首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The management of blood pH during hypothermia remains controversial. The present study was designed to determine whether hemodynamics and oxygen consumption during hypothermia are different between the alpha-stat and pH-stat strategies. Theoretical considerations of enzyme kinetics suggest that the alpha-stat strategy would result in a higher oxygen consumption during hypothermia. Because hypothermia is used to decrease oxygen consumption for protection during ischemia, a pH scheme that results in a greater oxygen demand for any level of ischemia would be detrimental. The core temperature of 22 dogs was lowered to 26 degrees C by combined surface cooling and gastric irrigation. Either the alpha-stat (N = 9) or the pH-stat (N = 13) pH strategy was used. The arterial pressure was different between the two groups at 26 degrees C (65 +/- 6 vs 85 +/- 6 mm Hg, alpha-stat vs pH-stat, respectively, P less than 0.05). Neither systemic oxygen consumption nor the Q10 was different between groups. There were no differences in any other hemodynamic parameters. In summary, during moderate hypothermia alpha-stat pH management results in an arterial pressure lower than that of pH-stat management, possibly resulting in improved peripheral perfusion. Despite theoretical predictions, the alpha-stat pH scheme does not result in an oxygen consumption higher than that of the pH-stat scheme.  相似文献   

2.
Background: Greater cerebral metabolic suppression may increase the brain's tolerance to ischemia. Previous studies examining the magnitude of metabolic suppression afforded by profound hypothermia suggest that the greater arterial carbon dioxide tension of pH-stat management may increase metabolic suppression when compared with alpha-stat management.

Methods: New Zealand White rabbits, anesthetized with fentanyl and diazepam, were maintained during cardiopulmonary bypass (CPB) at a brain temperature of 17 degrees Celsius with alpha-stat (group A, n = 9) or pH-stat (group B, n = 9) management. Measurements of brain temperature, systemic hemodynamics, arterial and cerebral venous blood gases and oxygen content, cerebral blood flow (CBF) (radiolabeled microspheres), and cerebral metabolic rate for oxygen (CMRO2) (Fick) were made in each animal at 65 and 95 min of CPB. To control for arterial pressure and CBF differences between techniques, additional rabbits underwent CPB at 17 degrees Celsius. In group C (alpha-stat, n = 8), arterial pressure was decreased with nitroglycerin to values observed with pH-stat management. In group D (pH-stat, n = 8), arterial pressure was increased with angiotensin II to values observed with alpha-stat management. In groups C and D, CBF and CMRO2 were determined before (65 min of CPB) and after (95 min of CPB) arterial pressure manipulation.

Results: In groups A (alpha-stat) and B (pH-stat), arterial pressure; hemispheric CBF (44 plus/minus 17 vs. 21 plus/minus 4 ml *symbol* 100 g sup -1 *symbol* min sup -1 [median plus/minus quartile deviation]; P = 0.017); and CMRO2 (0.54 plus/minus 0.13 vs. 0.32 plus/minus 0.10 ml Oxygen2 *symbol* 100 g sup -1 *symbol* min sup -1; P = 0.0015) were greater in alpha-stat than in pH-stat animals, respectively. As a result of arterial pressure manipulation, in groups C (alpha-stat) and D (pH-stat) neither arterial pressure (75 plus/minus 2 vs. 78 plus/minus 2 mm Hg) nor hemispheric CBF (40 plus/minus 10 vs. 48 plus/minus 6 ml *symbol* 100 g sup -1 *symbol* min sup -1; P = 0.21) differed between alpha-stat and pH-stat management, respectively. Nevertheless, CMRO2 was greater in alpha-stat than in pH-stat animals (0.71 plus/minus 0.10 vs. 0.45 plus/minus 0.10 ml Oxygen2 *symbol* 100 g sup -1 *symbol* min sup -1, respectively; P = 0.002).  相似文献   


