首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood.

Methods

In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression.

Results

Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin β1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion.

Conclusion

Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.  相似文献   

2.

Background

Alcohol consumption is an established risk factor for breast cancer metastasis. Yet, the mechanism by which alcohol promotes breast cancer metastases is unknown. The ability of cancer cells to invade through tissue barriers (such as basement membrane and interstitial stroma) is an essential step towards establishing cancer metastasis. In the present study, we identify and examine the roles of two genes, Nm23 and ITGA5, in alcohol-induced breast cancer cell invasion.

Methods

Human breast cancer T47D cells were treated with ethanol at various concentrations. Boyden chamber invasion assays were used to measure cellular invasive ability. The mRNA expression level of metastasis suppressor genes including Nm23 was determined by qRT-PCR. ITGA5 was identified using a qRT-PCR array of 84 genes important for cell-cell and cell-extracellular matrix interactions. Nm23 overexpression in addition to Nm23- and ITGA5 knock-down were used to determine the role of the Nm23-ITGA5 pathway on cellular invasive ability of T47D cells. Protein expression levels were verified by Western blot.

Results

Alcohol increased the invasive ability of human breast cancer T47D cells in a dose-dependent manner through the suppression of the Nm23 metastatic suppressor gene. In turn, Nm23 down-regulation increased expression of fibronectin receptor subunit ITGA5, which subsequently led to increased cellular invasion. Moreover, Nm23 overexpression was effective in suppressing the effects of alcohol on cell invasion. In addition, we show that the effects of alcohol on invasion were also inhibited by knock-down of ITGA5.

Conclusions

Our results suggest that the Nm23-ITGA5 pathway plays a critical role in alcohol-induced breast cancer cell invasion. Thus, regulation of this pathway may potentially be used to prevent the establishment of alcohol-promoted metastases in human breast cancers.  相似文献   

3.

Background:

Malignant transformation of melanocytes frequently coincides with an alteration in the expression of cell–cell adhesion molecules (cadherins) and cell-extracellular matrix proteins (integrins). How these two adhesion systems interplay to impact on cell invasion remains to be described in melanoma.

Methods:

Cell adhesion networks were localised by immunofluorescence in human primary cutaneous melanoma, metastatic melanoma in the lymph nodes, and melanoma cell lines. The role of these cell adhesion networks was assessed both in vivo, by analysing their impact on tumour growth in mice, and in vitro, with the use of functional tests including cell aggregation and cell migration.

Results:

We found that α2β1 integrin associates with both E-cadherin and N-cadherin to form two adhesive networks, distinguishable by the interaction—or not—of α2β1 integrin with type I collagen. N-cadherin/α2β1 integrin and E-cadherin/α2β1 integrin networks differently participated towards tumour growth in mice. The N-cadherin/α2β1 integrin network showed specific involvement in melanoma cell invasion and migration towards type I collagen. On the other hand, the E-cadherin/α2β1 network regulated cell–cell adhesion.

Conclusions:

This suggests that different signalling environments can be generated, depending on the type and/or local concentration of cadherin present in the adhesion complex, which potentially leads to differential cell responses. Further clarification of how these adhesive networks are regulated is fundamental to understanding important physiological and pathological processes such as morphogenesis, wound healing, tumour invasion and metastasis.  相似文献   

4.

Background:

Pancreatic stellate cells (PSCs) promote metastasis as well as local growth of pancreatic cancer. However, the factors mediating the effect of PSCs on pancreatic cancer cells have not been clearly identified.

Methods:

We used a modified Boyden chamber assay as an in vitro model to investigate the role of PSCs in migration of Panc1 and UlaPaCa cells and to identify the underlying mechanisms.

