首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total dissolved solids (TDS) represent the sum of all common ions (e.g., Na, K, Ca, Mg, chloride, sulfate, and bicarbonate) in freshwater. Currently, no federal water quality criteria exist for the protection of aquatic life for TDS, but because the constituents that constitute TDS are variable, the development of aquatic life criteria for specific ions is more practical than development of aquatic life criteria for TDS. Chloride is one such ion for which aquatic life criteria exist; however, the current aquatic life criteria dataset for chloride is more than 20 years old. Therefore, additional toxicity tests were conducted in the current study to confirm the acute toxicity of chloride to several potentially sensitive invertebrates: water flea (Ceriodaphnia dubia), fingernail clams (Sphaerium simile and Musculium transversum), snail (Gyraulus parvus), and worm (Tubifex tubifex), and determine the extent to which hardness and sulfate modify chloride toxicity. The results indicated a significant ameliorating effect of water hardness (calcium and magnesium) on chloride toxicity for all species tested except the snail; for example, the 48-h chloride median lethal concentration (LC50) for C. dubia at 50?mg/L hardness (977?mg Cl(-) /L) was half that at 800?mg/L hardness (1,836?mg Cl(-) /L). Conversely, sulfate over the range of 25 to 600?mg/L exerted a negligible effect on chloride toxicity to C. dubia. Rank order of LC50 values for chloride at a given water hardness was in the order (lowest to highest): S. simile?相似文献   

2.
The Ekati Diamond Mine, located approximately 300 km northeast of Yellowknife in Canada's Northwest Territories, uses mechanical crushing and washing processes to extract diamonds from kimberlite ore. The processing plant's effluent contains kimberlite ore particles (< or =0.5 mm), wastewater, and two wastewater treatment polymers, a cationic polydiallydimethylammonium chloride (DADMAC) polymer and an anionic sodium acrylate polyacrylamide (PAM) polymer. A series of acute (48-h) and chronic (7-d) toxicity tests determined the processed kimberlite effluent (PKE) was chronically, but not acutely, toxic to Ceriodaphnia dubia. Reproduction of C. dubia was inhibited significantly at concentrations as low as 12.5% PKE. Toxicity identification evaluations (TIE) were initiated to identify the toxic component of PKE. Ethylenediaminetetraacetic acid (EDTA), sodium thiosulfate, aeration, and solid phase extraction with C-18 manipulations failed to reduce PKE toxicity. Toxicity was reduced significantly by pH adjustments to pH 3 or 11 followed by filtration. Toxicity testing with C. dubia determined that the cationic DADMAC polymer had a 48-h median lethal concentration (LC50) of 0.32 mg/L and 7-d median effective concentration (EC50) of 0.014 mg/L. The anionic PAM polymer had a 48-h LC50 of 218 mg/L. A weight-of-evidence approach, using the data obtained from the TIE, the polymer toxicity experiments, the estimated concentration of the cationic polymer in the kimberlite effluent, and the behavior of kimberlite minerals in pH-adjusted solutions provided sufficient evidence to identify the cationic DADMAC polymer as the toxic component of the diamond mine PKE.  相似文献   

3.
Copper toxicity to the freshwater algae Selenastrum capricornutum and Chlorella sp. and the marine algae Phaeodactylum tricornutum and Dunaliella tertiolecta was investigated using different parameters measured by flow cytometry: cell division rate inhibition, chlorophyll a fluorescence, cell size (i.e., light-scattering), and enzyme activity. These parameters were assessed regarding their usefulness as alternative endpoints for acute (1-24 h) and chronic (48-72 h) toxicity tests. At copper concentrations of 10 micrograms/L or less, significant inhibition (50%) of the cell division rate was observed after 48- and 72-h exposures for Chlorella sp., S. capricornutum, and P. tricornutum. Bioassays based on increases in algal cell size were also sensitive for Chlorella sp. and P. tricornutum. Copper caused both chlorophyll a fluorescence stimulation (48-h EC50 of 10 +/- 1 micrograms Cu/L for P. tricornutum) and inhibition (48-h EC50 of 14 +/- 6 micrograms Cu/L for S. capricornutum). For acute toxicity over short exposure periods, esterase activity in S. capricornutum using fluorescein diacetate offered a rapid alternative (3-h EC50 of 90 +/- 40 micrograms Cu/L) to growth inhibition tests for monitoring copper toxicity in mine-impacted waters. For all the effect parameters measured, D. tertiolecta was tolerant to copper at concentrations up to its solubility limit in seawater. These results demonstrate that flow cytometry is a useful technique for toxicity testing with microalgae and provide additional information regarding the general mode of action of copper (II) to algal species.  相似文献   