3.
BACKGROUND: Although the frequency for the use of moderate hypothermia in acute ischemic stroke is increasing, the optimal acid-base management during hypothermia remains unclear. This study investigates the effect of pH- and alpha-stat acid-base management on cerebral blood flow (CBF), infarct volume, and cerebral edema in a model of transient focal cerebral ischemia in rats. METHODS: Twenty Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h during normothermic conditions followed by 5 h of reperfusion during hypothermia (33 degrees C). Animals were artificially ventilated with either alpha- (n = 10) or pH-stat management (n = 10). CBF was analyzed 7 h after induction of MCAO by iodo[(14)C]antipyrine autoradiography. Cerebral infarct volume and cerebral edema were measured by high-contrast silver infarct staining (SIS). RESULTS: Compared with the alpha-stat regimen, pH-stat management reduced cerebral infarct volume (98.3 +/- 33.2 mm(3) vs. 53.6 +/- 21.6 mm(3); P > or = 0.05 mean +/- SD) and cerebral edema (10.6 +/- 4.0% vs. 3.1 +/- 2.4%; P > or = 0.05). Global CBF during pH-stat management exceeded that of alpha-stat animals (69.5 +/- 12.3 ml x 100 g(-1) x min(-1) vs. 54.7 +/- 13.3 ml x 100 g(-1) x min; P > or = 0.05). The regional CBF of the ischemic hemisphere was 62.1 +/- 11.2 ml x 100 g(-1) x min(-1) in the pH-stat group versus 48.2 +/- 7.2 ml x 100 g(-1) x min(-1) in the alpha-stat group ( P> or = 0.05). CONCLUSIONS: In the very early reperfusion period (5 h), pH-stat management significantly decreases cerebral infarct volume and edema as compared with alpha-stat during moderate hypothermia, probably by increasing CBF.  相似文献   

4.
In moderate hypothermia, three different concepts of pH management have been described to date: pH-stat, alpha-stat, and alkalinity. In our study these pH strategies were compared in adult sheep, with animals serving as their own controls for direct comparability. Hemodynamic parameters, such as mean aortic pressure (from 109 +/- 12 to 72 +/- 23 mm Hg), cardiac output (from 5.55 +/- 1.25 to 4.5 +/- 0.82 L/min), and systemic oxygen consumption (from 3.73 +/- 0.8 to 1.81 +/- 0.4 ml/kg/min), decreased significantly with alpha-stat at 28 degrees C from values for normothermia. No marked or even significant differences were found among the three pH strategies in any value, with the exception of body oxygen consumption. The difference of 2% between pH-stat and alpha-stat, at 0.06 ml oxygen/kg/min, was significant (p < or = 0.05), however of no practical relevance because hypothermia itself caused a decrease of nearly 52%. With regard to myocardial parameters, pH-stat impaired myocardial function compared with both alpha-stat and alkalinity. At nearly identical mean aortic pressures and cardiac outputs, myocardial oxygen consumption reached the highest level in pH-stat (7.65 ml oxygen/100 gm/min; alpha-stat, 6.76 ml oxygen/100 gm/min; p < or = 0.05). Myocardial efficiency thus decreased from 21% (alpha-stat) to 17% (pH-stat). No evident changes in hemodynamic and metabolic values were found for alkalinity vs alpha-stat. The best response to continuously infused epinephrine, however, was found with alkalinity. According to our data there was an impairment of myocardial function without any evident further reduction in body metabolism with pH-stat vs alpha-stat. There were, however, no marked metabolic or hemodynamic differences between alkalinity and alpha-stat, with the exception of a better preservation of sensitivity to adrenergic stimuli with alkalinity.  相似文献   

5.
OBJECTIVE: We sought to examine the influence on the brain, with or without old infarction, of pH management during antegrade selective cerebral perfusion in a canine model. METHODS: A cerebral infarct canine model was created by injecting a cylindrical silicone embolus. Dogs that had obvious neurologic deficits and had survived for 4 weeks or more were included in the model. Deep hypothermia with antegrade selective cerebral perfusion was performed in intact mongrel dogs (alpha-stat: group A, n = 6; pH-stat: group B, n = 6) and mongrel dogs with infarctions (alpha-stat: group C, n = 6; pH-stat: group D, n = 6). Maxillary vein saturation of oxygen, venous-arterial lactate difference, and serum concentrations of malondialdehyde and glutamate were measured and central conduction times and amplitude in somatosensory evoked potentials were assessed during the operation. RESULTS: During the experimental procedure, the maxillary vein saturation of oxygen was significantly less (P <.05), whereas the venous-arterial lactate difference was significantly greater (P <.05) in the cooling phase to 28 degrees C in group C than in the other groups. The pH-stat group showed significantly greater arterial Paco(2) and lower pH than the alpha-stat group during the period between the cooling to 28 degrees C and the rewarming to 28 degrees C (P <.05). Other intraoperative parameters did not show any difference among the groups. In group C the serum concentrations of malondialdehyde and glutamate significantly increased, as did the central conduction time, whereas in both groups C and D the amplitude ratio decreased significantly. CONCLUSIONS: This experiment suggests that pH-stat management during antegrade selective cerebral perfusion provides more effective protection for a brain with old infarction than alpha-stat management.  相似文献   