Results:

PSC supernatant (PSC-SN) dose-dependently induced the trans-migration of Panc1 and UlaPaCa cells, mainly via haptokinesis and haptotaxis, respectively. In contrast to poly-L-lysine or fibronectin, collagen I resembled PSC-SN with respect to its effect on cancer cell behaviours, including polarised morphology, facilitated adhesion, accelerated motility and stimulated trans-migration. Blocking antibodies against integrin α2/β1 subunits significantly attenuated PSC-SN- or collagen I-promoted cell trans-migration and adhesion. Moreover, both PSC-SN and collagen I induced the formation of F-actin and focal adhesions in cells, which was consistent with the constantly enhanced phosphorylation of focal adhesion kinase (FAK, Tyr397). Inhibition of FAK function by an inhibitor or small interference RNAs significantly diminished the effect of PSC-SN or collagen I on haptotaxis/haptokinesis of pancreatic cancer cells.

Conclusion:

Collagen I is the major mediator for PSC-SN-induced haptokinesis of Panc1 and haptotaxis of UlaPaCa by activating FAK signalling via binding to integrin α2β1.  相似文献   

5.

Introduction

B7-H1 (PD-L1, CD274) is a T cell inhibitory molecule expressed in many types of cancer, leading to immune escape of tumor cells. Indeed, in previous reports we have shown an association of B7-H1 expression with high-risk breast cancer patients.

Methods

In the current study, we used immunohistochemistry, immunofluorescence and Western blot techniques to investigate the effect of neoadjuvant chemotherapy on the expression of B7-H1 in breast cancer cells.

Results

Among tested chemotherapeutic agents, doxorubicin was the most effective in downregulating cell surface expression of B7-H1 in vitro. These results were validated in vivo in a xenograft mouse model, as well as in murine heart tissue known to constitutively express B7-H1. The doxorubicin-dependent cell surface downregulation of B7-H1 was accompanied by an upregulation of B7-H1 in the nucleus. This re-distribution of B7-H1 was concurrent with a similar translocation of phosphorylated AKT to the nucleus. Inhibition of the PI3K/AKT pathway abrogated the doxorubicin-mediated nuclear up-regulation of B7-H1, suggesting an involvement of PI3K/AKT pathway in the nuclear up-regulation of B7-H1. Interestingly, siRNA knock down of B7-H1 lead to an increase in spontaneous apoptosis, as well as doxorubicin-induced apoptosis, which indicates an anti-apoptotic role for B7-H1 in breast cancer cells. The novel discovery of B7-H1 expression in the nuclei of breast cancer cells suggests that B7-H1 has functions other than inhibition of T cells.

Conclusions

Our findings explain the previously reported immunomodulatory effect of anthracyclines on cancer cells, and provide a link between immunoresistance and chemoresistance. Finally these results suggest the use of dual combinatorial agents to inhibit B7-H1 beside chemotherapy, in breast cancer patients.  相似文献   

6.

Introduction

Increased expression of αv integrins is frequently associated with tumor cell adhesion, migration, invasion and metastasis, and correlates with poor prognosis in breast cancer. However, the mechanism by which αv integrins can enhance breast cancer progression is still largely unclear. The effects of therapeutic targeting of αv integrins in breast cancer also have yet to be investigated.

Methods

We knocked down αv integrin in MDA-MB-231 and MCF10A-M4 breast cancer cells, or treated these cells with the αv antagonist GLPG0187. The effects of αv integrin depletion on mesenchymal markers, transforming growth factor-β (TGF-β)/Smad signaling and TGF-β-induced target gene expression were analyzed in MDA-MB-231 cells by RNA analysis or Western blotting. The function of αv integrin on breast cancer cell migration was investigated by transwell assay in vitro, and its effect on breast cancer progression was assessed by both zebrafish and mouse xenografts in vivo. In the mouse model, GLPG0187 was administered separately, or in combination with the standard-of-care anti-resorptive agent zoledronate and the chemotherapeutic drug paclitaxel, to study the effects of combinational treatments on breast cancer metastasis.

