首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene L. Brenowitz   《Brain research》1983,279(1-2):250-253
Previously, we demonstrated that between 5 days and 3 months following a partial spinal cord hemisection, proximal hindlimb receptive fields of neurons in the ipsilateral L7 dorsal horn of cats become enlarged. In this study, we used somatotopic mapping procedures, applied bilaterally, to demonstrate that this change in receptive field size occurs between 10 and 14 days postoperatively.  相似文献   

2.
Monosynaptic input from sural nerve afferents to dorsal horn neurons was mapped bilaterally using electrical stimulation in normal cats and cats with spinal cord hemisections. Animals hemisected 6 h-5 days previously did not differ significantly from normals and the sides of the cord did not differ in either group. In animals hemisected 88–182 days previously there were significantly more sites responsive to sural nerve input ipsilateral to the hemisection, than contralateral to it.  相似文献   

3.
目的 观察大鼠脊髓半切后ERK1/2活性的变化及发生变化的细胞类型。方法 大鼠行脊髓半横断术后3d,用免疫组织化学法和免疫荧光双标记法观察磷酸化ERK1/2的变化及其与各种神经细胞标记物的共存状况。结果 观察到脊髓半切3d大鼠的ERK1/2磷酸化程度明显升高。阳性细胞为分布于邻近损伤区周围的具有短突起的小胞体细胞。双标记表明其中的大部分阳性细胞为小胶质细胞和寡突胶质细胞。结论 本研究提示脊髓半横断3d,ERKl/2参与了小胶质细胞和寡突胶质细胞的活化,有可能在脊髓损伤的/继发性过程中具有重要作用。  相似文献   

4.
Although numerous studies have examined the effects of neurotrophin treatment following spinal cord injury, few have examined the changes that occur in the neurotrophin receptors following either such damage or neurotrophin treatment. To determine what changes occur in neurotrophin receptor expression following spinal cord damage, adult rats received a midthoracic spinal cord hemisection alone or in combination with intrathecal application of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Using immunohistochemical and in situ hybridization techniques, p75, trkA, trkB, and trkC receptor expression was examined throughout the spinal cord. Results showed that trkA, full-length trkB, and trkC receptors were not present in the lesion site but had a normal expression pattern in uninjured parts of the spinal cord. In contrast, p75 receptor expression occurred on Schwann cells throughout the lesion site. BDNF and NT-3 (but not saline) applied to the lesion site increased this expression. In addition, the truncated trkB receptor was expressed in the border between the lesion and intact spinal cord. Truncated trkB receptor expression was also increased throughout the white matter ipsilateral to the lesion and BDNF (but not NT-3 or saline) prevented this increase. The study is the first to show changes in truncated trkB receptor expression that extend beyond the site of a spinal cord lesion and is one of the first to show that BDNF and NT-3 affect Schwann cells and/or p75 expression following spinal cord damage. These results indicate that changes in neurotrophin receptor expression following spinal cord injury could influence the availability of neurotrophins at the lesion site. In addition, neurotrophins may affect their own availability to damaged neurons by altering the expression of the p75 and truncated trkB receptor.  相似文献   

5.
The protective effect of a new neurosecretory cytokine, proline-rich peptide (PRP-3) that is produced by the cells of the hypothalamic paraventricular and supraoptical nuclei was studied after lateral hemisection of the spinal cord. Experiments were performed at different postoperative periods (3, 4, and 5 weeks) under conditions of daily administration of PRP-3 in order to study dynamics of the development of rehabilitation states. Flow of single impulse activity induced by stimulation of the mixed (N. ischiadicus), extensor (N. peroneus communis), and flexor (N. gastrocnemius) nerves, at the level of the transection site and lower than it, on the damaged and symmetrical intact sides of the spinal cord was observed in comparison with the control in the interneurons and motoneurons of the spinal cord after daily administration of PRP-3 for 3–4 weeks. PRP-3 was shown to restore activity of the neurons of the lumbar part of the spinal cord and to cause more pronounced early and late postimpulse manifestations of the activity of spinal cord neurons. Morphological studies demonstrated that PRP-3 exhibited a powerful effect on the migration of motoneurons to the transection site and on intensification of proliferation of glial elements. Moreover, PRP-3 stimulated the migration of motoneurons to more distant regions along with penetration to the white matter at the level of the symmetrical undamaged side of the spinal cord. Glial and neurite penetration into places without symphysis, predominantly in the grey matter of the spinal cord, and the prevention of scar formation in the regions of damage were demonstrated. PRP-3 facilitated active ingrowth of vessels in the damaged regions. This process, in turn, favors regeneration with the restoration of locomotor activity at the rehabilitation stage. PRP-3 prevented scar formation and favored ingrowth of nerve fibers of the white matter in the damaged area and thus prevented degeneration of neuroglial elements. This fact was confirmed by recording activity at the level of the injury and by restoration of locomotor activity on the damaged side. This properties of PRP-3 may allow its use in clinical practice for the prevention of neurodegeneration induced by craniocerebral and spinal trauma.  相似文献   