6.
During induced hypothermia with cardiopulmonary bypass, acid-base management usually follows one of two strategies: the so-called ectothermic or alpha-stat strategy, in which the pH of the arterial blood increases 0.015 pH units for every degree Celsius decrease in body temperature, or the pH-stat strategy, in which pH remains 7.4 at all temperatures. It has been assumed that oxygen consumption decreases approximately equally during hypothermia with either strategy, although there are biochemical reasons to hypothesize that oxygen consumption would be better maintained with the alpha-stat strategy. We also hypothesized that venous oxygen tension would be lower with the more alkaline alpha-stat strategy than with the pH-stat acid-base strategy, because of the Bohr effect. We tested these hypotheses by placing 10 anesthetized immature domestic pigs on cardiopulmonary bypass. We measured whole body oxygen consumption and myocardial oxygen consumption. Control measurements were made at 37 degrees C. Then the animals were cooled to 27 degrees C and the measurements were repeated. The alpha-stat strategy (pH 7.554 +/- 0.020 at 27 degrees C) was used in five animals and five animals received pH-stat management (pH 7.409 +/- 0.012 at 27 degrees C). Whole body and myocardial oxygen consumption rate decreased in both groups, but more so in the alpha-stat animals than in the pH-stat animals. The unexpectedly high oxygen consumption in the pH-stat animals also resulted in a lower than expected venous oxygen tension. Thus the effect of hypothermia in reducing oxygen consumption was less pronounced with pH-stat acid-base management.  相似文献   

7.
OBJECTIVE: Selective cerebral perfusion (SCP) affords brain protection superior to hypothermic circulatory arrest (HCA) for prolonged aortic arch procedures. Optimal pH strategy for HCA is controversial; for SCP it is unknown. We compared pH strategies during SCP in a survival pig model. METHODS: Twenty juvenile pigs (26+/-2.4 kg), randomized to alpha-stat (n=10) or pH-stat (n=10) management, underwent cooling to 20 degrees C on cardiopulmonary bypass (CPB) followed by 90 min of SCP at 20 degrees C. SCP was conducted with a mean pressure of 50 mmHg and hematocrit of 22.5%. Using fluorescent microspheres and sagittal sinus blood sampling, cerebral blood flow (CBF) and oxygen metabolism (CMRO2) were assessed at the following time points: baseline, after 30 min cooling (20 degrees C), 30 min of SCP, 90 min of SCP, 15 min post-CPB and 2h post-CPB. Visual evoked potentials (VEP) were assessed at baseline and monitored for 2h during recovery. Neurobehavioral recovery (10=normal) was assessed in a blinded fashion for 7 postoperative days. RESULTS: There were no significant differences between the groups at baseline. CBF was significantly higher at the end of cooling, and after 30 and 90 min of SCP in the pH-stat group (P=0.02, 0.007, 0.03). CMRO2 was also higher with pH-stat (P=0.06, 0.04, 0.10). Both groups showed prompt return to values close to baseline after rewarming (P=ns). VEP suggested a trend towards improved recovery in the alpha-stat group at 2h post-CPB, P=0.15. However, there were no significant differences in neurobehavioral score: (alpha-stat versus pH-stat) median values 7 and 7.5 on day 1; 9 and 9 on day 4, and 10 and 10 on day 7. CONCLUSIONS: These data suggest that alpha-stat management for SCP provides more effective metabolic suppression than pH-stat, with lower CBF. Clinically, the better preservation of cerebral autoregulation during alpha-stat perfusion should reduce the risk of embolization.  相似文献   

