首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rift Valley fever virus (RVFV) causes recurrent large outbreaks among humans and livestock. Although the virus is currently confined to the African continent and the Arabian Peninsula, there is a growing concern for RVFV incursions into countries with immunologically naïve populations. The RVFV structural glycoproteins Gn and Gc are preferred targets in the development of subunit vaccines that can be used to control future outbreaks. We here report the production of Gn and Gc by a recombinant vaccine strain of the avian paramyxovirus Newcastle disease virus (NDV) and demonstrate that intramuscular vaccination with this experimental NDV-based vector vaccine provides complete protection in mice. We also demonstrate that a single intramuscular vaccination of lambs, the main target species of RVFV, is sufficient to elicit a neutralizing antibody response.  相似文献   

2.
Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory and thus the need exists to develop safe and efficacious vaccines that can be used outside the endemic zones. Commercial RVFV vaccines are available but have limitations that prevent their use in disease-free countries. Consequently, there are ongoing efforts to develop and/or improve RVFV vaccines with global acceptability. In this study a previously developed MP-12-derived vaccine candidate with a large deletion of the NSm gene in the pre Gn region of the M segment (arMP-12-ΔNSm21/384) developed by T. Ikegami, that was already shown to be safe in pregnant sheep causing neither abortion nor fetal malformation was further evaluated. This vaccine was tested for protection of sheep from viremia and fever following challenge with virulent RVFV ZH501 strain. A single vaccination with arMP-12-ΔNSm21/384 fully protected sheep when challenged four weeks post vaccination, thereby demonstrating that this vaccine is efficacious in protecting these animals from RVFV infection.  相似文献   

3.
Rift Valley fever virus (RVFV) is a re-emerging zoonotic bunyavirus of the genus Phlebovirus. A natural isolate containing a large attenuating deletion in the small (S) genome segment previously yielded a highly effective vaccine virus, named Clone 13. The deletion in the S segment abrogates expression of the NSs protein, which is the major virulence factor of the virus. To develop a vaccine of even higher safety, a virus named R566 was created by natural laboratory reassortment. The R566 virus combines the S segment of the Clone 13 virus with additional attenuating mutations on the other two genome segments M and L, derived from the previously created MP-12 vaccine virus. To achieve the same objective, a nonspreading RVFV (NSR-Gn) was created by reverse-genetics, which not only lacks the NSs gene but also the complete M genome segment. We have now compared the vaccine efficacies of these two next-generation vaccines and included the Clone 13 vaccine as a control for optimal efficacy. Groups of eight lambs were vaccinated once and challenged three weeks later. All mock-vaccinated lambs developed high fever and viremia and three lambs did not survive the infection. As expected, lambs vaccinated with Clone 13 were protected from viremia and clinical signs. Two lambs vaccinated with R566 developed mild fever after challenge infection, which was associated with low levels of viral RNA in the blood, whereas vaccination with the NSR-Gn vaccine completely prevented viremia and clinical signs.  相似文献   

4.
《Vaccine》2015,33(12):1459-1464
Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 105 or 106 tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 105 TCID50 via the IM route provided sterile immunity, whereas a 106 dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.  相似文献   

5.
《Vaccine》2017,35(23):3123-3128
Rift Valley fever virus (RVFV) causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. This mosquito-borne virus, belonging to the genus Phlebovirus of the family Bunyaviridae contains a tri-segmented negative-strand RNA genome. Previously, we developed four-segmented RVFV (RVFV-4s) variants by splitting the M-genome segment into two M-type segments each encoding one of the structural glycoproteins; Gn or Gc. Vaccination/challenge experiments with mice and lambs subsequently showed that RVFV-4s induces protective immunity against wild-type virus infection after a single administration. To demonstrate the unprecedented safety of RVFV-4s, we here report that the virus does not cause encephalitis after intranasal inoculation of mice. A study with pregnant ewes subsequently revealed that RVFV-4s does not cause viremia and does not cross the ovine placental barrier, as evidenced by the absence of teratogenic effects and virus in the blood and organs of the fetuses. Altogether, these results show that the RVFV-4s vaccine virus can be applied safely in pregnant ewes.  相似文献   

6.
DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV) expressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun. The TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered alone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice, there were no major differences in performance when given alone or in combination with the other vaccines.  相似文献   

7.
Virus replicon particles are capable of infection, genome replication and gene expression, but are unable to produce progeny virions, rendering their use inherently safe. By virtue of this unique combination of features, replicon particles hold great promise for vaccine applications. We previously developed replicon particles of Rift Valley fever virus (RVFV) and demonstrated their high efficacy as a RVFV vaccine in the natural target species. We have now investigated the feasibility of using this nonspreading RVFV (NSR) as a vaccine vector using influenza virus hemagglutinin as a model antigen. NSR particles were designed to express either the full-length hemagglutinin of influenza A virus H1N1 (NSR-HA) or the respective soluble ectodomain (NSR-sHA). The efficacies of the two NSR vector vaccines, applied via either the intramuscular or the intranasal route, were evaluated. A single vaccination with NSR-HA protected all mice from a lethal challenge dose, while vaccination with NSR-sHA was not protective. Interestingly, whereas intramuscular vaccination elicited superior systemic immune responses, intranasal vaccination provided optimal clinical protection.  相似文献   

