首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To detect joint movement, the brain relies on sensory signals from muscle spindles that sense the lengthening and shortening of the muscles. For single-joint muscles, the unique relationship between joint angle and muscle length makes this relatively straightforward. However, many muscles cross more than one joint, making their spindle signals potentially ambiguous, particularly when these joints move in opposite directions. We show here that simultaneous movement at adjacent joints sharing biarticular muscles affects the threshold for detecting movements at either joint whereas it has no effect for non-adjacent joints. The angular displacements required for 70% correct detection were determined in 12 subjects for movements imposed on the shoulder, elbow and wrist at angular velocities of 0.25–2 deg s−1. When moved in isolation, detection thresholds at each joint were similar to those reported previously. When movements were imposed on the shoulder and wrist simultaneously, there were no changes in the thresholds for detecting movement at either joint. In contrast, when movements in opposite directions at velocities greater than 0.5 deg s−1 were imposed on the elbow and wrist simultaneously, thresholds increased. At 2 deg s−1, the displacement threshold was approximately doubled. Thresholds decreased when these adjacent joints moved in the same direction. When these joints moved in opposite directions, subjects more frequently perceived incorrect movements in the opposite direction to the actual. We conclude that the brain uses potentially ambiguous signals from biarticular muscles for kinaesthesia and that this limits acuity for detecting joint movement when adjacent joints are moved simultaneously.  相似文献   

2.
Muscle activities and joint rotations were examined at the shoulder, elbow, and wrist joints for pointing movements to targets in the horizontal plane. In such movements, multiple arm configurations are possible for a given target location. Thus, starting from the same initial configuration and for the same target location in space, the joint excursions could be varied. When no constraints were placed on the final orientation of the hand, the choice of muscles initially activated at the wrist joint was consistent with a function to resist inertial effects of proximal segment motion on the wrist joint. When subjects were asked to produce different final orientations of the hand for the same target location, the initial choice of muscles at the three joints was preserved in most trials, whether wrist flexion or extension was required to reach the final hand orientation. The relative onset times of muscle activity at the different joints were also not correlated with wrist excursion. This suggests a predetermined initial selection of muscles that is related to target location, not to joint angular excursion. The fact that the required final hand orientation was nevertheless achieved suggests that the planning of these pointing movements is not a unitary process, but is comprised of two components: a fixed initial muscle selection for a given target location in space, and a selection appropriate for the required joint excursions.  相似文献   

3.
Kinematic abnormalities of fast multijoint movements in cerebellar ataxia include abnormally increased curvature of hand trajectories and an increased hand path and are thought to originate from an impairment in generating appropriate levels of muscle torques to support normal coordination between shoulder and elbow joints. Such a mechanism predicts that kinematic abnormalities are pronounced when fast movements are performed and large muscular torques are required. Experimental evidence that systematically explores the effects of increasing movement velocities on movement kinematics in cerebellar multijoint movements is limited and to some extent contradictory. We, therefore, investigated angular and hand kinematics of natural multijoint pointing movements in patients with cerebellar degenerative disorders and healthy controls. Subjects performed self-paced vertical pointing movements with their right arms at three different target velocities. Limb movements were recorded in three-dimensional space using a two-camera infrared tracking system. Differences between patients and healthy subjects were most prominent when the subjects performed fast movements. Peak hand acceleration and deceleration were similar to normals during slow and moderate velocity movements but were smaller for fast movements. While altering movement velocities had little or no effect on the length of the hand path and angular motion of elbow and shoulder joints in normal subjects, the patients exhibited overshooting motions (hypermetria) of the hand and at both joints as movement velocity increased. Hypermetria at one joint always accompanied hypermetria at the neighboring joint. Peak elbow angular deceleration was markedly delayed in patients compared with normals. Other temporal movement variables such as the relative timing of shoulder and elbow joint motion onsets were normal in patients. Kinematic abnormalities of multijoint arm movements in cerebellar ataxia include hypermetria at both the elbow and the shoulder joint and, as a consequence, irregular and enlarged paths of the hand, and they are marked with fast but not with slow movements. Our findings suggest that kinematic movement abnormalities that characterize cerebellar limb ataxia are related to an impairment in scaling movement variables such as joint acceleration and deceleration normally with movement speed. Most likely, increased hand paths and decomposition of movement during slow movements, as described earlier, result from compensatory mechanisms the patients may employ if maximum movement accuracy is required.  相似文献   