Results

Genetic interference and pharmacological targeting of αv integrin with GLPG0187 in different breast cancer cell lines inhibited invasion and metastasis in the zebrafish or mouse xenograft model. Depletion of αv integrin in MDA-MB-231 cells inhibited the expression of mesenchymal markers and the TGF-β/Smad response. TGF-β induced αv integrin mRNA expression and αv integrin was required for TGF-β-induced breast cancer cell migration. Moreover, treatment of MDA-MB-231 cells with non-peptide RGD antagonist GLPG0187 decreased TGF-β signaling. In the mouse xenografts GLPG0187 inhibited the progression of bone metastasis. Maximum efficacy of inhibition of bone metastasis was achieved when GLPG0187 was combined with the standard-of-care metastatic breast cancer treatments.

Conclusion

These findings show that αv integrin is required for efficient TGF-β/Smad signaling and TGF-β-induced breast cancer cell migration, and for maintaining a mesenchymal phenotype of the breast cancer cells. Our results also provide evidence that targeting αv integrin could be an effective therapeutic approach for treatment of breast cancer tumors and/or metastases that overexpress αv integrin.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-015-0537-8) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Melanomas are highly malignant and have high metastatic potential; hence, there is a need for new therapeutic strategies to prevent cell metastasis. In the present study, we investigated whether statins inhibit tumor cell migration, invasion, adhesion, and metastasis in the B16BL6 mouse melanoma cell line.

Methods

The cytotoxicity of statins toward the B16BL6 cells were evaluated using a cell viability assay. As an experimental model, B16BL6 cells were intravenously injected into C57BL/6 mice. Cell migration and invasion were assessed using Boyden chamber assays. Cell adhesion analysis was performed using type I collagen-, type IV collagen-, fibronectin-, and laminin-coated plates. The mRNA levels, enzyme activities and protein levels of matrix metalloproteinases (MMPs) were determined using RT-PCR, activity assay kits, and Western blot analysis, respectively; the mRNA and protein levels of vary late antigens (VLAs) were also determined. The effects of statins on signal transduction molecules were determined by western blot analyses.

Results

We found that statins significantly inhibited lung metastasis, cell migration, invasion, and adhesion at concentrations that did not have cytotoxic effects on B16BL6 cells. Statins also inhibited the mRNA expressions and enzymatic activities of matrix metalloproteinases (MMPs). Moreover, they suppressed the mRNA and protein expressions of integrin α2, integrin α4, and integrin α5 and decreased the membrane localization of Rho, and phosphorylated LIM kinase (LIMK) and myosin light chain (MLC).

Conclusions

The results indicated that statins suppressed the Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) pathways, thereby inhibiting B16BL6 cell migration, invasion, adhesion, and metastasis. Furthermore, they markedly inhibited clinically evident metastasis. Thus, these findings suggest that statins have potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

8.

Introduction

The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells.

Methods

MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation.

Results

JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6 and the Rap1 activator PDZ-GEF2 in MCF7 cells and in primary cultures from breast cancer patients.

Conclusions

Our findings provide compelling evidence of a novel role for JAM-A in driving breast cancer cell migration via activation of Rap1 GTPase and β1-integrin. We speculate that JAM-A over-expression in some breast cancer patients may represent a novel therapeutic target to reduce the likelihood of metastasis.  相似文献   

9.

Background:

Neuropilin-1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) recently implicated in tumour functions.

Methods:

In this study we used a specific antagonist of VEGF binding to the NRP1 b1 domain, EG3287, to investigate the functional roles of NRP1 in human carcinoma cell lines, non-small-cell lung A549, kidney ACHN, and prostate DU145 cells expressing NRP1, and the underlying mechanisms involved.

