共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer's disease 总被引:4,自引:0,他引:4
We previously reported aberrant stress responses and impaired glucose tolerance in transgenic Tg2576 mice, a model of Alzheimer's disease (AD). Here we report that by 8 months of age, Tg2576 mice had lower basal serum insulin concentrations and exhibited a delayed insulin-induced reduction in blood glucose levels relative to wild-type mice. However, the basal levels of blood glucose and percent glycosylated hemoglobin (%HbA1c) were similar between the two groups of mice. While the basal levels of serum corticosterone were similar between Tg2576 and wild-type mice, an overnight fasting caused a greater rise in serum corticosterone levels and an excessive reduction in serum insulin concentrations in the transgenics. At 9 months of age, we began administering Tg2576 mice rosiglitazone, an agonist of peroxisome proliferator-activated receptor-gamma that increases peripheral insulin sensitivity, and after 6 weeks of administration the Tg2576 mice had the same response to insulin and increase in serum corticosterone levels after an overnight fast as did wild-type mice. By 13 months of age, untreated Tg2576 mice had become hyperinsulinemic, in contrast to Tg2576 mice administered rosiglitazone for 4 months where the serum insulin concentrations were maintained at levels observed in wild-type mice. These results provide evidence for a relationship between insulin resistance, impaired regulation of insulin and glucose levels, and aberrant stress responses in Tg2576 mice. 相似文献
2.
Aspects of spatial memory and behavioral disinhibition in Tg2576 transgenic mice as a model of Alzheimer's disease 总被引:3,自引:0,他引:3
Ognibene E Middei S Daniele S Adriani W Ghirardi O Caprioli A Laviola G 《Behavioural brain research》2005,156(2):225-232
Transgenic mouse models of Alzheimer's disease (AD) have been recently advanced. Tg2576 mice have been shown to develop progressive beta-amyloid (Abeta) neuritic plaques and exhibit impairment of cognitive function. The aim of this study was a better characterization of different aspects of spatial memory performance of transgenic mice, observed at a time when levels of soluble Abeta are elevated and Abeta neuritc plaques start to appear. A general elevation of basal locomotory activity in the home cage was found in Tg2576 mice, which also exhibited an impairment of spontaneous alternation in the Y-maze test. Tg2576 mice were not flexible upon changes in the schedule and failed to codify spatially the testing environment. Consistently, a deficit of spatial memory was also observed when mice were assessed for levels of reactivity to spatial change in the modified open-field test with objects. Compared to controls, Tg2576 mice also exhibited an increased number of explorative approaches to the different objects, and failed to discriminate the displacement of the object. Consistently with the hypothesis of increased disinhibition, a differential behavioural response to the plus-maze paradigm was exhibited by Tg2576 mice. Results clearly indicate that Tg2576 mice are characterized by a number of specific behavioral cognitive alterations, compatible with Alzheimer's disease (AD), which make them a suitable animal model for testing of novel anti-AD drugs. 相似文献
3.
Horgan J Miguel-Hidalgo JJ Thrasher M Bissette G 《Journal of Alzheimer's disease : JAD》2007,12(2):115-127
Neuropeptides corticotropin releasing factor (CRF) and somatostatin (SRIF) are substantially decreased in cortical regions of Alzheimer's disease (AD) post-mortem brain tissue. The accumulation of amyloid-beta (Abeta) in AD brain has been postulated to be neurotoxic. Using male Tg2576 mice transgenic over-expressing amyloid-beta protein precursor (APP), we examined brain concentrations of CRF and SRIF at 12, 18 and 24 months. Mice were evaluated for locomotor activity and spatial memory. The APP mice had continued increased locomotor activity from 6 months of age compared to controls. Spatial memory was impaired beginning at 12 months in the APP mice relative to controls. APP mice at 24 months had a significantly higher number of amyloid plaques when compared to the 12 and 18 month time points. Brain concentrations of SRIF and CRF were significantly altered in a number of cortical and sub-cortical brain regions relative to controls, but in most regions were increased rather than decreased as in clinical AD. This data shows that although the insertion of the APP gene does cause age dependent increase in plaque load, it does not cause a change in regional neuropeptides consistent with AD, suggesting that neuropeptide changes in AD are not solely due to Abeta load. 相似文献
4.
