -3438C-->T, found in the basal promoter of the gene, in trans with V84M, in a patient with profound hearing impairment. This novel mutation can abolish the basal promoter activity of GJB2. These results highlight the importance of extending the mutational screening to regions outside the coding region of GJB2.  相似文献   

13.
In a study of 530 individuals with non-syndromic, sensorineural hearing loss, we identified 18 mutations at connexin 26 (Cx26), four of which are novel (-23G>T, I33T, 377_383dupTCCGCAT, W172R) and the remaining 14 (ivs1+1G>A, M1V, 35delG, W24X, I35S, V37I, R75W, W77X, 312del14, E120del, Q124X, Y136X, R143W, R184P) being mutations previously described. To gain insight into functional consequences of these mutations, cellular localization of the mutant proteins and their ability to permit lucifer yellow transfer between cells was studied in seven of them (W24X, I33T, I35S, R75W, E120del, W172R and R184P). I35S and R184P showed impaired trafficking of the protein to the plasma membrane. I33T, R75W, E120del and W172R showed predominantly membrane localization but did not form functional gap junction channels. Surprisingly, W24X, a protein-truncating mutation, apparently permits formation of a full-length protein, perhaps due to a stop codon read-through mechanism. These results provide further evidence that Cx26 mutations affect gap junction activity by mis-regulation at multiple levels.  相似文献   

14.
Ichthyosis follicularis, a distinct cutaneous entity reported in combination with atrichia, and photophobia has been associated with mutations in MBTPS2. We sought the genetic cause of a novel syndrome of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma in two families. We performed whole exome sequencing on three patients from two families. The pathogenicity and consequences of mutations were studied in the Xenopus oocyte expression system and by molecular modeling analysis. Compound heterozygous mutations in the GJB2 gene were discovered: a pathogenic c.526A>G; p.Asn176Asp, and a common frameshift mutation, c.35delG; p.Gly12Valfs*2. The p.Asn176Asp missense mutation was demonstrated to significantly reduce the cell–cell gap junction channel activity and increase the nonjunctional hemichannel activity in the Xenopus oocyte expression system. Molecular modeling analyses of the mutant Cx26 protein revealed significant changes in the structural characteristics and electrostatic potential of the Cx26, either in hemichannel or gap junction conformation. Thus, association of a new syndrome of an autosomal recessive disorder of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma with mutations in GJB2, expands the phenotypic spectrum of the GJB2‐associated disorders. The findings attest to the complexity of the clinical consequences of different mutations in GJB2.  相似文献   

15.
The Pakistani population has become an important resource for research on autosomal recessive non-syndromic hearing impairment (ARNSHI) due to the availability of large extended and highly consanguineous pedigrees. Here is presented the first report on the prevalence of gap junction beta-2 (GJB2) variants in Pakistan. One hundred and ninety-six unrelated Pakistani families with ARNSHI were recruited for a study on the genetics of NSHI. DNA sequencing of the GJB2 coding region was done on two affected individuals per family. Evolutionary conservation and predicted effect on the protein product were studied in order to hypothesize whether or not a variant was potentially deleterious. Homozygous putatively functional GJB2 variants were identified in 6.1% of families. None of the putatively functional GJB2 variants were observed in the compound heterozygous state. The six putatively causative variants noted were 231G > A(W77X), 71G > A(W24X), 167delT, 95G > A(R32H), 358-360delGAG(delE120), and 269T > C(L90P), with 231G > A(W77X) and 71G > A(W24X) being the most common. In addition, five benign polymorphisms, 380G > A(R127H), 457G > A(V153I), 493C > T(R165W), 79G > A(V27I), and 341 A > G(E114G), were identified within this population. In a few individuals, benign polymorphisms were observed to occur on the same haplotype, namely [457G > A(V153I); 493C > T(R165W)] and [79G > A(V27I); 341 A > G(E114G)]. The spectrum of GJB2 sequence variants in Pakistan may reflect shared origins of hearing impairment alleles within the Indian subcontinent. The high degree of consanguinity within Pakistan may have maintained the GJB2 prevalence at a much lower rate than within India and other populations.  相似文献   