6.
Spinal cord injuries (SCI) result in a devastating loss of function and chronic central pain syndromes frequently develop in the majority of these patients. The present study uses a rodent spinal hemisection model of SCI in which mechanical and thermal allodynia develops by 24 days after injury. Post-operative paw withdrawal responses to low threshold and high threshold mechanical stimuli compared to pre-operative responses (4.78, 9.96, and 49.9 mN) were increased and were statistically significant (p<0.05) for both forelimbs and hindlimbs indicating the development of mechanical allodynia. By contrast, post-operatively, the temperature at which paw withdrawal accompanied by paw lick occurred was significantly decreased (p<0.05), indicating the development of thermal allodynia. The intrathecal application of either D-AP5, a competitive NMDA receptor antagonist, or NBQX-disodium salt, a competitive non-NMDA AMPA/kainate receptor antagonist, alleviated the mechanical allodynia and lowered the threshold of response for the high threshold mechanical stimuli in a dose-dependent manner, and these decreases were statistically significant (p<0.05). By contrast, neither the D-AP5 nor the NBQX produced a statistically significant change in the thermal allodynia behavior in either forelimbs or hindlimbs in the hemisected group. No significant changes in locomotion scores, and thus no sedation, were demonstrated by the hemisected group for the doses tested. These data support the potential efficacy of competitive excitatory amino acid receptor antagonists in the treatment of chronic central pain, particularly where input from low threshold mechanical afferents trigger the onset of the painful sensation. Furthermore, these data suggest a role for both NMDA and non-NMDA receptors in the development of plastic changes in the spinal cord that provide the underlying mechanisms for central neuropathic pain.  相似文献   

7.
Terayama R  Bando Y  Takahashi T  Yoshida S 《Glia》2004,48(2):91-101
Neuropsin and protease M/neurosin are serine proteases expressed by neurons and glial cells, and serve a variety of functions in the central nervous system (CNS). The current study demonstrates changes in the expression of these proteases following hemisection of the mouse spinal cord. Within unlesioned spinal cord, neuropsin mRNA expression was occasionally observed in the gray but not white matter, while the level of protease M/neurosin mRNA was higher in the white matter. After injury to the spinal cord, neuropsin mRNA expression was induced in the white matter in the area immediately adjacent to the lesion, peaking at 4 days post-injury and disappearing by 14 days. Enhanced expression of protease M/neurosin mRNA was observed throughout the white and gray matter surrounding the lesion, peaking at 4 days and persisting for 14 days. Neuropsin mRNA was expressed predominantly by CNPase-positive oligodendrocytes. Furthermore, most of these cells were also associated with immunoreactivity for protease M/neurosin protein. Within unlesioned spinal cord, most protease M/neurosin mRNA-expressing cells were CNPase-positive oligodendrocytes, and a substantial fraction of these cells also showed immunoreactivity for NG2, a marker for oligodendrocyte progenitors. After injury, protease M/neurosin mRNA expression within NG2-positive cells was significantly decreased, while the constitutive expression in CNPase-positive oligodendrocytes appeared to be preserved. These findings suggest that each subpopulation of oligodendrocytes based on the expression of neuropsin and protease M/neurosin has different roles in the response of the spinal cord to injury as well as in normal homeostasis.  相似文献   