4.
We analyzed the adaptability of human thumb and index finger movement kinematics and dynamics to variations of precision grip aperture and movement velocity. Six subjects performed precision grip opening and closing movements under different conditions of movement velocity and movement aperture (thumb and index finger tip-to-tip distance). Angular motion of the thumb and index finger joints was recorded with a CyberGlove and a three-dimensional biomechanical model was used for solving the inverse dynamics problem during precision grip movements, i.e., for calculating joint torques from experimentally obtained angular variations. The time-varying joint angles and joint torques were analyzed by principal-component analysis to quantify the contributions of individual joints in kinematic and dynamic synergies. At the level of movement kinematics, we found subject-specific angular contributions. However, the adaptation to large aperture, achieved by an increase of the relative contribution of the proximal joints, was subject-invariant. At the level of movement dynamics, the adaptation of thumb-index finger movements to task constraints was similar among all subjects and required the linear scaling of joint torques, the synchronization of joint torques under high velocity conditions, and a flexible redistribution of joint torques between the proximal joint of the thumb and that of the index finger. This work represents one of the first attempts at calculating the joint torques during human precision-grip movements and indicates that the dynamic synergies seem to be remarkably simple compared with the synergies found for movement kinematics.  相似文献   

5.
Summary Proprioception in the neck was investigated in normal human subjects. Three experiments studied rotation of the head about a vertical axis on the body. Accuracy of pointing, thresholds for detection of passive movement, and control of fine movement were tested. Comparison of the accuracy of pointing at the big toe with the nose and with the arm, showed a smaller scatter of angular misalignments when pointing with the arm. However, the arm pointed systematically off target. Pointing at the target toe by turning the head was not significantly more accurate than aligning the nose and toe by turning the chair and body with the head fixed. The highest threshold found for the detection of the direction of passive movement of the head relative to the body was 1.4° angular displacement. Thresholds were highest at the slowest angular velocity and dropped as angular velocity increased. When the head was turned on the body thresholds were lower than when the body was turned and the head held still. Control of fine angular movements of the head and of the distal phalanx of the right thumb were compared by measuring subjects' accuracy in guiding a cursor through a path on a computer screen by turning the head or moving the thumb. The thumb was found to be better controlled than the head.  相似文献   

6.
This study was initiated to investigate the mechanism of ceruloplasmin (CP)-mediated iron release from brain cells using BT325 cells (a glioblastoma cell line); however, negative results were obtained. The BT325 cells were preloaded with 1 μM 59Fe2+ in sucrose (pH 5.8) for 60 min, and then with CP (0–300 μg/ml) for 30 min at 37°C. The addition of CP, either at low (25 μg/ml) or high (300 μg/ml) concentrations, did not lead to a significant change in iron release from iron-loaded BT325 cells. No significant difference in total iron of cells was found between all CP treated groups and the control (P>0.05). Although apotransferrin (apoTf) was shown to have a role in iron release from the cells, the effect of apoTf was not significantly affected by the addition of different concentrations of CP. When the cells were incubated with 1 μM 59Fe2+ in the presence of varying amounts of CP for 30 min at 37°C, it was found that CP increased iron uptake. The total iron uptake by BT325 cells in CP treatment groups (25, 75, 150, 300 μg/ml) was significantly higher than that in the control (no CP addition) (all P<0.01). Furthermore, in contrast to our expectation, CP was shown to promote significantly iron uptake in not only iron-sufficient but also iron-deficient cells. These results showed that CP had a role in iron uptake rather than release in BT325 cells. Electronic Publication  相似文献   