8.
Ye J  Li Z  Yang Y  Yang L  Turner A  Jackson M  Deslauriers R 《The Annals of thoracic surgery》2004,77(5):1664-70; discussion 1670
BACKGROUND: Although it is well documented that the use of a pH-stat strategy during hypothermic cardiopulmonary bypass improves cerebral blood flow, an alpha-stat strategy has been almost exclusively used during retrograde cerebral perfusion. We investigated the effects of pH-stat and alpha-stat management on brain tissue blood flow and oxygenation during retrograde cerebral perfusion in a porcine model to determine if the use of a pH-stat strategy during retrograde cerebral perfusion improves brain tissue perfusion. METHODS: Fourteen pigs were managed by an alpha-stat strategy (alpha-stat group, n = 7) or by a pH-stat strategy (pH-stat group, n = 7) during 120 minutes of hypothermic retrograde cerebral perfusion. Retrograde cerebral perfusion was established through the superior vena cava. Brain tissue blood flow and oxygenation were measured continuously with a laser flowmeter and near infrared spectroscopy, respectively. Brain tissue water content was determined at the end of the experiments. RESULTS: During cooling, brain tissue blood flow was significantly higher with use of the pH-stat strategy than with the alpha-stat strategy (86% +/- 10% versus 40% +/- 3% of baseline). During retrograde cerebral perfusion, brain tissue blood flow was also significantly higher (about three times higher) in the pH-stat group than in the alpha-stat group (15% +/- 4% versus 5% +/- 1% of baseline at 60 minutes of retrograde cerebral perfusion). Tissue oxygen saturation appeared to be higher during retrograde cerebral perfusion in the pH-stat group than in the alpha-stat group. Brain tissue blood flow during rewarming remained significantly higher with the use of pH-stat than with the use of alpha-stat. Brain tissue water contents were similar in both groups. CONCLUSIONS: In our pig model, the use of a pH-stat strategy during retrograde cerebral perfusion significantly improves brain tissue perfusion. Therefore, to improve retrograde cerebral blood flow during retrograde cerebral perfusion, it may be preferable to use a pH-stat strategy, rather than an alpha-stat strategy.  相似文献   

9.
BACKGROUND AND OBJECTIVES: This study was undertaken to compare the effect of alpha-stat vs. pH-stat strategies for acid-base management on regional cerebral oxygen saturation (RsO2) in patients undergoing moderate hypothermic haemodilution cardiopulmonary bypass (CPB). METHODS: In 14 adult patients undergoing elective coronary artery bypass grafting, an awake RsO2 baseline value was monitored using a cerebral oximeter (INVOS 5100). Cerebral oximetry was then monitored continuously following anaesthesia and during the whole period of CPB. Mean +/- SD of RsO2, CO2, mean arterial pressure and haematocrit were determined before bypass and during the moderate hypothermic phase of the CPB using the alpha-stat followed by pH-stat strategies of acid-base management. Alpha-stat was then maintained throughout the whole period of CPB. RESULTS: The mean baseline RsO2 in the awake patient breathing room air was 59.6 +/- 5.3%. Following anaesthesia and ventilation with 100% oxygen, RsO2 increased up to 75.9 +/- 6.7%. Going on bypass, RsO2 significantly decreased from a pre-bypass value of 75.9 +/- 6.7% to 62.9 +/- 6.3% during the initial phase of alpha-stat strategy. Shifting to pH-stat strategy resulted in a significant increase of RsO2 from 62.9 +/- 6.3% to 72.1 +/- 6.6%. Resuming the alpha-stat strategy resulted in a significant decrease of RsO2 to 62.9 +/- 7.8% which was similar to the RsO2 value during the initial phase of alpha-stat. CONCLUSION: During moderate hypothermic haemodilutional CPB, the RsO2 was significantly higher during the pH-stat than during the alpha-stat strategy. However, the RsO2 during pH-stat management was significantly higher than the baseline RsO2 value in the awake patient breathing room air, denoting luxury cerebral perfusion. In contrast, the RsO2 during alpha-stat was only slightly higher than the baseline RsO2, suggesting that the alpha-stat strategy avoids luxury perfusion, but can maintain adequate cerebral oxygen supply-demand balance during moderate hypothermic haemodilutional CPB.  相似文献   