Takashi Mori Naoki Koyama Gary W. Arendash Yuko Horikoshi‐Sakuraba Jun Tan Terrence Town 《Glia》2010,58(3):300-314
Alzheimer's disease (AD) is the most common progressive dementia and is pathologically characterized by brain deposition of amyloid‐β (Aβ) peptide as senile plaques. Inflammatory and immune response pathways are chronically activated in AD patient brains at low levels, and likely play a role in disease progression. Like microglia, activated astrocytes produce numerous acute‐phase reactants and proinflammatory molecules in the AD brain. One such molecule, S100B, is highly expressed by reactive astrocytes in close vicinity of β‐amyloid deposits. We have previously shown that augmented and prolonged activation of astrocytes has a detrimental impact on neuronal survival. Furthermore, we have implicated astrocyte‐derived S100B as a candidate molecule responsible for this deleterious effect. To evaluate a putative relationship between S100B and AD pathogenesis, we crossed transgenic mice overexpressing human S100B (TghuS100B mice) with the Tg2576 mouse model of AD, and examined AD‐like pathology. Brain parenchymal and cerebral vascular β‐amyloid deposits and Aβ levels were increased in bigenic Tg2576‐huS100B mice. These effects were associated with increased cleavage of the β‐C‐terminal fragment of amyloid precursor protein (APP), elevation of the N‐terminal APP cleavage product (soluble APPβ), and activation of β‐site APP cleaving enzyme 1. In addition, double transgenic mice showed augmented reactive astrocytosis and microgliosis, high levels of S100 expression, and increased levels of proinflammatory cytokines as early as 7–9 months of age. These results provide evidence that (over)‐expression of S100B acts to accelerate AD‐like pathology, and suggest that inhibiting astrocytic activation by blocking S100B biosynthesis may be a promising therapeutic strategy to delay AD progression. © 2009 Wiley‐Liss, Inc. 相似文献
5.
Margrit Klingner Jenny Apelt Ashok Kumar Dietlind Sorger Osama Sabri J?rg Steinbach Matthias Scheunemann Reinhard Schliebs 《International journal of developmental neuroscience》2003,21(7):357-369
Cholinergic deficits in Alzheimer's disease are accompanied by a number of alterations in other transmitter systems including glutamate, noradrenaline and serotonin, suggesting the involvement also of other neurotransmitter systems in the pathogenesis of the disease. To address the question whether beta-amyloid may contribute to these deficits, brain tissue from transgenic Tg2576 mice with Alzheimer plaque pathology at ages of 5 (still no significant plaque load) and 17 months (moderate to high cortical beta-amyloid plaque load) were examined for a number of cholinergic and non-cholinergic markers. Transgenic mice with no significant plaque load demonstrated reduced hemicholinium-3 (HCh-3) binding to choline uptake sites in anterior brain regions as compared to non-transgenic littermates, while in aged transgenic mice with high number of plaque deposits decreased HCh-3 binding levels were accompanied by increased vesicular acetylcholine transporter binding in selected cortical brain regions. In aged transgenic mice GABA(A), NMDA, AMPA, kainate, and beta-adrenergic as well 5-HT(1A)- and 5-HT(2A)-receptor binding levels were hardly affected, whereas alpha(1)- and alpha(2)-adrenoceptor binding was increased in selected cerebral cortical regions as compared to non-transgenic littermates. The development of changes in both cholinergic and non-cholinergic markers in transgenic Tg2576 mouse brain already before the onset of progressive plaque deposition provides in vivo evidence of a modulatory role of soluble beta-amyloid on cortical neurotransmission and may be referred to the deficits in learning and memory observed in these mice also before significant plaque load. 相似文献
6.