Results:

EG3287 potently displaced the specific binding of VEGF to NRP1 in carcinoma cell lines and significantly inhibited the migration of A549 and ACHN cells. Neuropilin-1 downregulation by siRNA also decreased cell migration. EG3287 reduced the adhesion of A549 and ACHN cells to extracellular matrix (ECM), and enhanced the anti-adhesive effects of a β1-integrin function-blocking antibody. EG3287 increased the cytotoxic effects of the chemotherapeutic agents 5-FU, paclitaxel, or cisplatin on A549 and DU145 cells, through inhibition of integrin-dependent cell interaction with the ECM.

Conclusions:

These findings indicate that NRP1 is important for tumour cell migration and adhesion, and that NRP1 antagonism enhances chemosensitivity, at least in part, by interfering with integrin-dependent survival pathways. A major implication of this study is that therapeutic strategies targeting NRP1 in tumour cells may be particularly useful in combination with other drugs for combating tumour survival, growth, and metastatic spread independently of an antiangiogenic effect of blocking NRP1.  相似文献   

10.

Background:

Glioma stem-like cell (GSC) properties are responsible for gliomagenesis and recurrence. GSCs are invasive but its mechanism remains to be elucidated. Here, we attempted to identify the molecules that promote invasion in GSCs.

Methods:

Neurospheres and CD133+ cells were collected from glioblastoma (GBM) specimens and glioma cell lines by sphere-formation method and magnetic affinity cell sorting, respectively. Differential expression of gene candidates, its role in invasion and its signaling pathway were evaluated in glioma cell lines.

Results:

Neurospheres from surgical specimens attached to fibronectin and laminin, the receptors of which belong to the integrin family. Integrin α3 was overexpressed in CD133+ cells compared with CD133 cells in all the glioma cell lines (4 out of 4). Immunohistochemistry demonstrated the localisation of integrin α3 in GBM cells, including invading cells, and in the tumour cells around the vessels, which is believed to be a stem cell niche. The expression of integrin α3 was correlated with migration and invasion. The invasion activity of glioma cells was linked to the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2.

Conclusion:

Our results suggest that integrin α3 contributes to the invasive nature of GSCs via ERK1/2, which renders integrin α3 a prime candidate for anti-invasion therapy for GBM.  相似文献   

11.

Background

The esophageal cancer related gene 4 (ECRG4) was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503). ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC) associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC.

Methods

Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting.

Results

The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P < 0.05), which did not affect cell adhesion capacity (P > 0.05). Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P < 0.05), through inducing the increased expression of p53 and p21 proteins.

Conclusion

ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.  相似文献   

12.

Background:

TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown.

Methods:

miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC.

Results:

miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin α5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin α5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin α5 levels.

Conclusion:

We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin α5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.  相似文献   

13.

Background:

Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA-29s (miR-29s; miR-29a/b/c) were significantly downregulated in head and neck squamous cell carcinoma (HNSCC) and were putative tumour-suppressive miRNAs in human cancers. Our aim in this study was to investigate the functional significance of miR-29s in cancer cells and to identify novel miR-29s-mediated cancer pathways and responsible genes in HNSCC oncogenesis and metastasis.

Methods:

Gain-of-function studies using mature miR-29s were performed to investigate cell proliferation, migration and invasion in two HNSCC cell lines (SAS and FaDu). To identify miR-29s-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-29s target genes.

Results:

Restoration of miR-29s in SAS and FaDu cell lines revealed significant inhibition of cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, laminin γ2 (LAMC2) and α6 integrin (ITGA6) genes were candidate targets of the regulation of miR-29s. Luciferase reporter assays showed that miR-29s directly regulated LAMC2 and ITGA6. Silencing of LAMC2 and ITGA6 genes significantly inhibited cell migration and invasion in cancer cells.

Conclusion:

Downregulation of miR-29s was a frequent event in HNSCC. The miR-29s acted as tumour suppressors and directly targeted laminin–integrin signalling. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and metastasis and suggests novel therapeutic strategies for the disease.  相似文献   

14.
15.

Background:

Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer.