7.
Studies of multijoint arm movements have demonstrated that the nervous system anticipates and plans for the mechanical effects that arise from motion of the linked limb segments. The general rules by which the nervous system selects appropriate muscle activities and torques to best deal with these intersegmental effects are largely unknown. In order to reveal possible rules, this study examined the relationship of muscle and interaction torques to joint acceleration at the shoulder, elbow and wrist during point-to-point arm movements to a range of targets in the horizontal plane. Results showed that, in general, dynamics differed between the joints. For most movements, shoulder muscle torque primarily determined net torque and joint acceleration, while interaction torque was minimal. In contrast, elbow and wrist net torque were determined by a combination of muscle and interaction torque that varied systematically with target direction and joint excursion. This "shoulder-centered pattern" occurred whether subjects reached targets using straight or curved finger paths. The prevalence of a shoulder-centered pattern extends findings from a range of arm movement studies including movement of healthy adults, neurological patients, and simulations with altered interaction effects. The shoulder-centered pattern occurred for most but not all movements. The majority of the remaining movements displayed an "elbow-centered pattern," in which muscle torque determined initial acceleration at the elbow and not at the shoulder. This occurred for movements when shoulder excursion was <50% of elbow excursion. Thus, both shoulder- and elbow-centered movements displayed a difference between joints but with reversed dynamics. Overall, these findings suggest that a difference in dynamics between joints is a general feature of horizontal plane arm movements, and this difference is most commonly reflected in a shoulder-centered pattern. This feature fits well with other general shoulder-elbow differences suggested in the literature on arm movements, namely that: (a) agonist muscle activity appears more closely related to certain joint kinematics at the shoulder than at the elbow, (b) adults with neurological damage display less disruption of shoulder motion than elbow motion, and (c) infants display adult-like motion first in the shoulder and last at the wrist.  相似文献   

8.
Multiarticular reaching movements at different speeds produce differential demands for the on-line control of ongoing movements and for the predictive control of intersegmental dynamics. The aim of this study was to assess the ability of a proprioceptively deafferented patient and aged-matched control subjects to make precise and coordinated three-dimensional reaching movements at different speeds without vision during the movement. A patient with a complete loss of proprioception below the neck (C.F.) and five control subjects made reaching movements to four remembered visual targets at slow, natural, and fast speeds. All movements were performed without vision of the arm during the movements. The spatial accuracy, the movement kinematics and the interjoint coordination of these movements were analyzed. Results showed that control subjects made larger spatial errors at both slow and fast speeds than at natural speed. However, they synchronized motions at the shoulder and elbow joints and kept most movement kinematic features invariant across speed conditions. In contrast, C.F. failed to produce smooth and simultaneous motions at the shoulder and elbow joints at all speeds. Surprisingly, however, he made much larger errors than control subjects at slow and natural speeds, but not at fast speed. Analysis of patterns of interjoint coordination revealed that, when instructed to move fast, C.F. initiated arm movements by fixing the elbow while moving the shoulder joint to damp interaction torques exerted on the elbow joint from motion of the upper arm. The results demonstrated that, although proprioceptive loss disrupted normal control of multijoint movements at all speeds, when performing relatively fast three-dimensional movements, C.F. could control intersegmental dynamics by reducing the number of active joints. More importantly, the results highlight the dual role of proprioception in controlling multijoint movements; that is, to provide important cues both for the predictive control of interaction torques and for the synchronization of adjacent joints even when interactive torques are very small. These findings support the idea that proprioceptive input is used by the CNS to update an internal model of limb dynamics that adapts the motor plan according to biomechanical contexts. Electronic Publication  相似文献   