4.
The aquatic toxicity of para-methylstyrene was evaluated in acute toxicity studies using fathead minnows (Pimephales promelas), daphnids (Daphnia magna), and freshwater green algae (Selenastrum capricornutum). Static tests were performed in sealed containers with no headspace to minimize loss of this volatile compound to the atmosphere. Concentrations of para-methylstyrene in test solutions were analyzed by gas chromatography equipped with a purge and trap module and flame ionization detection. Test results are based on mean, measured concentrations. para-Methylstyrene was moderately toxic to fathead minnows, daphnids, and green algae. The 96-h LC(50) and NOEC for fathead minnows were 5.2 and 2.6 mg/L, respectively. The 48-h EC(50) and NOEC for daphnids were 1.3 and 0.81 mg/L, respectively. The 72-h EC(50) and NOEC for green algae were 2.3 and 0.53 mg/L, respectively; these effects were algistatic rather than algicidal. para-Methylstyrene's potential impact on aquatic ecosystems is significantly mitigated by its volatility, an important fate process.  相似文献   

5.
Contamination of surface waters by pharmaceutical chemicals has raised concern among environmental scientists because of the potential for negative effects on aquatic organisms. Of particular importance are pharmaceutical compounds that affect the nervous or endocrine systems because effects on aquatic organisms are possible at low environmental concentrations. Selective serotonin reuptake inhibitors (SSRIs) are drugs used to treat clinical depression in humans, and have been detected in low concentrations in surface waters. In this investigation, the acute and chronic toxicity of five SSRIs (fluoxetine, Prozac; fluvoxamine, Luvox; paroxetine, Paxil; citalopram, Celexa; and sertraline, Zoloft) were evaluated in the daphnid Ceriodaphnia dubia. For each SSRI, the 48-h median lethal concentration (LC50) was determined in three static tests with neonate C. dubia, and chronic (8-d) tests were conducted to determine no-observable-effect concentrations (NOEC) and lowest-observable-effect concentrations (LOEC) for reproduction endpoints. The 48-h LC50 for the SSRIs ranged from 0.12 to 3.90 mg/L and the order of toxicity of the compounds was (lowest to highest): Citalopram, fluvoxamine, paroxetine, fluoxetine, sertraline. Mortality data for the 8-d chronic tests were similar to the 48-h acute data. The SSRIs negatively affected C. dubia reproduction by reducing the number of neonates per female, and for some SSRIs, by reducing the number of broods per female. For sertraline, the most toxic SSRI, the LOEC for the number of neonates per female was 0.045 mg/L and the NOEC was 0.009 mg/L. Results indicate that SSRIs can impact survival and reproduction of C. dubia; however, only at concentrations that are considerably higher than those expected in the environment.  相似文献   