10.
OBJECTIVE: Deep hypothermic circulatory arrest for neonatal heart surgery poses the risk of brain damage. Several studies suggest that pH-stat management during cardiopulmonary bypass improves neurologic outcome compared with alpha-stat management. This study compared neurologic outcome in a survival piglet model of deep hypothermic circulatory arrest between alpha-stat and pH-stat cardiopulmonary bypass. METHODS: Piglets were randomly assigned to alpha-stat (n = 7) or pH-stat (n = 7) cardiopulmonary bypass, cooled to 19 degrees C brain temperature, and subjected to 90 minutes of deep hypothermic circulatory arrest. After bypass rewarming/reperfusion, they survived 2 days. Neurologic outcome was assessed by neurologic performance (0-95, 0 = no deficit and 95 = brain death) and functional disability scores, as well as histopathology. Arterial pressure, blood gas, glucose, and brain temperature were recorded before, during, and after bypass. RESULTS: All physiologic data during cardiopulmonary bypass were similar between groups (pH-stat vs alpha-stat) except arterial pH (7.06 +/- 0.03 vs 7.43 +/- 0.09, P <.001) and arterial PCO (2) (98 +/- 8 vs 36 +/- 8 mm Hg, P <.001). No differences existed in duration of cardiopulmonary bypass or time to extubation. Performance was better in pH-stat versus alpha-stat management at 24 hours (2 +/- 3 vs 29 +/- 17, P = 0.004) and 48 hours (1 +/- 2 vs 8 +/- 9, P =.1). Also, functional disability was less severe with pH-stat management at 24 hours (P =.002) and 48 hours (P =.053). Neuronal cell damage was less severe with pH-stat versus alpha-stat in the neocortex (4% +/- 2% vs 15% +/- 7%, P <.001) and hippocampal CA1 region (11% +/- 5% vs 33% +/- 25%, P =.04), but not in the hippocampal CA3 region (3% +/- 5% vs 16% +/- 23%, P =.18) or dentate gyrus (1% +/- 1% vs 3% +/- 6%, P =.63). CONCLUSIONS: pH-stat cardiopulmonary bypass management improves neurologic outcome with deep hypothermic circulatory arrest compared with alpha-stat bypass. The mechanism of protection is not related to hemodynamics, hematocrit, glucose, or brain temperature.  相似文献   

11.
Jugular venous oxygen saturation (SJVO(2)) reflects the balance between cerebral blood flow and metabolism. This study was designed to compare the effects of two different acid-base strategies on jugular venous desaturation (SJVO(2) <50%) and cerebral arteriovenous oxygen-glucose use. We performed a prospective, randomized study in 52 patients undergoing cardiopulmonary bypass (CPB) at 27 degrees C with either alpha-stat (n = 26) or pH-stat (n = 26) management. A retrograde internal jugular vein catheter was inserted, and blood samples were obtained at intervals during CPB. There were no differences in preoperative variables between the groups. SJVO(2) was significantly higher in the pH-stat group (at 30 min CPB: 86.2% +/- 6.1% versus 70.6% +/- 9.3%; P < 0.001). The differences in arteriovenous oxygen and glucose were smaller in the pH-stat group (at 30 min CPB: 1.9 +/- 0.82 mL/dL versus 3.98 +/- 1.12 mL/dL; P < 0.001; and 3.67 +/- 2.8 mL/dL versus 10.1 +/- 5.2 mL/dL; P < 0.001, respectively). All episodes of desaturation occurred during rewarming, and the difference in the incidence of desaturation between the two groups was not significant. All patients left the hospital in good condition. Compared with alpha-stat, the pH-stat strategy promotes an increase in SJVO(2) and a decrease in arteriovenous oxygen and arteriovenous glucose differences. These findings indicate an increased cerebral supply with pH-stat; however, this strategy does not eliminate jugular venous desaturation during CPB. IMPLICATIONS: A prospective, randomized study in 52 patients during cardiopulmonary bypass revealed that pH-stat increased jugular venous oxygen saturation and decreased arteriovenous oxygen-glucose differences. There was no difference in the incidence of jugular venous desaturation. These findings suggest an increased cerebral blood flow with no protection against jugular venous desaturation during pH-stat.  相似文献   

