首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of antiscatter x-ray grids on image quality in cone-beam computed tomography (CT) is evaluated through broad experimental investigation for various anatomical sites (head and body), scatter conditions (scatter-to-primary ratio (SPR) ranging from approximately 10% to 150%), patient dose, and spatial resolution in three-dimensional reconstructions. Studies involved linear grids in combination with a flat-panel imager on a system for kilovoltage cone-beam CT imaging and guidance of radiation therapy. Grids were found to be effective in reducing x-ray scatter "cupping" artifacts, with heavier grids providing increased image uniformity. The system was highly robust against ring artifacts that might arise in CT reconstructions as a result of gridline shadows in the projection data. The influence of grids on soft-tissue detectability was evaluated quantitatively in terms of absolute contrast, voxel noise, and contrast-to-noise ratio (CNR) in cone-beam CT reconstructions of 16 cm "head" and 32 cm "body" cylindrical phantoms. Imaging performance was investigated qualitatively in observer preference tests based on patient images (pelvis, abdomen, and head-and-neck sites) acquired with and without antiscatter grids. The results suggest that although grids reduce scatter artifacts and improve subject contrast, there is little strong motivation for the use of grids in cone-beam CT in terms of CNR and overall image quality under most circumstances. The results highlight the tradeoffs in contrast and noise imparted by grids, showing improved image quality with grids only under specific conditions of high x-ray scatter (SPR> 100%), high imaging dose (Dcenter> 2 cGy), and low spatial resolution (voxel size > or = 1 mm).  相似文献   

2.
A system for cone-beam computed tomography (CBCT) based on a flat-panel imager (FPI) is used to examine the magnitude and effects of x-ray scatter in FPI-CBCT volume reconstructions. The system is being developed for application in image-guided therapies and has previously demonstrated spatial resolution and soft-tissue visibility comparable or superior to a conventional CT scanner under conditions of low x-ray scatter. For larger objects consistent with imaging of human anatomy (e.g., the pelvis) and for increased cone angle (i.e., larger volumetric reconstructions), however, the effects of x-ray scatter become significant. The magnitude of x-ray scatter with which the FPI-CBCT system must contend is quantified in terms of the scatter-to-primary energy fluence ratio (SPR) and scatter intensity profiles in the detector plane, each measured as a function of object size and cone angle. For large objects and cone angles (e.g., a pelvis imaged with a cone angle of 6 degrees), SPR in excess of 100% is observed. Associated with such levels of x-ray scatter are cup and streak artifacts as well as reduced accuracy in reconstruction values, quantified herein across a range of SPR consistent with the clinical setting. The effect of x-ray scatter on the contrast, noise, and contrast-to-noise ratio (CNR) in FPI-CBCT reconstructions was measured as a function of SPR and compared to predictions of a simple analytical model. The results quantify the degree to which elevated SPR degrades the CNR. For example, FPI-CBCT images of a breast-equivalent insert in water were degraded in CNR by nearly a factor of 2 for SPR ranging from approximately 2% to 120%. The analytical model for CNR provides a quantitative understanding of the relationship between CNR, dose, and spatial resolution and allows knowledgeable selection of the acquisition and reconstruction parameters that, for a given SPR, are required to restore the CNR to values achieved under conditions of low x-ray scatter. For example, for SPR = 100%, the CNR in FPI-CBCT images can be fully restored by: (1) increasing the dose by a factor of 4 (at full spatial resolution); (2) increasing dose and slice thickness by a factor of 2; or (3) increasing slice thickness by a factor of 4 (with no increase in dose). Other reconstruction parameters, such as transaxial resolution length and reconstruction filter, can be similarly adjusted to achieve CNR equal to that obtained in the scatter-free case.  相似文献   

3.
A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.  相似文献   

4.
5.
The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.  相似文献   

6.
A CT scanner has been constructed specifically to determine the three-dimensional distribution of bone mineral in the medullary cavities of the radius, ulna and femur. A source of x-rays (153Gd) and a multiwire proportional counter (MWPC) are mounted at opposite ends of a diameter of an annular mounting. The limb is placed on the axis of rotation of the annulus and a series of two-dimensional transmission projections are obtained at equal angular spacings over 360 degrees. The distribution of bone mineral is reconstructed from the projections either by the method of maximum entropy (ME) or by convolution and back projection (CBP). These two methods have been evaluated by reconstructing a single slice of a phantom, representing the forearm, from projections simulated by computer. With a clinically acceptable exposure time, the mean medullary densities of the ulna and radius were determined with systematic errors of less than 3.5% (ME) and 11% (CBP), although for the latter method of reconstruction the systematic error was reduced to less than 2% by increasing the number of views. The mean medullary densities of the ulna and radius were determined with precisions better than 2.5% (ME) and 3.5% (CBP).  相似文献   