6.
This study evaluated acute and chronic nickel (Ni) toxicity to Ceriodaphnia dubia and Hyalella azteca with the objective of generating information for the development of a biotic ligand model for Ni. Testing with C. dubia was used to evaluate the effect of ambient hardness on Ni toxicity, whereas the larger H. azteca was used to derive lethal body burden information for Ni toxicity. As was expected, acute C. dubia median lethal concentrations (LC50s) for Ni increased with increasing water hardness. The 48-h LC50s were 81, 148, 261, and 400 microg/L at hardnesses of 50, 113, 161, and 253 mg/L (as CaCO3), respectively. Ceriodaphnia dubia was found to be significantly more sensitive in chronic exposures than other species tested (including other daphnids such as Daphnia magna); chronic toxicity was less dependent on hardness than was acute toxicity. Chronic 20% effective concentrations (EC20s) were estimated at <3.8, 4.7, 4.0, and 6.9 microg/L at hardnesses of 50, 113, 161, and 253 mg/L, respectively. Testing with H. azteca resulted in a 96-h LC50 of 3,045 microg/L and a 14-d EC20 of 61 microg/L at a hardness of 98 mg/L (as CaCO3). Survival was more sensitive than was growth in the chronic study with H. azteca. The 20% lethal accumulation effect level based on measured Ni body burdens was 247 nmol/g wet weight.  相似文献   

7.
The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.  相似文献   

8.
In Belo Horizonte, Minas Gerais, Brazil, the snail Biomphalaria straminea was found in the Pampulha region. Recently the snail was found in ditches in the old Santa Lúcia Reservoir, a now-extinct focus of schistosomiasis transmission by B. glabrata. The snails were collected and examined to verify whether they were naturally infected with Schistosoma mansoni. Negative specimens were used for breeding or infection with the LE strain of S. mansoni from the laboratory and another strain obtained from eggs found in the feces of a schoolchild (VGS) from Belo Horizonte. Among the 1890 snails collected from 1994 to 1995, none were infected with S. mansoni. Among 87 snails collected and exposed to the LE strain, 9 (10.3%) shed cercariae; among 83 snails from F1, and exposed to LE, 10 (12.0%) shed cercariae. Among 88 snails exposed to VGS, 10 (11.3%) shed cercariae. In Belo Horizonte, schistosomiasis is transmitted by B. glabrata and B. tenagophila. However, currently there exists the risk of appearance of a focus in which B. straminea could be the host if prophylactic measures are not taken by the authorities responsible for the construction of a park and lake at that site.  相似文献   

9.
Perfluorooctane sulfonate (PFOS) is an anthropogenic compound found in trace amounts in many environmental compartments far from areas of production. This, along with the highly persistent nature of PFOS, presents a concern for possible effects in aquatic ecosystems. The objective of this study was to determine the toxicity of PFOS in representative freshwater organisms. Toxicity testing using standard laboratory protocols was performed on the green algae Selenastrum capricornutum and Chlorella vulgaris, the floating macrophyte Lemna gibba, and the invertebrates Daphnia magna and Daphnia pulicaria. No observable effect concentration (NOEC) values were generated from the most sensitive endpoints for all organisms. Autotroph inhibition of growth NOEC values were 5.3, 8.2, and 6.6 mg/L for S. capricornutum, C. vulgaris, and L. gibba, respectively. The 48-h immobility NOEC values for D. magna and D. pulicaria were 0.8 and 13.6 mg/L, respectively. In comparison to immobility, the 21-day lethality NOEC for D. magna was 5.3 mg/L. Based on effect (immobility) values, the most sensitive of all test organisms was D. magna. The most sensitive organism based on 50% inhibition of growth (IC(50)) was L. gibba, with an IC(50) value of 31.1 mg/L determined from wet weight. This is 4.3 times less than the LC(50) for D. pulicaria, which was 134 mg/L. Significant adverse effects (p < or = 0.05) were observed for all organisms in concentrations >134 mg/L. The results indicate that under laboratory conditions PFOS is acutely toxic to freshwater organisms at concentrations at or near 100 mg/L. Based on known environmental concentrations of PFOS, which occur in the low ng/L to low microg/L range, there is no apparent risk to freshwater systems. However, further work is required to investigate long-term effects in these and other freshwater organisms.  相似文献   