9.
In cerebellar ataxia, kinematic aberrations of multijoint movements are thought to originate from deficiencies in generating muscular torques that are adequate to control the mechanical consequences of dynamic interaction forces. At this point the exact mechanisms that lead to an abnormal control of interaction torques are not known. In principle, the generation of inadequate muscular torques may result from an impairment in generating sufficient levels of torques or from an inaccurate assessment and prediction of the mechanical consequences of movements of one limb segment on adjacent joints. We sought to differentiate the relative contribution of these two mechanisms and, therefore, analyzed intersegmental dynamics of multijoint pointing movements in healthy subjects and in patients with cerebellar degeneration. Unrestrained vertical arm movements were performed at three different target movement velocities and recorded using an optoelectronic tracking system. An inverse dynamics approach was employed to compute net joint torques, muscular torques, dynamic interaction torques and gravitational torques acting at the elbow and shoulder joint. In both groups, peak dynamic interaction forces and peak muscular forces were largest during fast movements. In contrast to normal subjects, patients produced hypermetric movements when executing fast movements. Hypermetric movements were associated with smaller peak muscular torques and smaller rates of torque change at elbow and shoulder joints. The patients’ deficit in generating appropriate levels of muscular force were prominent during two different phases of the pointing movement. Peak muscular forces at the elbow were reduced during the initial phase of the movement when simultaneous shoulder joint flexion generated an extensor influence upon the elbow joint. When attempting to terminate the movement, gravitational and dynamic interaction forces caused overshooting extension at the elbow joint. In normal subjects, muscular torque patterns at shoulder and elbow joint were synchronized in that peak flexor and extensor muscular torques occurred simultaneously at both joints. This temporal pattern of muscular torque generation at shoulder and elbow joint was preserved in patients. Our data suggest that an impairment in generating sufficient levels of phasic muscular torques significantly contributes to the patients’ difficulties in controlling the mechanical consequences of dynamic interaction forces during multijoint movements. Received: 28 October 1996 / Accepted: 30 September 1997  相似文献   

10.
The relationship between wrist kinematics, dynamics and the pattern of muscle activation were examined during a two-joint planar movement in which the two joints moved in opposite directions, i.e. elbow flexion/wrist extension and elbow extension/wrist flexion. Elbow movements (ranging from 10 to 70 deg) and wrist movements (ranging from 10 to 50 deg) were performed during a visual, step-tracking task in which subjects were required to attend to the initial and final angles at each joint. As the elbow amplitude increased, wrist movement duration increased and the wrist movement trajectories became quite variable. Analysis of the torques acting at the wrist joint showed that elbow movements produced reaction torques acting in the same direction as the intended wrist movement. Distinct patterns of muscle activation were observed at the wrist joint that were dependent on the relative magnitude of the elbow reaction torque in relation to the net wrist torque. When the magnitude of the elbow reaction torque was quite small, the wrist agonist was activated first. As the magnitude of the elbow reaction torque increased, activity in the wrist agonist decreased significantly. In conditions where the elbow reaction torque was much larger than the net wrist torque, the wrist muscle torque reversed direction to oppose the intended movement. This reversal of wrist muscle torque was directly associated with a change in the pattern of muscle activation where the wrist antagonist was activated prior to the wrist agonist. Our findings indicate that motion of the elbow joint is an important consideration in planning wrist movement. Specifically, the selection of muscle activation patterns at the wrist is dependent on the relative magnitude and direction of the elbow reaction torque in relation to the direction of wrist motion.  相似文献   

11.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

12.
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.  相似文献   

13.
Cerebellar dysmetria at the elbow, wrist, and fingers   总被引:9,自引:0,他引:9  
1. The objective was to investigate in cerebellar patients with dysmetria the kinematic and electromyographic (EMG) characteristics of large and small movements at the elbow, wrist, and finger and thereby to determine the nature of cerebellar dysmetria at distal as well as proximal joints. Flexions were made as fast as possible by moving relatively heavy manipulanda for each joint to the same end position through 5, 30, and 60 degrees. 2. In normal subjects flexions at all joints were accompanied by similar triphasic EMG activity. Movements of increasing amplitude were made with increasing movement durations and increasing durations and magnitudes of initial agonist EMG activity. Antagonist activity often appeared to have two components: one coactive with the initial agonist burst but starting later, the other reaching its peak at about peak velocity. 3. Cerebellar patients with dysmetria showed hypermetria followed by tremor at all three joints when movements were made with the manipulanda. Hypermetria was most marked for aimed movements of small amplitude (5 degrees) at all joints. 4. A characteristic of cerebellar disordered movements, which could be present at all amplitudes and all joints, was an asymmetry with decreased peak accelerations and increased peak decelerations compared to normal movements. Both the asymmetry and the hypermetria for small amplitude movements could be used clinically as sensitive indicators of cerebellar dysfunction. 5. The EMG abnormalities accompanying hypermetria and asymmetry were a more gradual buildup and a prolongation of agonist activity and delayed onset of antagonist activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.  相似文献   