Methods:

This study investigates the role of type I collagen in specifying the colorectal cancer cell phenotype. The effect of type I collagen on morphology, localisation of cell–cell adhesion proteins, differentiation and stem cell-like characteristics was examined in a panel of human colorectal carcinoma cell lines.

Results:

Human colorectal carcinoma cells grown on type I collagen in serum-free medium show an epithelial–mesenchymal-like transition (EMT-like), assuming a more flattened less cohesive morphology. Type I collagen downregulates E-cadherin and β-catenin at cell–cell junctions. Furthermore, type I collagen inhibits differentiation, increases clonogenicity and promotes expression of stem cell markers CD133 and Bmi1. Type I collagen effects were partially abrogated by a function-blocking antibody to α2 integrin.

Conclusion:

Together, these results indicate that type I collagen promotes expression of a stem cell-like phenotype in human colorectal cancer cells likely through α2β1 integrin.  相似文献   

16.

Background:

Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear.

Methods and results:

Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and U251 cell lines and primary SU3 glioma cells. Western blot analysis and immunofluorescence staining revealed that IGFBP-2 promoted ERK phosphorylation and nuclear translocation. Moreover, blocking ERK activation using the inhibitor PD98059 markedly reduced the effects of IGFBP-2 in glioma cells. As IGFBP-2 has an integrin-binding domain, the contribution of integrin β1 to these IGFBP-2-mediated processes was examined. Neutralisation or knockdown of the expression of integrin β1 inhibited IGFBP-2-induced ERK activation, cell proliferation, and cell invasion. Significantly, IGFBP-2 induced temozolomide resistance in glioma cells in an integrin β1/ERK-dependent manner.

Conclusions:

Exogenous IGFBP-2 induces proliferation, invasion, and chemoresistance in glioma cells via integrin β1/ERK signaling, suggesting that targeting this pathway could represent a potential therapeutic strategy for the treatment of gliomas. The identification of this pathway in glioma progression provides insight into the mechanism by which serum IGFBP-2 levels can predict the prognosis of glioma patients.  相似文献   

17.

Background:

PI3K/Akt (PKB) pathway has been shown in several cell types to be activated by ligands to cell surface integrins, leading to the metastasis of tumour cells. The signalling pathways involved in the metastatic spread of human scirrhous gastric carcinoma cells have not been defined.

Methods:

The role of the PI3K/Akt pathway in an extensive peritoneal-seeding cell line, OCUM-2MD3 and a parental cell line, OCUM-2M, was investigated by assessing in vitro adhesion and spreading assay, and in vivo peritoneal metastatic model. We also examined the correlation of PI3K/Akt pathway with integrin signals by immunoprecipitations, using cells by transfection with mutant p85 (Δp85).

Results:

Adhesiveness and spreading of OCUM-2MD3 cells on collagen type IV was significantly decreased by PI3K inhibitors and expression of mutant p85, but not by inhibitors of protein kinase C (PKC) or extracellular signal-regulated kinase (ERK). Immunoprecipitation studies indicated that the PI3K/Akt pathway was associated with integrin signalling through Src and vinculin. In an in vivo experimental metastasis model, p85 inhibition reduced peritoneal metastasis of OCUM-2MD3 cells.

Conclusion:

PI3K/Akt signalling may be required for integrin-dependent attachment and spreading of scirrhous gastric carcinoma cells, and would be translated into generating better strategies to optimise their use in cancer clinical trials.  相似文献   

18.

Background:

Gestational trophoblastic diseases (GTDs) are related to trophoblasts, and human chorionic gonadotropin (hCG) is secreted by GTDs as well as normal placentas. However, the asparagine-linked sugar chains on hCG contain abnormal biantennary structures in invasive mole and choriocarcinoma, but not normal pregnancy or hydatidiform mole. N-acetylglucosaminyltransferase-IV (GnT-IV) catalyses β1,4-N-acetylglucosamine branching on asparagine-linked oligosaccharides, which are consistent with the abnormal sugar chain structures on hCG.