10.
Investigation of toxicity of mustard compounds to aquatic organisms has been limited although their effects on terrestrial mammal species have been well studied. In this study, the 48-h LC50 values of nitrogen mustard (HN2) are reported for two aquatic invertebrate species (Daphnia magna and Ceriodaphnia dubia) and for one fish species (Pimephales promelas). Mean LC50 values to C. dubia, D. magna, and P. promela were 1.12, 2.52, and 98.86 mg/L, respectively. C. dubia was the species most sensitive to HN2. Seven-day lethal and sublethal tests with P. promelas and C. dubia were also conducted. In chronic tests, fathead minnow growth was significantly reduced by 2.50 mg/L HN2, while C. dubia reproduction was significantly affected by 7.81 mug/L HN2. These adverse effects on aquatic organisms caused by lower-level concentrations of HN2 indicate that a possible aquatic ecosystem disaster could occur either after a chemical spill or during chemical warfare.  相似文献   

11.
The acute toxicity of sulfate to Ceriodaphnia dubia, Chironomus tentans, Hyalella azteca, and Sphaerium simile was assessed to support potential updates of Illinois (USA) sulfate criteria for the protection of aquatic life. The mean lethal concentrations to 50% of a sample population (LC50s), expressed as mg S04(-2)/L, in moderately hard reconstituted water (MHRW) were as follows: 512 mg/L for H. azteca, 2,050 mg/L for C. dubia, 2,078 mg/L for S. simile, and 14,134 mg/L for C. tentans. At constant sulfate (approximately 2,800 mg/L) and hardness (106 mg/L), survival of H. azteca was positively correlated with chloride concentration. Hardness also was found to ameliorate sodium sulfate toxicity to C. dubia and H. azteca, with LC50s for C. dubia increasing from 2,050 mg SO4(-2)/L at hardness = 90 mg/L to 3,516 mg SO4(-2)/L at hardness = 484 mg/L. Using a reformulated MHRW with a similar hardness but higher chloride concentration and different calcium to magnesium ratio than that in standard MHRW, the mean LC50 for H. azteca increased to 2,855 mg/L, and the LC50 for C. dubia increased to 2,526 mg/L. Acclimation of C. dubia to 500 and 1,000 mg SO4(-2)/L for several generations nominally increased mean LC50 values compared with those cultured in standard MHRW.  相似文献   

12.
This paper presents the results of a number of field and laboratory studies to evaluate the environmental impact of aircraft deicing and anti-icing fluids (ADAFs) on aquatic systems. Both 5-methyl-1H-benzotriazole (5-MeBt) and 4-methyl-1H-benzotriazole (4-MeBt), known additives to ADAFs, were found in whole-tissue extracts from minnows placed downstream of an effluent outfall that receives ADAF contaminated runoff from General Mitchell International Airport (Milwaukee, WI, USA). Neither of these compounds was detected in tissues from minnows placed upstream from the airport. A toxicity assessment of water collected during the minnow exposure studies utilizing Hyalella azteca, Pimephales promelas, and Ceriodaphnia dubia showed greater toxicity in a secondary airport outfall containing ADAFs when compared to upstream non-ADAF-contaminated samples. In two 28-d static renewal tests using 5-MeBt laboratory-fortified waters, 5-MeBt was detected in whole-tissue extracts of minnows at all concentrations tested. In studies using laboratory water fortified with 5-MeBt, the median lethal concentration (LC50) of 5-MeBt for P. promelas was found to be 22.0 mg/L. The LC50 for C. dubia to 5-MeBt laboratory-fortified water was found to be 81.3 mg/L. The 25% inhibition concentration (IC25) of 5-MeBt for the green alga Selenastrum capricornutum was 23.2 mg/L, and the average median effective concentration (EC50) for Microtox was 4.25 mg/L. The results of these field and lab studies indicate that additives, other than glycols, used in aircraft deicing fluids can be found in aquatic systems and may be of greater risk than previously believed.  相似文献   