8.
This study presentsd mtelinated and unmyelinated axon counts from thoracic dorsal roots of rats whose spinal cords were hemisected at birth or at 1 year of age. Axonal numbers from a root on the unoperated side are compared to numbers from the root of the same segment on the operated side of the animal. Counts were made 3 segments cranially and 3 segments caudally from the hemisection. In animals hemisected at birth and sacrified at 3–8 months, there is a statistically significant increase in unmyelinated axons in roots of the operated as compared to the normal side. We interpret this as sprouting of unmyelinated axons. In animals hemisected at 1 year of age, the statistically significant change was a drop in myelinated axons in roots of the operated side. We interpret this as a loss of myelinated axon cell bodies due to axon section in the dorsal funiculus. Thus axonal sprouting occurs in young rats in our paradigm and a loss of myelinated axons occurs in older animals. We emphasize that different axonal populations respond to hemisection in different ways at different times.  相似文献   

9.
Nucleus dorsalis myelencephali is in the dorsolateral area of the caudal me dulla in snakes. The parvocellular area projects bilaterally to the paratorus and receives ipsilateral projections from the spinal cord. The magnocellular area projects bilaterally to the spinal cord. This nucleus has been only briefly described in snakes but not in any other reptilian group.  相似文献   

10.
Analysis of the recovery of gait after spinal cord injury has been widely demonstrated in rat and cat models using different behavioral tests and scoring systems. The present investigation was aimed to quantitatively analyze the degree of functional recovery in bipedal locomotion of bonnet macaques after inflicting spinal cord hemisection lesion. To measure the degree of locomotor recovery, we recorded four gait variables, viz., tip of opposite foot (TOF), print length (PL), toe spread (TS), and intermediary toes (IT) using a footprint analyzing technique. Monkeys were trained preoperatively to perform the monopedal hop or bipedal locomotion on runways. Footprints of trained monkeys were recorded using the nontoxic ink and white paper before and after surgery. Surgical hemisection was induced unilaterally in the right side of spinal cord at T12-L1 level of trained monkeys. In hemiplegic monkeys, initially there was a substantial decrease in TOF and PL variables of the paretic limb, which then gradually increased for longer duration and reached the near presurgical values by the 7th and 5th postoperative month, respectively. In contrast to TOF and PL, the recovery of TS and IT variables was quicker, which dramatically increased at first and then slowly recovered to levels not significantly different from the corresponding preoperative values by the 4th postoperative month. The nonparetic limb has also showed mild alterations in all footprint variables but reached the normal values much faster compared to the paretic limb. The alterations in footprint variables of hemiplegic monkeys were examined for a postoperative period of up to 1 year. The findings of this study suggest that the mechanisms underlying locomotor recovery of lesioned macaques may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Further, this study also indicates the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of macaques.  相似文献   

11.
Astrocytes secrete basal lamina after hemisection of rat spinal cord   总被引:2,自引:0,他引:2  
Basal lamina is reconstructed over the lesioned surface of the spinal cord. The following experiment (90 rats) studies the ultrastructure of the formation of this membrane and the immunohistochemistry of laminin production (a major secreted component of basal lamina). After hemisection of the spinal cord at T6 animals were prepared for electron microscopy or antilaminin-biotin-avidin-peroxidase incubation. Three-5 days posthemisection, antilaminin reaction product was observed in astrocytes and their processes which faced the lesion, endothelia of blood vessels or pia. Ultrastructurally (3 days), basal lamina was polymerizing as small projections on the surface of astrocytic membranes facing the lesion, endothelia or pia. By 5 days the basal lamina was a single membrane, folded multiple sheets or in swirls. At 6-10 days the antilaminin reaction and the basal lamina (except for duplications) did not differ from normal. Reactive astrocytes secrete laminin for at least 3-5 days after hemisection and form basal lamina on the lesioned surface of the spinal cord after spinal cord hemisection.  相似文献   