15.
A technique is described that characterizes the dynamics of the interjoint coordination of arm reaching movements in healthy subjects (n=10) and in patients who had sustained a left-sided cerebrovascular accident (n=18). All participants were right-handed. Data from the affected right arm of patients with stroke were compared with those from the right arm of healthy subjects. Seated subjects made 25 pointing movements in a single session. Movements were made from an initial target located ipsilaterally to the right arm beside the body, to a final target located in front of the subject in the contralateral arm workspace. Kinematic data from the finger, wrist, elbow, both shoulders and sternum were recorded in three dimensions at 200 Hz with an optical tracking system. Analysis of interjoint coordination was based on the patterns of temporal delay between rotations at two adjacent joints (shoulder and elbow). The data were reduced to a single graph (Temporal Coordination or TC index) integrating the essential temporal characteristics of joint movement (the angular displacements, velocities and timing). TC segments, duration and amplitude, were analysed. The analysis was sensitive to the differences in interjoint coordination between healthy subjects and patients with arm motor deficits. In patients, the temporal coordination between elbow and shoulder movements was disrupted from the middle to the end of the reach. More specifically, in mid-reach, all patients had difficulty coordinating elbow flexion with shoulder horizontal adduction. In addition, patients with severe arm hemiparesis had difficulty changing elbow movement direction from flexion to extension and in coordinating this change with shoulder movement. At the end of the reach, patients with severe hemiparesis had deficits in the execution of elbow extension while all patients had impaired coordination of elbow extension and shoulder horizontal adduction. In addition, active ranges of joint motions were significantly decreased in the stroke compared to the healthy subjects. Finally, TC analysis revealed significant relationships between specific aspects of disrupted interjoint coordination and the level of motor impairment, suggesting that it may be a useful tool in the identification of specific movement coordination deficits in neurological impaired populations that can be targeted in treatment for arm motor recovery.  相似文献   

16.
Summary Load perturbations were applied to the arm of human subjects under conditions where both limb segments (upper arm and forearm) were free to move. The perturbations consisted of pulses of torque 50 ms in duration and of pseudo-random sequences of such pulses. They were applied to either the forearm or the upper arm. Under all conditions, the perturbations resulted in angular motion at the shoulder and elbow joints and evoked consistent responses in muscles acting about these joints (biceps, triceps, anterior and posterior deltoid). Activity in biceps and triceps was not related simply to angular motion at the elbow joint. For example, activation of biceps could be evoked during elbow flexion (by applying a torque perturbation at the shoulder) as well as during elbow extension (by applying a torque perturbation at the elbow). The effect of varying degrees of dynamic coupling between upper arm and forearm on EMG responses was investigated by applying torque perturbations to the upper arm over a wide range of elbow angles. When the forearm is extended, such a perturbation induces a greater amount of elbow flexion than when the forearm is in a flexed position. The results of these experiments showed that the larger was the amount of flexion of the forearm induced by the perturbation, the larger was the activation of biceps. The results are incompatible with the notion of a negative feedback of total muscle length as being responsible for the EMG activity following the load perturbations. It is suggested that the EMG responses can best be interpreted functionally in terms of parameters more global than muscle length. Among such global parameters, changes in net torque at a joint resulting from the perturbation gave the best correlation with the pattern of EMG activities observed.  相似文献   