13.
The use of chemical inhibitors/inducers is one of the strategies employed to determine whether a particular metabolic pathway is involved in the metabolism of a xenobiotic. The objective of this study was to assess the role of piperonyl butoxide (PBO) on the toxicity of an organophosphorus insecticide, chlorpyrifos (CPF) to two species, Ceriodaphnia dubia (waterflea) and Xenopus laevis (South African clawed frog). Chlorpyrifos was highly toxic to C. dubia (48-h LC50: 0.05 microg/L) in comparison with X. laevis (96-h LC50: 2410 microg/L). Piperonyl butoxide at 200 microg/L reduced the toxicity of chlorpyrifos to C. dubia by a factor of 6. Piperonyl butoxide at 3000 microg/L also reduced the toxicity of CPF to X. laevis with respect to mortality and malformations. Acetylcholinesterase (AChE) activity was used as a biomarker to further assess the role of PBO in chlorpyrifos toxicity. X. laevis exposed to CPF and PBO exhibited a biphasic response in terms of AChE activity with an initial increase in the AChE activity followed by a drastic decrease. The results from the present study indicate that C. dubia and X. laevis have the capability to metabolize chlorpyrifos via cytochromes P450 mediated reactions. The results also indicate that the use of the biomarker AChE is useful in determining metabolic processes of organophosphorus insecticides, which require metabolic activation.  相似文献   

14.
Studies were performed to evaluate the toxic effects of ammonium sulphate and urea (chemical fertilizers currently applied in ricelands of Cameroon) against eggs, juveniles, and adults of two species of freshwater snails (Helisoma trivolvis andBiomphalaria havanensis). Results obtained from ammonium sulphate tests indicated 24-h LC50 values of 558 mg/L and 669 mg/L for eggs; 393 mg/L and 526 mg/L for juveniles, and 701 mg/L and 657 mg/L for adults ofH. trivolvis andB. havanensis, respectively. Similar analysis with urea revealed LC50 values of 14,241 mg/L and 13,532 mg/L for eggs; 18,255 mg/L and 24,504 mg/L for juveniles and 30,060 mg/L and 26,024 mg/L for adults ofH. trivolvis andB. havanensis, respectively.Following 48 h exposure, the concentrations of ammonium sulphate killing 100% of snails were 1,250 mg/L and 1,000 mg/L for the adults ofH. trivolvis and ofB. havanensis, respectively. Those of urea were computed to be 25,000 mg/L forH. trivolvis and 35,000 mg/L forB. havanensis. In rice culture in Cameroon, these fertilizers are applied at doses of 100 kg/ha (ammonium sulphate) and of 150 kg/ha (urea); hence, the above found concentrations lethal to snails appeared to be 10 to 13 times (ammonium sulphate) and to be 165 to 235 times (urea) higher assuming an average water depth of 10 cm in these ricefields. Therefore, the use of ammonium sulphate and urea as chemical fertilizers in ricelands of the Republic of Cameroon might adversely affect the survival of freshwater snails only in the case of spills or of stressful environmental conditions. Under normal laboratory conditions, both chemicals show a low molluscicidal activity with urea being about 25 to 35 times less potent than ammonium sulphate.  相似文献   

15.
The extraction of alumina from bauxite produces a highly toxic residue, termed bauxite refinery residue (BRR) or red mud. The toxicity of this material is due to chemical and biological effects of high pH, alkalinity, electrical conductivity (EC), and Na(+) and Al(3+) concentrations. Several neutralization techniques may allow BRR to be used for environmental remediation. The present study investigated standardized 48-h acute toxicity tests with a freshwater cladoceran, Ceriodaphnia dubia, and a marine amphipod, Paracalliope australis, against raw supernatant BRR liquor (RL) versus liquors neutralized with acid (ANL), CO(2) (CNL), seawater (SNL), and a hybrid method (HNL). Based on 48-h LC50 values, the toxicity of the liquors to C. dubia increased in the following order; HNL ≤ SNL< ANL ≤ CNL < RL, with comparable responses from P. australis. The high toxicity of RL likely is due to high pH (≈ 12), alkalinity, and Al concentration. Toxicity of CNL likely is due to high EC and alkalinity. Sulfate and Na(+) concentrations are considered sources of toxicity in ANL. Seawater-neutralized liquor and HNL were considerably less toxic to both test species. These data provide evidence of the acute lethal toxicity of raw supernatant liquor from BRR and four neutralized supernatant liquors to the freshwater cladoceran C. dubia and the marine amphipod P. australis, providing valuable baselines for further ecotoxicological investigations of BRR materials in aquatic environments.  相似文献   