12.
In the present study, immunohistochemical stainings for OX-6, OX-42, nitric oxide synthase I and II as well as nitrotyrosine were used to investigate possible correlation among microglial reactivity, nitric oxide synthase upregulation, peroxynitrite involvement and neuronal death in the nucleus dorsalis and red nucleus following lower thoracic spinal cord hemisection. Significant neuronal loss was found in the ipsilateral nucleus dorsalis and contralateral red nucleus after cord hemisection. A distinctive microglial reaction for OX-42 could be observed from one to four weeks post axotomy in the ipsilateral nucleus dorsalis; by contrast, it was observed on both sides of the red nucleus from one to three weeks following cord hemisection. The activated microglial cells showed some degree of hypertrophy. From the microglial immunoreactivity as well as their appearance, it was speculated that microglial activation might be beneficial or protective to the axotomized neurons. In normal and sham-operated rats, neurons of the nucleus dorsalis were not nitric oxide synthase I reactive. Three weeks after cord hemisection, neurons in the ipsilateral nucleus dorsalis below the lesion showed strong immunoreactivity. Neurons in the red nucleus that normally displayed weak nitric oxide synthase I immunoreactivity showed an increase on both sides of the nucleus. These results suggested that nitric oxide synthase I expression in the nucleus dorsalis following axotomy was synthesized de novo and might act as a neurotoxic agent. However, the bilateral increase in expression of nitric oxide synthase I in the red nucleus after lower thoracic cord hemisection was due to up-regulation of the constitutive enzyme and might have some neuroprotective function. Our results also suggested that peroxynitrite played no or little role in the neurodegeneration in the nucleus dorsalis and red nucleus following axotomy.  相似文献   

13.
实验建立正常对照组、假手术组、高低频电针组和中药薏苡仁干预组,横断T10左半侧的脊髓损伤模型大鼠,4h后使用5,100Hz电针刺激环跳(GB30)、足三里(ST 36)、至阳(DU9)及悬枢(DU5)或腹腔注射0.4μL中药薏苡仁粗提液(与生药比例为1:1),连续8周,观察发现低高频电针刺激及薏苡仁治疗能改善脊髓组织损伤区域形态,促进运动诱发电位的恢复,抑制损伤区胶质纤维酸性蛋白表达,改善半横断性脊髓损伤大鼠运动功能,以100Hz电针刺激和薏苡仁干预效果明显。  相似文献   

14.
Primary spinal cord trauma can initiate a cascade of pathophysiologic events which markedly contribute to the expansion and amplification of the primary insult. The detailed mechanisms of these secondary neurochemical reactions are largely unknown; however, they involve membrane lipid derangements with the release of free fatty acids, in particular, arachidonic acid (AA). AA can induce several injury effects on spinal cord neurons. We hypothesize that upregulation of nitric oxide synthase (NOS) is among the most important mechanisms of arachidonic-acid-induced neuronal dysfunction and that nicotine can attenuate this effect. To study these hypotheses, spinal cord neurons were exposed to AA and/or nicotine, and several markers of neuronal nitric oxide synthase (nNOS) metabolism were measured. In addition, cotreatments with either inhibitors of nicotinic receptors or inhibitors of specific NOS isoforms were employed. Treatment with AA markedly increased activity of nNOS, as well as mRNA and protein levels of this enzyme. Changes in nNOS expression were accompanied by an increase in cellular cGMP and medium nitrite levels. Pretreatment with nicotine decreased AA-induced overexpression of nNOS and elevation of nitrite levels. In addition, it appeared that these nicotine effects could be partially modulated both by the alpha7 nicotinic receptors or by nonreceptor mechanisms. Alternatively, the observed changes could also be mediated by an alternate nicotinic receptor mechanism which is not blocked by alpha-bungarotoxin or mecamylamine. Results of the present study indicate that exposure to AA can lead to induction of nNOS in cultured spinal cord neurons. In addition, nicotine can exert a neuroprotective effect by attenuation of AA-induced upregulation of nNOS metabolism. These data may have therapeutic implications for the treatment of acute spinal cord trauma.  相似文献   