The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease 总被引:1,自引:0,他引:1
Riddell DR Zhou H Comery TA Kouranova E Lo CF Warwick HK Ring RH Kirksey Y Aschmies S Xu J Kubek K Hirst WD Gonzales C Chen Y Murphy E Leonard S Vasylyev D Oganesian A Martone RL Pangalos MN Reinhart PH Jacobsen JS 《Molecular and cellular neurosciences》2007,34(4):621-628
7.
There are considerable data on synaptic dysfunction in Alzheimer's disease (AD). However, the precise molecular basis for synaptotoxicity in AD is not known. We tested the hypothesis that amyloid beta (Abeta), as produced in Tg2576 mice overexpressing a mutant form of amyloid precursor protein, leads to changes in SNAP-25, a molecule required for Ca-sensitive neurotransmitter vesicle exocytosis. Anti-Abeta antibody was injected into the third ventricle (icv) of 10-month-old Tg2576 mice, preceding formation of plaques. Immunodensity of glial fibrillary acidic protein (GFAP) and SNAP-25 were quantitated in the hippocampus 1 month later. SNAP-25 was reduced by 96% in the inner molecular layer (SMi) of dentate gyrus, by 95% in the hilum, and by 75-76% in stratum lucidum (SL), stratum oriens (SO), and stratum radiatum (SR) of CA1-CA3 of the Tg2576 mice. GFAP was increased by more than 50-fold, specifically within the neuropil of CA1-CA3, and by twofold in portions of fimbria. One injection of 10 microg of anti-Abeta antibody into the third ventricle at 10 months completely prevented or restored changes in GFAP at 11 months of age. The restoration of SNAP-25 by anti-Abeta antibody compared with wild type was 69% in CA1-SO, 93% in CA1-SR, 85% in CA3-SL, 77% in SMi, and 60-73% in hilum. In addition, whereas control injections of saline or IgG produced greatly increased GFAP diffusely in the hippocampus of Tg2576 animals, there was no increase in GFAP after anti-Abeta injection, suggesting a synergistic interaction of nonspecific trauma with Abeta in the transgenic mice. This is the first report of depleted SNAP-25 immunoreactivity in Tg models and the first report of icv injection of anti-Abeta antibody in this model of AD. The largest reductions of the SNAP-25 are in hilum and SMi, so either reduction in the septal-hilum-SMi path is primary or reduction in this path begins at an earlier age than in CA3-CA1 fields. A single icv injection of anti-Abeta antibody is potent in reversing Abeta effects and, therefore, represents a suitable model for investigating early Abeta toxicity. In addition, intrathecal or icv antibody may be an efficient means of treating or preventing toxicity in AD, particularly under conditions of immune hyporesponsivity. 相似文献
8.
Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease 总被引:1,自引:0,他引:1
Carla M. Yuede Scott D. Zimmerman Hongxin Dong Matthew J. Kling Adam W. Bero David M. Holtzman Benjamin F. Timson John G. Csernansky 《Neurobiology of disease》2009,35(3):426-432
We examined the effects of voluntary (16 weeks of wheel running) and forced (16 weeks of treadmill running) exercise on memory-related behavior, hippocampal volume, thioflavine-stained plaque number, and soluble Aβ levels in brain tissue in the Tg2576 mouse model of Alzheimer's disease (AD). Voluntary running animals spent more time investigating a novel object in a recognition memory paradigm than all other groups. Also, voluntary running animals showed fewer thioflavine S stained plaques than all other groups, whereas forced running animals showed an intermediate number of plaques between voluntary running and sedentary animals. Both voluntary and forced running animals had larger hippocampal volumes than sedentary animals. However, levels of soluble Aβ-40 or Aβ-42 did not significantly differ among groups. The results indicate that voluntary exercise may be superior to forced exercise for reducing certain aspects of AD-like deficits — i.e., plaque deposition and memory impairment, in a mouse model of AD. 相似文献
9.