16.
This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.  相似文献   

17.
Irgarol 1051 is an algistatic compound used in copper-based antifoulant paints. It is a widespread and persistent pollutant of the estuarine environment. Ilyanassa obsoleta, the Eastern mud snail, is a common intertidal gastropod that inhabits mud flats and salt marshes along the east coast of North America. It is an important inhabitant of the estuarine environment; contributing to nutrient regeneration and regulating microbial processes in the sediments. The toxicity of irgarol to estuarine gastropods has not been previously examined, although they have the potential to be exposed to antifoulants through both aqueous and sediment routes. The objectives of this study were to evaluate irgarol’s effects on I. obsoleta survival, reproductive status (imposex occurrence and testosterone levels), chemoreceptive function, and cellular respiration (cytochrome-c oxidase activity). Irgarol was moderately toxic to I. obsoleta; adult aqueous 96-h LC50 = 3.73 mg/L, larval aqueous 96-h LC50 = 3.16 mg/L, and adult sediment 10-day LC50 = 12.21 mg/kg. Larval snails were not significantly more sensitive to irgarol than adult snails. A chronic 45-day aqueous irgarol exposure (0.005–2.5 mg/L) did not induce imposex or affect free-testosterone levels. The 45-day chronic LC50 of 1.88 mg/L was significantly lower than the 96-h acute value. A 96-h acute aqueous irgarol exposure (0.375–1.5 mg/L) caused a decrease in normal response to chemosensory cues such as the presence of food or predators. There was a significant increase in cytochrome-c oxidase activity at 2.5 mg/L, which might indicate irgarol’s disruption of the mitochondrial membrane and subsequently ATP synthesis. Although the toxicity values determined for I. obsoleta exceeded irgarol concentrations measured in surface waters, results from this toxicity assessment will provide valuable information to environmental resource managers faced with decisions regarding the use and regulation of antifoulant paints in the coastal zone.  相似文献   

18.
The toxicity of 39 laundry detergent components including surfactants, enzymes, builders, fabric brighteners, fillers, and coloring agents to the cladoceran Ceriodaphnia cf. dubia was determined. The difference between the most and the least toxic components was approximately 17,000-fold and 1,000,000-fold for the mg/L and mmol/L EC50 data, respectively. Two of the components had high toxicity (EC50 values < 1 mg/L), 11 moderate toxicity (EC50 values between 1 and 10 mg/L), and the remaining 26 components had low toxicity (EC50 values > 10 mg/L). Analysis revealed that mixtures of the components interacted antagonistically, additively, and synergistically. On a molarity basis the most toxic group of compounds was the surfactants followed by the brighteners. The most toxic individual components included sodium carboxymethyl cellulose, sodium silicate solution, four brighteners, sodium perborate tetrahydrate, and the surfactants. Many of the most toxic components, however, contributed very little to the toxicity of the detergents due to being present in the detergents at low concentrations. The main contributors to the toxicity of detergents were the sodium silicate solution and the surfactants-with the remainder of the components contributing very little to detergent toxicity. The potential for acute aquatic toxic effects due to the release of secondary or tertiary sewage effluents containing the breakdown products of laundry detergents may frequently be low. However, untreated or primary treated effluents containing detergents may pose a problem. Chronic and/or other sublethal effects that were not examined in this study may also pose a problem.  相似文献   