7.
Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p1 and p2 are obtained as functions of the measured attenuation data q1 and q2 (one DECT scan = two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical micro values and density values. Since EDEC is an empirical technique it inherently compensates for scatter components. The empirical dual energy calibration technique is a pragmatic, simple, and reliable calibration approach that produces highly quantitative DECT images.  相似文献   

8.
The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.  相似文献   

9.
Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue.  相似文献   

10.
Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.  相似文献   

11.
12.
The development and performance of a system for x-ray cone-beam computed tomography (CBCT) using an indirect-detection flat-panel imager (FPI) is presented. Developed as a bench-top prototype for initial investigation of FPI-based CBCT for bone and soft-tissue localization in radiotherapy, the system provides fully three-dimensional volumetric image data from projections acquired during a single rotation. The system employs a 512 x 512 active matrix of a-Si:H thin-film transistors and photodiodes in combination with a luminescent phosphor. Tomographic imaging performance is quantified in terms of response uniformity, response linearity, voxel noise, noise-power spectrum (NPS), and modulation transfer function (MTF), each in comparison to the performance measured on a conventional CT scanner. For the geometry employed and the objects considered, response is uniform to within 2% and linear within 1%. Voxel noise, at a level of approximately 20 HU, is comparable to the conventional CT scanner. NPS and MTF results highlight the frequency-dependent transfer characteristics, confirming that the CBCT system can provide high spatial resolution and does not suffer greatly from additive noise levels. For larger objects and/or low exposures, additive noise levels must be reduced to maintain high performance. Imaging studies of a low-contrast phantom and a small animal (a euthanized rat) qualitatively demonstrate excellent soft-tissue visibility and high spatial resolution. Image quality appears comparable or superior to that of the conventional scanner. These quantitative and qualitative results clearly demonstrate the potential of CBCT systems based upon flat-panel imagers. Advances in FPI technology (e.g., improved x-ray converters and enhanced electronics) are anticipated to allow high-performance FPI-based CBCT for medical imaging. General and specific requirements of kilovoltage CBCT systems are discussed, and the applicability of FPI-based CBCT systems to tomographic localization and image-guidance for radiotherapy is considered.  相似文献   

13.
14.
After passage through matter, the energy spectrum of a polychromatic beam of x-rays contains valuable information about the elemental composition of the absorber. Conventional x-ray systems or x-ray computed tomography (CT) systems, equipped with scintillator detectors operated in the integrating mode, are largely insensitive to this type of spectral information, since the detector output is proportional to the energy fluence integrated over the whole spectrum. The main purpose of this paper is to investigate to which extent energy-sensitive photon counting devices, operated in the pulse-mode, are capable of revealing quantitative information about the elemental composition of the absorber. We focus on the detection of element-specific, K-edge discontinuities of the photo-electric cross-section. To be specific, we address the question of measuring and imaging the local density of a gadolinium-based contrast agent, in the framework of a generalized dual-energy pre-processing. Our results are very promising and seem to open up new possibilities for the imaging of the distribution of elements with a high atomic number Z in the human body using x-ray attenuation measurements. To demonstrate the usefulness of the detection and the appropriate processing of the spectral information, we present simulated images of an artherosclerotic coronary vessel filled with gadolinium-based contrast agent. While conventional systems, equipped with integrating detectors, often fail to differentiate between contrast filled lumen and artherosclerotic plaque, the use of an energy-selective detection system based on the counting of individual photons reveals a strong contrast between plaque and contrast agent.  相似文献   

15.
16.
The technology of online mega-voltage cone-beam (CB) computed tomography (MV-CBCT) imaging is currently used in many institutions to generate a 3D anatomical dataset of a patient in treatment position. It utilizes an accelerator therapy beam, delivered with 200 degrees gantry rotation, and captured by an electronic portal imager to account for organ motion and setup variations. Although the patient dose exposure from a single volumetric MV-CBCT imaging procedure is comparable to that from standard double-exposure orthogonal portal images, daily image localization procedures can result in a significant dose increase to healthy tissue. A technique to incorporate the daily dose, from a MV-CBCT imaging procedure, in the IMRT treatment planning optimization process was developed. A composite IMRT plan incorporating the total dose from the CB was optimized with the objective of ensuring uniform target coverage while sparing the surrounding normal tissue. One head and neck cancer patient and four prostate cancer patients were planned and treated using this technique. Dosimetric results from the prostate IMRT plans optimized with or without CB showed similar target coverage and comparable sparing of bladder and rectum volumes. Average mean doses were higher by 1.6 +/- 1.0 Gy for the bladder and comparable for the rectum (-0.3 +/- 1.4 Gy). In addition, an average mean dose increase of 1.9 +/- 0.8 Gy in the femoral heads and 1.7 +/- 0.6 Gy in irradiated tissue was observed. However, the V65 and V70 values for bladder and rectum were lower by 2.3 +/- 1.5% and 2.4 +/- 2.1% indicating better volume sparing at high doses with the optimized plans incorporating CB. For the head and neck case, identical target coverage was achieved, while a comparable sparing of the brain stem, optic chiasm, and optic nerves was observed. The technique of optimized planning incorporating doses from daily online MV-CBCT procedures provides an alternative method for imaging IMRT patients. It allows for daily treatment modifications where other volumetric tomographic imaging techniques may not be feasible and/or available and where accurate patient localization with a high degree of precision is required.  相似文献   