12.
OBJECTIVE: The optimal pH strategy during hypothermic cardiopulmonary bypass remains controversial. Systemic pulmonary collateral circulation may develop in patients with cyanotic anomalies. The purpose of this study was to evaluate the effect of pH strategies on cerebral oxygenation and systemic pulmonary collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease. METHODS: Forty cyanotic patients (age > 1 year) with heart disease were prospectively randomized into 2 groups. Group 1 (n = 19, 14.3 +/- 1.5 kg) underwent hypothermic cardiopulmonary bypass with alpha-stat strategy and group 2 (n = 21, 12.5 +/- 0.9 kg) with pH-stat. Cardiopulmonary bypass was established with pump-assisted drainage. Cerebral oxygenation was assessed by near-infrared spectroscopy and the systemic pulmonary collateral circulation was calculated by pump flows [% systemic pulmonary collateral circulation = perfusion flow - drainage flow)/perfusion flow x 100]. Lactate was measured as an index of systemic anaerobic metabolism. RESULTS: There were no significant differences in preoperative hematocrit, oxygen saturation, Qp/Qs, cardiopulmonary bypass duration, minimum temperatures, perfusion flow and pressure, urine output, and depth of anesthesia between the groups. Oxyhemoglobin signal and tissue oxygenation index of near-infrared spectroscopy monitoring were significantly lower in group 1 compared with group 2 (P =.008 and P <.0001, respectively), suggesting inadequate cerebral oxygenation with alpha-stat. Deoxygenated hemoglobin signal was significantly higher in group 1 relative to group 2 (P <.0001). The % systemic pulmonary collateral circulation was significantly lower in group 2 compared with group 1, suggesting a reduced pulmonary collateral circulation with pH-stat (P <.0001, average; group 1, 20.1% +/- 1.2%; group 2; 7.7% +/- 0.7%). Serum lactate was significantly lower in group 2 (P <.0001). CONCLUSIONS: The pH-stat strategy results in an improved environment, including sufficient cerebral oxygenation, decreased systemic pulmonary collateral circulation, and lower lactate level during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease. Future studies should investigate the long-term neurological outcome.  相似文献   

13.
BACKGROUND: Increases in blood flow support oxygen (O2) delivery with hemodilution. However, with alpha-stat management, the cerebral response to hemodilution is blunted. We tested the hypothesis that carbon dioxide (CO2) management is a primary determinant of the cerebral blood flow (CBF) response to hemodilution during hypothermic bypass. METHODS: Following Animal Care Committee approval, 15 dogs underwent bypass at 18 degrees C (pH-stat, n = 7 or alpha-stat, n = 8). Measurements were obtained after progressive hemodilution, and cerebral blood flow was determined by sagittal sinus outflow. Arterial pressure was maintained at 60 to 70 mm Hg. The CBF response to hemodilution and cerebral metabolic rate were compared in the two groups of animals. RESULTS: In both groups, hemodilution increased CBF. At every hematocrit, CBF and O2 delivery in the pH-stat group exceeded that of alpha-stat group, although O2 demand did not differ between groups. While absolute CBF in the pH-stat group was greater at every hematocrit, the relative change in CBF from control and the slope of the CBF-Hct relationship did not differ between groups. CONCLUSIONS: pH-stat management is associated with a greater absolute CBF and a greater ratio of cerebral O2 supply to demand for any degree of hemodilution. However, over the range of hematocrits common in practice, CO2 management per se does not determine the cerebral response to hemodilution.  相似文献   