16.
Mutations in the GJB2 gene encoding the gap-junction protein connexin 26 have been identified in many patients with childhood hearing impairment (HI). One single mutation, c.35delG, accounts for the majority of mutations in Caucasian patients with HI. In the present study we screened 500 healthy control individuals and a group of patients with HI from Northeastern Hungary for GJB2 mutations. The patients' group consisted of 102 familial from 28 families and 92 non-familial cases. The most common mutation in the Hungarian population is the c.35delG, followed by the c.71G>A (p.W24X) mutation. 34.3% of the patients in the familial group were homozygous, and 17.6% heterozygous for 35delG. In the non-familial group the respective values were 37% and 18% (allele frequency: 46.2%). In the general population an allele frequency of 2.4% was determined. Several patients were identified with additional, already described or new GJB2 mutations, mostly in heterozygous state. The mutation c.380G>A (p.R127H) was formerly found only in heterozygous state and its disease relation was controversial. We demonstrated the presence of this mutation in a family with three homozygous patients and 4 heterozygous unaffected family members, a clear indication of recessively inherited HI. Furthermore, we provided evidence for the pathogenic role of two new mutations, c.51C>A (p.S17Y) and c.177G>T (p.G59V), detected in the present study. In the latter case the pattern of inheritance might be dominant. Our results confirm the importance of GJB2 mutations in the Hungarian population displaying mutation frequencies that are comparable with those in the Mediterranean area.  相似文献   

17.

Background

Espins are actin bundling proteins present in hair cell stereocilia. A recessive mutation in the espin gene (Espn) has been detected in the jerker mouse and causes deafness, vestibular dysfunction, and hair cell degeneration. More recently mutations in the human espin gene (ESPN) have been described in two families affected by autosomal recessive hearing loss and vestibular areflexia.

Objective

To report the identification of four additional ESPN mutations (S719R, D744N, R774Q, and delK848) in patients affected by autosomal dominant hearing loss without vestibular involvement.

Results

To determine whether the mutated ESPN alleles affected the biological activity of the corresponding espin proteins in vivo, their ability to target and elongate the parallel actin bundles of brush border microvilli was investigated in transfected LLC‐PK1‐CL4 epithelial cells. For three mutated alleles clear abnormalities in microvillar length or distribution were obtained.

Conclusions

The results further strengthen the causative role of the espin gene in non‐syndromic hearing loss and add new insights into espin structure and function.  相似文献   

18.
We report a missense mutation in the connexin 26 gene (GJB2) in a family with an autosomal dominant syndrome of hearing loss and hyperkeratosis. The affected family members have high frequency, slowly progressive, bilateral, sensorineural hearing loss and palmoplantar hyperkeratosis. The mutation causes an amino acid substitution (G59A), which may disrupt a reverse turn in the first extracellular loop of connexin 26. Connexin 26 mutations have been reported in syndromes of deafness and palmoplantar keratoderma. These data provide additional evidence for the role of connexin 26 in syndromes of this type.  相似文献   

19.
Hereditary hearing loss (HHL) is one of the most common congenital disorders and is highly heterogeneous. Mutations in the connexin 26 (CX26) gene (GJB2) account for about 20% of all cases of childhood deafness, and approach 50% in documented recessive cases of non-syndromic hearing loss. In addition, a single mitochondrial DNA mutation, mt1555A>G, in the 12S rRNA gene (MTRNR1), is associated with familial cases of progressive deafness. Effective screening of populations for HHL necessitates rapid assessment of several of these potential mutation sites. Pyrosequencing links a DNA synthesis protocol for determining sequence to an enzyme cascade that generates light whenever pyrophosphate is released during primer strand elongation. We assessed the ability of Pyrosequencing to detect common mutations causing HHL. Detection of the most common CX26 mutations in individuals of Caucasian (35delG), Ashkenazi (167delT), and Asian (235delC, V37I) descent was confirmed by Pyrosequencing. A total of 41 different mutations in the CX26 gene and the mitochondrial mt1555A>G mutation were confirmed. Genotyping of up to six different adjacent mutations was achieved, including simultaneous detection of 35delG and 167delT. Accurate and reproducible results were achieved taking advantage of assay flexibility and experimental conditions easily optimized for a high degree of standardization and cost-effectiveness. The standardized sample preparation steps, including target amplification by PCR and preparation of single-stranded template combined with automated sequence reaction and automated genotype scoring, positions this approach as a potentially high throughput platform for SNP/mutation genotyping in a clinical laboratory setting. .  相似文献   

20.
目的 检测常染色体隐性遗传耳聋患者GJB2基因突变情况,并分析其与临床表型的关系.方法 收集42例耳聋患者的临床资料,对患者进行纯音电测听检查、声阻抗检测、脑干听觉诱发电位检查;应用聚合酶链反应和直接测序法,对患者和9例患者的父母以及105名正常对照进行GJB2基因检测.结果 两例患者具有235delC纯合性突变,其中1例系感音神经性耳聋,另1例系混合性耳聋;1对混合性耳聋的双生子患者同时携带176de116bp杂合性突变.109G→A、79G→A和341A→G的纯合及杂合突变在患者及正常对照中均有出现.结论 235delC纯合性突变为致病突变,该突变可出现在混合性耳聋中;双生子患者的176de116bp杂合性突变考虑为宫内受到外界环境影响所致,或者由其它基因突变所致.109G→A、79G→A和341A→G考虑为是该基因的多态性,其临床意义仍需进一步探索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号