17.
In x-ray phase-contrast analyzer-based imaging, the contrast is provided by a combination of absorption, refraction and scattering effects. Several extraction algorithms, which attempt to separate and quantify these different physical contributions, have been proposed and applied. In a previous work, we presented a quantitative comparison of five among the most well-known extraction algorithms based on the geometrical optics approximation applied to planar images: diffraction-enhanced imaging (DEI), extended diffraction-enhanced imaging (E-DEI), generalized diffraction-enhanced imaging (G-DEI), multiple-image radiography (MIR) and Gaussian curve fitting (GCF). In this paper, we compare these algorithms in the case of the computed tomography (CT) modality. The extraction algorithms are applied to analyzer-based CT images of both plastic phantoms and biological samples (cartilage-on-bone cylinders). Absorption, refraction and scattering signals are derived. Results obtained with the different algorithms may vary greatly, especially in the case of large refraction angles. We show that ABI-CT extraction algorithms can provide an excellent tool to enhance the visualization of cartilage internal structures, which may find applications in a clinical context. Besides, by using the refraction images, the refractive index decrements for both the cartilage matrix and the cartilage cells have been estimated.  相似文献   

18.
A system for cone-beam computed tomography (CBCT) has been developed based upon the technology of active matrix flat-panel imagers (FPIs), and the system has demonstrated the potential for fully three-dimensional volumetric imaging with high spatial and contrast resolution. This paper investigates the effects of image lag (arising from charge trapping and release in the FPI pixels) upon CBCT reconstructions. Hypotheses were derived based upon a simple, geometrical/physical model, suggesting that image lag in the projection data results primarily in two artifacts: a spatial blurring artifact in the direction opposite to the direction of rotation (called a "comet") and a line artifact along the direction of the first few projections (called a "streak"). The hypotheses were tested by means of computer simulations and experimental measurements that yielded CBCT images of a simple cylindrical water phantom containing an attenuating rod of varying size and composition. The computer simulations generated projection images based upon analysis of the system geometry and a simple model of the FPI that allowed free adjustment of the image lag. Experimental measurements involved CBCT scans of the phantom under various conditions and modes of acquisition followed by examination of the resulting CBCT axial slices for lag artifacts. Measurements were performed as a function of exposure level, position and contrast of the rod, and for three modes of acquisition designed to isolate and/or minimize the two hypothesized artifacts. The results clearly illustrate the comet and streak artifacts, particularly in relation to high-contrast objects imaged at high exposure levels. The significance of such artifacts under clinical conditions is expected to be small, considering the magnitude of the effect relative to the morphology and composition of typical anatomy. The artifacts may become appreciable, however, in the presence of high-contrast objects, such as marker BBs, dental fillings, and metal prosthetics. A procedural method of reducing lag artifacts is demonstrated.  相似文献   

19.
20.
The use of a computed tomography (CT) scanner specifically designed for breast imaging has been proposed by several investigators. In this study, the radiation dose due to breast CT was evaluated using Monte Carlo techniques over a range of parameters pertinent to the cone-beam pendant geometry thought to be most appropriate. Monte Carlo dose computations were validated by comparison with physical measurements made on a prototype breast CT scanner under development in our laboratory. The Monte Carlo results were then used to study the influence of cone angle, the use of a beam flattening ("bow-tie") filter, glandular fraction, breast length and source-to-isocenter distance. These parameters were studied over a range of breast diameters from 10 to 18 cm, and for both monoenergetic (8-140 keV by 1 keV intervals) and polyenergetic x-ray beams (30-100 kVp by 5 kVp intervals. Half value layer at 80 kVp = 5.3 mm Al). A parameter referring to the normalized glandular dose in CT (DgN(CT)) was defined which is the ratio of the glandular dose in the breast to the air kerma at isocenter. There was no significant difference (p = 0.743) between physically measured and Monte Carlo derived results. Fan angle, source-to-isocenter distance, and breast length have relatively small influences on the radiation dose in breast CT. Glandular fraction (0% versus 100%) for 10 cm breasts at 80 kVp had approximately a 10% effect on DgN(CT), and a 20% effect was observed for an 18 cm breast diameter. The use of a bow-tie filter had the potential to reduce breast dose by approximately 40%. X-ray beam energy and breast diameter had significant influence on the DgN(CT) parameters, with higher DgN(CT) values for higher energy beams and smaller breast diameters. DgN(CT) values (mGy/mGy) at 80 kVp ranged from 0.95 for an 8 cm diam 50% glandular breast to 0.78 for an 18 cm 50% glandular breast. The results of this investigation should be useful for those interested computing the glandular breast dose for geometries relevant to dedicated breast CT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号