15.
In the majority of patients, spinal cord injury (SCI) results in abnormal pain syndromes in which non-noxious stimuli become noxious (allodynia). To reduce allodynia, it would be desirable to implant a permanent biological pump such as adrenal medullary chromaffin cells (AM), which secrete catecholamines and opioid peptides, both antinociceptive substances, near the spinal cord. We tested this approach using a recently developed a mammalian SCI model of chronic central pain, which results in development of mechanical and thermal allodynia. Thirty day-old male Sprague-Dawley rats were spinally hemisected at T13 and allowed 4 weeks for recovery of locomotor function and development of allodynia. Nonimmunosuppressed injured animals received either control-striated muscle (n = 7) or AM (n = 10) transplants. Nociceptive behavior was tested for 4 weeks posttransplant as measured by paw withdrawals to von Frey filaments, radiant heat, and pin prick stimuli. Hemisected animals receiving AM demonstrated statistically significant reductions in both fore- and hindlimb mechanical and thermal allodynia, but not analgesia, when compared to hemisected animals receiving striated muscle transplants (P < 0.05). Tyrosine hydroxylase immunoreactivity indicated prolonged transplant survival and production of catecholamines. HPLC analysis of cerebrospinal fluid samples from animals receiving AM transplants demonstrated statistically significant increases in levels of dopamine (sevenfold), norepinephrine (twofold), and epinephrine (threefold), compared to control values several weeks following transplant (P < 0.05). By 28 days posttransplant, however, antinociceptive effects were diminished. These results support the therapeutic potential of transplanted AM in reducing chronic central pain following spinal cord injury.  相似文献   

16.
Spinal cord hemisection (SCH) results in atrophy of skeletal muscle and altered contractile properties. In this study our purpose was to assess staircase and posttetanic potentiation in the rat gastrocnemius muscle in situ, 1 week after SCH. Tetanic force was reduced by SCH, but twitch amplitude was not. The time course and magnitude of staircase during stimulation at 5 HZ (for 21 s) was similar in the control, sham-operated, and SCH groups. However, posttetanic potentiation observed after 100-, 500-, and 1000-ms tetanic (200 HZ) contractions was absent or drastically reduced after SCH. Twitch force increased 44+/-8.7%, 47+/-7.4%, and 15+/-2.8% for the control, sham, and SCH groups, respectively, after the 1000-ms tetanic contraction. After the 1000-ms tetanic contraction, twitch active force decreased in all groups and was significantly reduced at 5 min relative to pretetanic twitch. In the control and sham groups, but not SCH, the active force recovered to the pretetanic level by 15 min. Resting regulatory light chain (RLC) phosphorylation was 15.4+/-2.5% and 10.97+/-3.3% for the control and SCH groups, respectively. After the 1-s tetanic contraction, values were 41.6+/-2.8% and 9.3+/-2.9%, respectively. The potentiation observed in the SCH animals with 1000-ms contraction apparently occurred without increases in RLC phosphorylation. One week after SCH there were clear changes in the contractile properties typically associated with prior activation. It is concluded that activity-dependent potentiation can occur by a mechanism that is independent of RLC phosphorylation, and accelerated fatigue can mask the potentiating effects of prior activity.  相似文献   