Methods:

We investigated GnT-IVa expression in GTDs and placentas by immunohistochemistry, western blot, and RT–PCR. We assessed the effects of GnT-IVa knockdown in choriocarcinoma cells in vitro and in vivo.

Results:

The GnT-IVa was highly expressed in trophoblasts of invasive mole and choriocarcinoma, and moderately in extravillous trophoblasts during the first trimester, but not in hydatidiform mole or other normal trophoblasts. The GnT-IVa knockdown in choriocarcinoma cells significantly reduced migration and invasive capacities, and suppressed cellular adhesion to extracellular matrix proteins. The extent of β1,4-N-acetylglucosamine branching on β1 integrin was greatly reduced by GnT-IVa knockdown, although the expression of β1 integrin was not changed. In vivo studies further demonstrated that GnT-IVa knockdown suppressed tumour engraftment and growth.

Conclusion:

These findings suggest that GnT-IVa is involved in regulating invasion of choriocarcinoma through modifications of the oligosaccharide chains of β1 integrin.  相似文献   

19.

Background

Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy.

Methods

In silico proteomics and genomics, immunohistochemistry, and immunofluorescence microscopy validation were performed. RNA interference was used to ascertain the functional role of the overexpressed candidate target protein.

Results

In silico proteomics and genomics revealed pre-B-cell leukemia homeobox (PBX) interacting protein 1 (PBXIP1) overexpression in adult and childhood high-grade glioma and ependymoma compared with normal brain. PBXIP1 is a PBX-family interacting microtubule-binding protein with a putative role in migration and proliferation of cancer cells. Immunohistochemical studies in glial tumors validated PBXIP1 expression in astrocytoma and ependymoma but not in oligodendroglioma. RNAi-mediated PBXIP1-knockdown in glioblastoma cell lines strongly reduced proliferation and migration and induced morphological changes, indicating that PBXIP1 knockdown decreases glioma cell viability and motility through rearrangements of the actin cytoskeleton. Furthermore, expression of PBXIP1 was observed in radial glia and astrocytic progenitor cells in human fetal tissues, suggesting that PBXIP1 is an astroglial progenitor cell marker during human embryonic development.

Conclusion

PBXIP1 is a novel protein overexpressed in astrocytoma and ependymoma, involved in tumor cell proliferation and migration, that warrants further exploration as a novel therapeutic target in these tumors.  相似文献   

20.

Background:

Many cancers spread through lymphatic routes, and mechanistic insights of tumour intravasation into the lymphatic vasculature and targets for intervention are limited. The major emphasis of research focuses currently on the molecular biology of tumour cells, while still little is known regarding the contribution of lymphatics.

Methods:

Breast cancer cell spheroids attached to lymphendothelial cell (LEC) monolayers were used to investigate the process of intravasation by measuring the areas of ‘circular chemorepellent-induced defects'' (CCID), which can be considered as entry gates for bulky tumour intravasation. Aspects of tumour cell intravasation were furthermore studied by adhesion assay, and siRNA-mediated knockdown of intracellular adhesion molecule-1 (ICAM-1). Replacing cancer spheroids with the CCID-triggering compound 12(S)-hydroxyeicosatetraenoic acid (HETE) facilitated western blot analyses of Bay11-7082- and baicalein-treated LECs.

Results:

Binding of LECs to MCF-7 spheroids, which is a prerequisite for CCID formation, was mediated by ICAM-1 expression, and this depended on NF-κB and correlated with the expression of the prometastatic factor S100A4. Simultaneous inhibition of NF-κB with Bay11-7082 and of arachidonate lipoxygenase (ALOX)-15 with baicalein prevented CCID formation additively.

Conclusion:

Two mechanisms contribute to CCID formation: ALOX15 via the generation of 12(S)-HETE by MCF-7 cells, which induces directional migration of LECs, and ICAM-1 in LECs under control of NF-κB, which facilitates adhesion of MCF-7 cells to LECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号