Tina Heiland Ulrike Zeitschel Maja A. Puchades Peer-Hendrik Kuhn Stefan F. Lichtenthaler Jan G. Bjaalie Maike Hartlage-Rübsamen Steffen Roßner Corinna Höfling 《Glia》2019,67(2):393-403
Transgenic Tg2576 mice expressing human amyloid precursor protein (hAPP) with the Swedish mutation are among the most frequently used animal models to study the amyloid pathology related to Alzheimer's disease (AD). The transgene expression in this model is considered to be neuron-specific. Using a novel hAPP-specific antibody in combination with cell type-specific markers for double immunofluorescent labelings and laser scanning microscopy, we here report that—in addition to neurons throughout the brain—astrocytes in the corpus callosum and to a lesser extent in neocortex express hAPP. This astrocytic hAPP expression is already detectable in young Tg2576 mice before the onset of amyloid pathology and still present in aged Tg2576 mice with robust amyloid pathology in neocortex, hippocampus, and corpus callosum. Surprisingly, hAPP immunoreactivity in cortex is restricted to resting astrocytes distant from amyloid plaques but absent from reactive astrocytes in close proximity to amyloid plaques. In contrast, neither microglial cells nor oligodendrocytes of young or aged Tg2576 mice display hAPP labeling. The astrocytic expression of hAPP is substantiated by the analyses of hAPP mRNA and protein expression in primary cultures derived from Tg2576 offspring. We conclude that astrocytes, in particular in corpus callosum, may contribute to amyloid pathology in Tg2576 mice and thus mimic this aspect of AD pathology. 相似文献
10.
To address the question of whether beta-amyloid peptides also affect cholinergic neurotransmission in vivo, brain tissue from transgenic Tg2576 mice with Alzheimer plaque pathology at ages ranging from 7 to 24 months were examined by immuno- and histochemical staining for choline acetyltransferase (ChAT) and acetycholinesterase (AChE), by assaying cholinergic enzyme activities and high-affinity choline uptake as well muscarinic and nicotinic cholinergic receptor binding levels by quantitative autoradiography. Cortical and hippocampal activities of AChE and ChAT were not different between transgenic mice and non-transgenic littermates regardless of the postnatal ages examined. However, high-affinity choline uptake was reduced in the hippocampus of 21-month-old transgenic mice. In brains of 8-month-old transgenic mice which do not yet demonstrate cortical beta-amyloids, reduced binding levels of cortical and hippocampal M1-muscarinic cholinergic receptors were observed, which were still reduced in 17-month-old transgenic mouse brains with high plaque load as compared to non-transgenic littermates. M2-muscarinic cholinergic receptor binding was hardly affected in brains from 8-month-old transgenic mice, but in 17-month-old transgenic mice reduced cortical and hippocampal binding levels were observed as compared to non-transgenic controls. Decreased cortical nicotinic cholinergic receptor binding was detected in 17-month-old transgenic mice. The development of changes in cholinergic synaptic markers in transgenic Tg2576 mouse brain before the onset of progressive plaque deposition provides in vivo evidence of a modulatory role of soluble beta-amyloid on cholinergic neurotransmission and may be referred to the deficits in learning and memory also observed in these mice before significant plaque load. 相似文献
11.