19.
Fipronil is a phenylpyrazole insecticide increasingly used in applications such as rice culture, turf grass management, and residential pest control, with a high probability to contaminate aquatic environments. As a chiral pesticide, fipronil is released to the environment as a racemic mixture (equal amounts of optical isomers called enantiomers). Enantiomers can have different toxicological and biological activity; however, information on these differences, which is necessary for accurate risk assessment of chiral pesticides, is limited. Here we examine the acute toxicity of fipronil enantiomers, the racemate, and its photoproduct (desulfinyl fipronil) to Ceriodaphnia dubia. The 48-h median lethal concentration (LC50) values based on measured concentrations of each compound indicate the (+) enantiomer (LC50 = 10.3 +/- 1.1 microg/L, mean +/- standard error [SE]) was significantly more toxic to C. dubia than either the (-) enantiomer (LC50 = 31.9 +/- 2.2 microg/L) or racemate (LC50 = 17.7 +/- 1.3 microg/L). To account for any potential loss of fipronil through photolysis, tests were performed under light (fluorescent) and dark exposure conditions, and no significant differences in toxicity were observed. Desulfinyl fipronil, the major photodegradation product, which is not chiral, was detected at < 1% of each parent compound in test solutions after 48 h. Separate toxicity tests with desulfinyl fipronil found a > 20-fold higher LC50 (355 +/- 9.3 microg/L) compared to the fipronil racemate, suggesting lower adverse effects to C. dubia as a result of fipronil photolysis. The present results suggest selection of the (-) enantiomer in fipronil production for lower impacts to C. dubia; however, the consistency and relevancy of fipronil's enantiomer-specific activity at both acute and chronic levels of concern to additional target and nontarget species needs further consideration.  相似文献   

20.
Potassium permanganate (KMnO4) is used worldwide in freshwater pond aquaculture for treatment and prevention of waterborne external parasitic, bacterial, and fungal diseases. Nevertheless, KMnO4 has not been approved by the U.S. Food and Drug Administration, and insufficient information exists to allow evaluation of the environmental risk of KMnO4 exposures. Limited data exist concerning KMnO4 toxicity to nontarget species in systems receiving aquaculture effluent from treated ponds. The goal of this research is to generate effects data for use in developing an ecological risk assessment of KMnO4. Toxicity tests were used to compare the relative sensitivities of five standard aquatic test species to KMnO4. Acute toxicity test results using synthetic moderately hard water show static 96-h mean median lethal concentration (LC50) values +/- standard deviation (SD) of 0.058 +/- 0.006 mg/L for Ceriodaphnia dubia, 0.053 +/- 0.009 mg/L for Daphnia magna, 2.13 +/- 0.07 mg/L for Pimephales promelas, 4.74 +/- 1.05 mg/L for Hyalella azteca, and 4.43 +/- 0.79 mg/L for Chironomus tentans. Most of these values are below the recommended KMnO4 treatment rate of at least 2.0 mg/L or 2.5 times the water's potassium permanganate demand (PPD; an estimation of the available reducing agents in the exposure water), suggesting significant environmental risk. However, repeating these laboratory tests using pond water resulted in significantly reduced toxicity, with static 96-h mean LC50 values (+/-SD) of 2.39 +/- 0.36 mg/L for C. dubia, 1.98 +/- 0.12 mg/L for D. magna, 11.22 +/- 1.07 mg/L for P. promelas, 13.55 +/- 2.24 mg/L for H. azteca, and 12.30 +/- 2.83 mg/L for C. tentans. The PPD of synthetic moderately hard water was 0.329 +/- 0.114 mg/L; however, pond water PPD was 5.357 +/- 0.967 mg/L. The effective disease-treating dose based on 2.5 times the PPD would thus be 0.823 and 13.392 mg KMnO4/L, respectively, exceeding the LC50 for most of these nontarget organisms, even in pond water, immediately after treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号