14.
Twenty-eight adult patients anesthetized with fentanyl, then subjected to hypothermic cardiopulmonary bypass (CPB), were studied to determine the effect of phenylephrine-induced changes in mean arterial pressure (MAP) on cerebral blood flow (CBF). During CPB patients managed at 28 degrees C with either alpha-stat (temperature-uncorrected PaCO2 = 41 +/- 4 mmHg) or pH-stat (temperature-uncorrected PaCO2 = 54 +/- 8 mmHg) PaCO2 for blood gas maintenance received phenylephrine to increase MAP greater than or equal to 25% (group A, n = 10; group B, n = 6). To correct for a spontaneous, time-related decline in CBF observed during CPB, two additional groups of patients undergoing CPB were either managed with the alpha-stat or pH-stat approach, but neither group received phenylephrine and MAP remained unchanged in both groups (group C, n = 6; group D, n = 6). For all patients controlled variables (nasopharyngeal temperature, PaCO2, pump flow, and hematocrit) remained unchanged between measurements. Phenylephrine data were corrected based on the data from groups C and D for the effect of diminishing CBF over time during CPB. In patients in group A CBF was unchanged as MAP rose from 56 +/- 7 to 84 +/- 8 mmHg. In patients in group B CBF increased 41% as MAP rose from 53 +/- 8 to 77 +/- 9 mmHg (P less than 0.001). During hypothermic CPB normocarbia maintained via the alpha-stat approach at a temperature-uncorrected PaCO2 of approximately equal to 40 mmHg preserves cerebral autoregulation; pH-stat management (PaCO2 approximately equal to 57 mmHg uncorrected for temperature, or 40 mmHg when corrected to 28 degrees C) causes cerebrovascular changes (i.e., impaired autoregulation) similar to those changes produced by hypercarbia in awake, normothermic patients.  相似文献   

15.
We performed a retrospective comparative clinical study to evaluate whether pH-stat (n=14) or alpha-stat strategy (n=15) provides better perfusion or oxygen metabolism during hypothermic retrograde cerebral perfusion (RCP). The pH-stat group showed significantly lower superior vena cava (SVC) pressure (21+/-4 versus 27+/-6 mmHg, P<0.0001), apparently lower retrograde cerebral vascular resistance index (7.4+/-2.1 versus 10.1+/-3.8 dynes/s cm(-5) m(-2), P=0.009) but there were no significant differences in RCP flow index, oxygen supply or oxygen extraction between groups. Further studies are necessary to determine which blood gas management is better for RCP, however, pH-stat strategy should be useful in deep hypothermic RCP.  相似文献   

16.
OBJECTIVES: Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. METHODS: Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). RESULTS: The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CONCLUSIONS: CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.  相似文献   

17.
BACKGROUND: Which blood gas strategy to use during deep hypothermic circulatory arrest has not been resolved because of conflicting data regarding the advantage of pH-stat versus alpha-stat. Oxygen pressure field theory suggests that hyperoxia just before deep hypothermic circulatory arrest takes advantage of increased oxygen solubility and reduced oxygen consumption to load tissues with excess oxygen. The objective of this study was to determine whether prevention of tissue hypoxia with this strategy could attenuate ischemic and reperfusion injury. METHODS: Infants who had deep hypothermic circulatory arrest (n = 37) were compared retrospectively. Treatments were alpha-stat and normoxia (group I), alpha-stat and hyperoxia (group II), pH-stat and normoxia (group III), and pH-stat and hyperoxia (group IV). RESULTS: Both hyperoxia groups had less acidosis after deep hypothermic circulatory arrest than normoxia groups. Group IV had less acid generation during circulatory arrest and less base excess after arrest than groups I, II, or III (p < 0.05). Group IV produced only 25% as much acid during deep hypothermic circulatory arrest as the next closest group (group II). CONCLUSIONS: Hyperoxia before deep hypothermic circulatory arrest with alpha-stat or pH-stat strategy demonstrated advantages over normoxia. Furthermore, pH-stat strategy using hyperoxia provided superior venous blood gas values over any of the other groups after circulatory arrest.  相似文献   