LaRue B Hogg E Sagare A Jovanovic S Maness L Maurer C Deane R Zlokovic BV 《Journal of neuroscience methods》2004,138(1-2):233-242
The role of transport exchanges of neuroactive solutes across the blood-brain barrier (BBB) is increasingly recognized. To take full advantage of genetically altered mouse models of neurodegenerative disorders for BBB transport studies, we adapted a brain perfusion technique to the mouse. During a carotid brain perfusion with a medium containing sheep red blood cells and mock plasma, the physiological parameters in the arterial inflow, regional cerebral blood flow (14C-iodoantipyrine autoradiography), ultrastructural integrity of the tissue, barrier to lanthanum, brain water content, energy metabolites and lactate levels remain unchanged. Amyloid-beta peptides (Abeta) were iodinated by lactoperoxidase method. Non-oxidized mono-iodinated Abeta monomers were separated by HPLC (as confirmed by MALDI-TOF spectrometry) and used in transport measurements. Transport of intact 125I-Abeta40 across the BBB was time- and concentration-dependent in contrast to negligible 14C-inulin uptake. In 5-6 months old Alzheimer's Tg2576 mice, Abeta40 BBB transport was increased by >eight-fold compared to age-matched littermate controls, and was mediated via the receptor for advanced glycation endproducts. We conclude the present arterial brain perfusion method provides strictly controlled environment in cerebral microcirculation suitable for examining transport of rapidly and slowly penetrating molecules across the BBB in normal and transgenic mice. 相似文献
12.
Cuadrado-Tejedor M Ricobaraza A Frechilla D Franco R Pérez-Mediavilla A Garcia-Osta A 《Journal of Alzheimer's disease : JAD》2012,28(3):567-578
The etiology of the more common (sporadic) forms of Alzheimer's disease (AD) remains unknown, although age is the most important risk factor. Nevertheless, interactions between environmental risk factors and genetic background may also influence the onset and progression of sporadic AD. Chronic stress, associated with altered memory and other neurological processes, is thought to influence the pathogenesis of AD. Hence, we evaluated the effect of unpredictable and consecutive chronic mild stressors on the onset of an AD-related pathology in the Tg2576 mouse line that overexpresses the human amyloid-β protein precursor with the Swedish mutation (hAβPP(Swe)). Two months after exposure to chronic mild stress, 4 month-old animals that normally display no pathological features of AD, not only expressed pathological markers but also experienced cognitive dysfunction in the Morris water maze test. These findings suggest that chronic mild stress accelerates the onset of cognitive impairment and produces an increase in hippocampal amyloid-β and phospho-tau levels on a background of AD susceptibility. 相似文献
13.
14.
15.
In a previous study,we found that long non-coding genes in Alzheimer’s disease(AD)are a result of endogenous gene disorders caused by the recruitment of microRNA(miRNA)and mRNA,and that miR-200a-3p and other representative miRNAs can mediate cognitive impairment and thus serve as new biomarkers for AD.In this study,we investigated the abnormal expression of miRNA and mRNA and the pathogenesis of AD at the epigenetic level.To this aim,we performed RNA sequencing and an integrative analysis of the cerebral cortex of the widely used amyloid precursor protein and presenilin-1 double transgenic mouse model of AD.Overall,129 mRNAs and 68 miRNAs were aberrantly expressed.Among these,eight down-regulated miRNAs and seven up-regulated miRNAs appeared as promising noninvasive biomarkers and therapeutic targets.The main enriched signaling pathways involved mitogen-activated kinase protein,phosphatidylinositol 3-kinase-protein kinase B,mechanistic target of rapamycin kinase,forkhead box O,and autophagy.An miRNA-mRNA network between dysregulated miRNAs and corresponding target genes connected with AD progression was also constructed.These miRNAs and mRNAs are potential biomarkers and therapeutic targets for new treatment strategies,early diagnosis,and prevention of AD.The present results provide a novel perspective on the role of miRNAs and mRNAs in AD.This study was approved by the Experimental Animal Care and Use Committee of Institute of Medicinal Biotechnology of Beijing,China(approval No.IMB-201909-D6)on September 6,2019. 相似文献
16.