17.
BACKGROUND: At present, there is still lack of effective drugs for chronic spinal cord injury, whereas it is found recently that estrogen has a neuroprotective effect on brain and spinal cord injuries. OBJECTIVE: To observe the effect of estrogen on the apoptosis of nerve cells after gradual chronic spinal cord injury in ovariectomized rats. DESIGN: A randomized controlled animal trial. SETTING: Institute of Orthopaedics, the Second Hospital of Lanzhou University. MATERIALS: Sixty-five female Wistar rats of common degree, weighing 220–250 g, were provided by the experimental animal center of Lanzhou University. The rats were randomly divided into sham-operated group (n =5), estrogen-treated group (n =30) and saline control group (n =30), and the latter two groups were observed at 1, 3, 7, 14, 28 and 60 days respectively, and 5 rats for each time point. METHODS: All the rats were treated with bilateral oophorectomy 2 weeks before the experiment. T10 vertebral lamina was revolved into using plastic screw. The spinal canal impingement was not induced initially. After that, the original incision was opened to expose the screw every 7–10 days. MAIN OUTCOME MEASURES: The apoptosis and Caspase-3 positive cells in the damaged spinal cord were detected using terminal deoxynucleotidal transferase-mediated dUTP-biotin nick end labeling (TUNEL) method and Caspase-3 immunohistochemical staining at 1, 3, 7, 14, 28 and 60 days after chronic spinal cord injury respectively. RESULTS: Totally 65 rats were used, and the deleted ones during the experiment were supplemented by others. Changes of Caspase-3 expression after spinal cord injury: In the sham-operated group, only a small amount of Caspase-3 proteins were observed in the rat spinal cord, mainly located in motor neurons of spinal cord anterior horn. In the estrogen-treated group and saline control group, positive cells expressed occasionally at 1 day postoperatively, began to increase obviously at 7 days after injury, strongly expressed at 14 and 28 days, but decreased at 60 days, mainly located in the neurons of spinal cord gray matter anterior horn, and they expressed fewer in the motor neurons and white matter of ventral horn, and there were obvious differences between the estrogen-treated group and saline control group at 7, 14, 28 and 60 days (P < 0.05). CONCLUSION: Estrogen can reduce the apoptosis of nerve cells and promote the recovery of neurological function following gradual chronic spinal cord injury.  相似文献   

18.
一氧化氮合酶抑制剂对脊髓损伤后运动功能的影响   总被引:2,自引:1,他引:2  
目的观察诱导型和神经型一氧化氮合酶(iNOS,nNOS)抑制剂对大鼠脊髓损伤(SCI)后运动功能的影响和机理。方法大鼠脊髓压迫伤后分别给予iNOS和nNOS抑制剂—氨基胍(AG)和7-硝基吲唑(7-NI)进行治疗,24h后用分光光度法测定组织中一氧化氮(NO)含量和一氧化氮合酶(NOS)活性,72h后用流式细胞仪检测神经细胞凋亡情况,4周后用电生理和动物行为学等指标评价运动功能的恢复情况。结果AG和7-NI均可以抑制组织中的NO含量,并使NOS活性下降,同时降低神经细胞的凋亡比率,对运动功能的恢复前者优于后者。结论脊髓损伤后应用NOS抑制剂可以使伤后运动功能得到改善,AG的作用似乎更明显,提示iNOS活性变化可能对脊髓损伤的恢复更具决定作用。  相似文献   

19.
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.  相似文献   

20.
A perfusion model of global cerebral ischemia was used for the immunohistochemical study of changes in the glutamate-nitric oxide (NO) system in the rat cerebellum and cerebellar nuclei during a 0-14 h reperfusion period after 30 min of oxygen and glucose deprivation, with and without administration of 1.5 mM N(omega)-nitro-L-arginine methyl ester (L-NAME). While immunostaining for N-methyl-D-aspartate receptor subunit 1 (NMDAR1) showed no marked changes during the reperfusion period, neuronal NO synthase (nNOS) immunostaining increased in stellate and basket cells, granule cells and neurons of the cerebellar nuclei. However, global cerebellar nNOS concentrations determined by Western blotting remained largely unchanged in comparison with actin expression. Inducible NOS (iNOS) immunostaining appeared in Purkinje cells and neurons of the cerebellar nuclei after 2-4 h of reperfusion and intensified during the 6-14 h period. This was reflected by an increase in global cerebellar iNOS expression determined by Western blotting. Immunostaining for protein nitrotyrosine was seen in Purkinje cells, stellate and basket cells, neurons of the cerebellar nuclei and glial cells in controls, and showed a progressive translocation in Purkinje cells and neurons of the cerebellar nuclei from an initial perinuclear or nuclear location towards the periphery. At the end of the reperfusion period the Purkinje cell apical dendrites were notably retracted and tortuous. Prior and concurrent L-NAME administration eliminated nitrotyrosine immunostaining in controls and blocked or reduced most of the postischemic changes observed. The results suggest that while nNOS expression may be modified in certain cells, iNOS is induced after a 2-4 h period, and that changes in protein nitration may be associated with changes in cell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号