17.
Characteristics of control at the shoulder and elbow during nine types of drawing movements were studied in the present work. The task was to repetitively track a template, depicted on a horizontal table, with the index finger at a cyclic frequency of 1.5 Hz. The templates were a circle, four ovals and four lines of different orientations. The wrist was immobilized and the movement consisted of rotations at the shoulder and elbow joints. The studied movements varied in a wide range with respect to the amplitude of elbow and shoulder movements and relative phase between them. Kinetic analysis included analysis of torque signs, impulses, and timing. It demonstrated that the role of muscle torque in movement production was different at the two joints. During eight out of the nine movement types, the muscle torque at the shoulder accelerated and decelerated this joint and almost completely coped with the influence of the interactive torque arising from elbow motion. Conversely, interactive torque generated by shoulder motion played a dominant role in elbow acceleration and deceleration, whereas muscle torque at the elbow adjusted passive elbow movement to the various template shapes. EMG data were in agreement with the conclusions made from the kinetic analysis. Collectively, these data support the hypothesis that the two joints have different functions in movement production. The shoulder creates a foundation for motion of the entire arm through the interactive torque, and the elbow serves as a fine-tuner of the end-point movement. Control of the shoulder was similar across the eight movement types and the differences in the end-point path were provided by variations in elbow control. The two joints exchanged roles during one movement type, namely, drawing the line tilted right. During this movement, the elbow musculature generated motion at this joint and the shoulder musculature counteracted mechanical influence of this motion on the shoulder position. The findings suggest that during drawing movements, the control strategy exploits intersegmental dynamics of the shoulder-elbow mechanical linkage.  相似文献   

18.
Spatial control of arm movements   总被引:14,自引:0,他引:14  
Summary Human subjects were instructed to point one hand to different visual targets which were randomly sequenced, using a paradigm which allowed two degrees of freedom (shoulder, elbow). The time course of the hand trajectory and the joint angular curves were observed. The latter exhibited patterns which change markedly for different movements, whereas the former preserve similar characteristics (in particular, a single peaked tangential velocity curve). The hypothesis is then formulated that the central command for these movements is formulated in terms of trajectories of the hand in space.Research supported by the Italian Research Council (Bilateral Research Contract) and by N.I.H. Grants NS 09343 and AM 26710  相似文献   

19.
When arm movements are perturbed by a load, how does the nervous system adjust control signals to reduce error? While it has been shown that the nervous system is capable of compensating for the effects of limb dynamics and external forces, the strategies used to adapt to novel loads are not well understood. We used a robotic exoskeleton [kinesiological instrument for normal and altered reaching movements (KINARM)] to apply novel loads to the arm during single-joint elbow flexions in the horizontal plane (shoulder rotation was allowed). Loads varied in magnitude with the instantaneous velocity of elbow flexion, and were applied to the shoulder in experiment 1 (interaction loads) and the elbow in experiment 2 (direct loads). Initial exposure to both interaction and direct loads resulted in perturbations at both joints, even though the load was applied to only a single joint. Subjects tended to correct for the kinematics of the elbow joint while perturbations at the shoulder persisted. Electromyograms (EMGs) and computed muscle torque showed that subjects modified muscle activity at the elbow to reduce elbow positional deviations. Shoulder muscle activity was also modified; however, these changes were always in the same direction as those at the elbow. Current models of motor control based on inverse-dynamics calculations and force-control, as well as models based on positional control, predict an uncoupling of shoulder and elbow muscle torques for adaptation to these loads. In contrast, subjects in this study adopted a simple strategy of modulating the natural coupling that exists between elbow and shoulder muscle torque during single-joint elbow movements.  相似文献   

20.
The aim of the present study was to determine whether and how hand shaping was affected by the presence of a distractor object adjacent to the to-be-grasped object. Twenty subjects were requested to reach towards and grasp a ‘convex’ or a ‘concave’ object in the presence or absence of a distractor object either of the same or different shape than the target object. Flexion/extension at the metacarpal-phalangeal (MCP) and proximal interphalangeal joints of all digits, and abduction angle between digits were measured by resistive sensors embedded in a glove. The results indicate robust interference effects at the level of reach duration and the extent of fingers’ abduction angles together with changes at the level of a single joint for the thumb. No distractor effects on individual fingers’ joints except for the MCP of the middle and little fingers were found. These findings suggest that the presence of distractor object affects hand shaping in terms of fingers’ abduction angles, but not at the level of ‘shape dependent’ fingers’ angular excursions. Furthermore, they support the importance of the thumb for the guidance of selective reach-to-grasp movements. We discuss these results in the context of current theories proposed to explain the object selection processes underlying the control of hand action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号