The triple transgenic mouse (3xTgAD), harboring human APPSwe, PS1M146V and TauP301L genes, develops age-dependent forebrain intraneuronal Aβ and tau as well as extraneuronal plaques. We evaluated brainstem AD-like pathology using 6E10, AT8, and Alz50 antibodies and unbiased stereology in young and old 3xTgAD mice. Intraneuronal Aβ occurred in the tectum, periaqueductal gray, substantia nigra, red nucleus, tegmentum and mesencephalic V nucleus at all ages. Aβ-positive neuron numbers significantly decreased in the superior colliculus and substantia nigra while AT8-positive superior colliculus, red nucleus, principal sensory V, vestibular nuclei, and tegmental neurons significantly increased between 2 and 12 months. Alz50-positive neuron numbers increased only in the inferior colliculus between these ages. Dual labeling revealed a few Aβ- and tau-positive neurons. Plaques occurred only in the pons of female 3xTgAD mice starting at 9 months. 3xTgAD mice provide a platform to define in vivo mechanisms of Aβ and tau brainstem pathology. 相似文献
17.
Zhuo JM Prakasam A Murray ME Zhang HY Baxter MG Sambamurti K Nicolle MM 《Current Alzheimer research》2008,5(4):385-391
The medial temporal lobe-dependent memory loss associated with Alzheimer's disease (AD) is often accompanied by a loss of prefrontal cortex-dependent cognitive domains that fall under the broad category of executive function. In this study, we examined the relationship between one type of prefrontal-dependent executive function, discrimination reversal-learning, and levels of the amyloid beta protein (Abeta) of 40 and 42 residues in a transgenic mouse model (Tg2576) of the over-expression of the familial AD mutant form of the amyloid precursor protein (APPsw). Tg2576 and their non-transgenic (NTg) littermates were assessed at 3 and 6 months of age when there is little to no amyloid plaque deposition. After reversal-learning assessment, Abeta40 and Abeta42 were quantified in the prefrontal cortex and hippocampus. Tg2576 mice were impaired in reversal-learning at 6 but not 3 months of age when compared to the NTg group. Coincidently, there was a corresponding approximately 3-fold increase of Abeta42 levels in the prefrontal cortex of 6- compared to 3-month-old Tg2576 mice. In addition, the prefrontal cortex contained higher levels of Abeta42 compared to the hippocampus at both 3 and 6 months of age, regardless of genotype, indicating a high vulnerability of this brain region to Abeta42 accumulation. These data suggest that the early emergence of reversal-learning deficits in the Tg2576 mouse may be due to the localized increase of Abeta42 in the prefrontal cortex. 相似文献
18.
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease.The therapeutic effect of current pharmacotherapies is unsatisfactory,and some treatments cause severe side effects.The meningeal lymphatic vessels might be a new route for amyloid-β clearance.This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First,human lymphatic endothelial cells were treated with 100 ng/m L recombinant human vascular endothelial growth factor-C(rh VEGF-C) protein.Light microscopy verified that rh VEGF-C,a specific ligand for vascular endothelial growth factor receptor-3(VEGFR-3),significantly promoted tube formation of human lymphatic endothelial cells in vitro.In an in vivo study,200 μg/m L rh VEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice,once every 2 days,four times in total.Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice.One week after rh VEGF-C administration,enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain.The Morris water maze test demonstrated that spatial cognition was restored.These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice,suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease. 相似文献
19.
20.
Olfactory dysfunction is among the signs of Alzheimer's disease (AD) and cognitive impairment. It has been demonstrated Aβ was associated with olfactory impairment observed in both transgenic mice and in AD patients. In this study, we evaluated amyloid deposition in the olfactory circuit of APP/PS1 transgenic mouse model of AD, which showed olfactory dysfunction in olfactory behavior tests. We found amyloid depositions were widely distributed in the whole olfactory circuit. Moreover, we think these amyloid depositions contribute to neuronal atrophy, dendritic abnormalities, synapse loss and axonal degeneration. Therefore, there was a correlation between olfactory deficits and amyloid deposition. Our findings provide initial insights into the pathological basis of AD‐related olfactory dysfunction. 相似文献