18.
Cerebral dysfunction following cardiopulmonary bypass may be aggravated by altered autoregulation of cerebral blood flow. We have used trans-cranial Doppler to measure middle cerebral artery blood flow velocity during cardiopulmonary bypass managed by either pH-stat or alpha-stat acid-base protocols. Fourteen patients were studied, 7 in each group. During bypass at 28 degrees C, patients underwent incremental alterations in mean arterial pressure from 20-90 mmHg, maintaining systemic perfusion flow at 1.75 L/min per m2. The cerebral extraction ratio of oxygen was measured to indicate matching of cerebral blood flow to demand. The pH-stat group showed a pressure passive cerebral circulation with significant (r = 0.999, P less than 0.05) increase in blood flow velocity with increasing arterial pressure. This also occurred in alpha-stat group during the pressure range of 20-50 mmHg (r = 0.951, P less than 0.05). During the pressure range of 50-90 mmHg in alpha-stat group the change in flow velocity (0.16 cm/sec per mmHg) was significantly (P less than 0.05) less than that in pH-stat group (0.58 cm/second per mmHg). The cerebral extraction ratio of oxygen was less depressed in the alpha-stat group than in the pH-stat group, indicating more appropriate matching of cerebral blood flow and tissue demand. These results suggest that, during alpha-stat managed cardiopulmonary bypass, cerebral blood flow velocity is less subject to wide pressure alteration than pH-stat.  相似文献   

19.
BACKGROUND: The optimal pH strategy and hematocrit during cardiopulmonary bypass with deep hypothermic circulatory arrest (DHCA) remain controversial. We studied the interaction of pH strategy and hematocrit and their combined impact on cerebral oxygenation and neurological outcome in a survival piglet model including monitoring by near-infrared spectroscopy (NIRS). METHODS: Thirty-six piglets (9.2+/-1.1 kg) underwent DHCA under varying conditions with continuous monitoring by NIRS (pH-stat or alpha-stat strategy, hematocrit 20% or 30%, DHCA time 60, 80, or 100 minutes). Neurological recovery was evaluated daily. The brain was fixed in situ on postoperative day 4 and a histological score (HS) for neurological injury was assessed. RESULTS: Oxygenated hemoglobin (HbO2) and total hemoglobin signals detected by NIRS were significantly lower with alpha-stat strategy during cooling (p < 0.001), suggesting insufficient cerebral blood supply and oxygenation. HbO2 declined to a plateau (nadir) during DHCA. Time to nadir was significantly shorter in lower hematocrit groups (p < 0.01). Significantly delayed neurologic recovery was seen with alpha-stat strategy compared with pH-stat (p < 0.05). The alpha-stat group had a worse histological score compared with those assigned to pH-stat (p < 0.001). Neurologic impairment was estimated to be over 10 times more likely for animals randomized to alpha-stat compared with pH-stat strategy (odds ratio = 10.7, 95% confidence interval = 3.8 to 25.2). CONCLUSIONS: Combination of alpha-stat strategy and lower hematocrit exacerbates neurological injury after DHCA. The mechanism of injury is inadequate cerebral oxygenation during cooling and a longer plateau period of minimal O2 extraction during DHCA.  相似文献   

20.
Prior reports suggest cerebral blood flow (CBF) responses to changing bypass (systemic) flow rates may differ between alpha-stat and pH-stat management. To compare the effect of blood gas management upon CBF responses to changing systemic flow and pressure, 15 New Zealand White rabbits, anesthetized with fentanyl and diazepam, underwent nonpulsatile cardiopulmonary bypass at 25 degrees C. One group of animals (n = 8) was randomized to alpha-stat blood gas management that maintained arterial carbon dioxide tension (PaCO2) approximately 40 mmHg when measured at 37 degrees C. A second group (n = 7) was managed with pH-stat technique, maintaining PaCO2 approximately 40 mmHg when corrected to the animal's actual temperature. Bypass was initiated at a flow rate of 100 ml.kg-1.min-1 and, after approximately 20 min, control hemodynamic and CBF measurements (radioactive microspheres) were made. Thereafter, bypass flow rate was changed in random order at 15-min intervals to 50, 70, and 100 ml.kg-1.min-1. CBF and hemodynamic measurements were repeated at the end of each period of altered bypass flow. Groups differed significantly with respect to both pHa and PaCO2. There were no significant differences between groups with respect to bypass flow rate, mean arterial pressure (MAP), central venous pressure, temperature, hematocrit, arterial oxygen tension (PaCO2), or bypass duration at any measurement point. MAP decreased significantly, from approximately 80 to approximately 65 mmHg with decreasing bypass flow (P = 0.0001). Over the entire range of bypass flows, CBF decreased with decreasing bypass flow (P = 0.001), and the degree of change was equivalent among regions and between groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号