8.
Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus causing significant morbidity and mortality in livestock and humans. Rift Valley fever is endemic in Africa, but also outside this continent outbreaks have been reported. Here we report the evaluation of two vaccine candidates based on the viral Gn and Gc envelope glycoproteins, both produced in a Drosophila insect cell expression system. Virus-like particles (VLPs) were generated by merely expressing the Gn and Gc glycoproteins. In addition, a soluble form of the Gn ectodomain was expressed and affinity-purified from the insect cell culture supernatant. Both vaccine candidates fully protected mice from a lethal challenge with RVFV. Importantly, absence of the nucleocapsid protein in either vaccine candidate facilitates the differentiation between infected and vaccinated animals using a commercial recombinant nucleocapsid protein-based indirect ELISA.  相似文献   

9.
Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, causes severe to fatal disease in newborn ruminants, as well as abortions in pregnant animals; both preventable by vaccination. Availability of a challenge model is a pre-requisite for vaccine efficacy trials. Several modes of inoculation with RVFV ZH501 were tested on goats and sheep. Differences in development of infectious viremia were observed between animals inoculated with RVFV produced in mosquito C6/36 cells compared to Vero E6 cell-produced inoculum. Only C6/36-RVFV inoculation led to development of viremia in all inoculated sheep and goats. The C6/36 cell-produced RVFV appeared to be more infectious with earlier onset of viremia, especially in sheep, and may also more closely represent a field situation. Goats were somewhat more resistant to the disease development with lower and shorter infectious virus viremia, and with only some animals developing transient increase in rectal temperature in contrast to sheep. In conclusion, a challenge protocol suitable for goat and sheep vaccine efficacy studies was developed using subcutaneous inoculation of 107 PFU per animal with RVFV ZH501 produced in C6/36 cells.  相似文献   

10.
The efficacy of a new recombinant subunit West Nile virus (WNV) vaccine candidate was determined in a hamster model of meningoencephalitis. Groups of hamsters were immunized subcutaneously with a WNV recombinant envelope protein (80E) with or without WNV non-structural protein 1 (NS1) mixed with adjuvant or adjuvant alone. At 2 weeks, 6 months, and 12 months after two immunizations at 4 week intervals with the respective immunogens, groups of animals were challenged via the intraperitoneal route with a virulent strain of WNV. The two recombinant antigen preparations gave similar results; hamsters in both groups had a strong antibody response following immunization, and none of the animals became ill or developed detectable viremia after challenge with WNV at 2 weeks or 6 months post-booster vaccination. In contrast, mortality among the control animals at 2 weeks post-booster challenge was 73%, and at 6 months post-booster, the mortality was 53% among the control animals. When challenged 12 months after the booster vaccination, a low level viremia was detected in some of the vaccinated hamsters, and one hamster became sick, but recovered. In contrast, all of the control animals that received adjuvant only developed a viremia, and the mortality rate was 77%. These results with the recombinant subunit WNV vaccine are very encouraging and warrant further animal studies to evaluate its potential use to protect humans against WNV disease.  相似文献   

11.
A previous study demonstrated that a mutagen-attenuated Rift Valley fever virus (RVFV) vaccine, RVF MP-12, was immunogenic and non-abortogenic when ewes, 90-110 days pregnant, were inoculated with 5 x 10(5) plaque-forming units (p.f.u.) of the virus strain. The ewes delivered live, healthy lambs that had no neutralizing antibody to RVFV until after they had ingested colostrum. To assess further the safety and protective capability of this candidate vaccine, six pregnant ewes were inoculated with 5 x 10(3) p.f.u. of RVF MP-12 and challenged with 5 x 10(5) p.f.u. of virulent ZH-501 strain of RVFV 30 days later. No viraemia was detected after vaccination or challenge and all six ewes delivered live, healthy lambs. Those lambs tested before their nursing did not have neutralizing antibody to RVFV but quickly acquired antibody titres of 1:320 to greater than or equal to 1:10,240 after ingesting colostrum. To test the safety of the RVF MP-12 immunogen in neonates, lambs less than or equal to 7 days old, born to unvaccinated ewes, were inoculated with 5 x 10(5) p.f.u. of RVF MP-12. With the exception of brief pyrexia in 18 of 26 lambs, and a transient low-titred viraemia in 16 of 26 lambs after inoculation, no untoward effects were observed. Serum-neutralizing antibody to RVFV was detected 5-7 days after inoculation. Lambs vaccinated with either 5 x 10(5) or 5 x 10(3) p.f.u. of RVF MP-12 were protected against virulent RVFV challenge at 14 days postvaccination.  相似文献   

12.
A randomized, controlled, double-blinded study was conducted to determine safety and immunogenicity of five live attenuated dengue vaccines produced by Aventis Pasteur (AvP). The study was completed with 40 flavivirus non-immune volunteers: five recipients of each monovalent (dengue-1, dengue-2, dengue-3, or dengue-4) vaccine, ten recipients of tetravalent (dengue-1, dengue-2, dengue-3, and dengue-4) vaccine, and ten recipients of vaccine vehicle alone. All vaccines were administered in a single subcutaneous dose (range, 3.6-4.4 log(10) plaque forming units). No serious adverse reactions occurred in volunteers followed for 6 months after vaccination. Five vaccine recipients developed fever (T > or = 38.0 degrees C), including four tetravalent vaccinees between days 8 and 10 after vaccination. Dengue-1, dengue-2, dengue-3, or dengue-4 vaccine recipients reported similar frequency of mild symptoms of headache, malaise, and eye pain. Tetravalent vaccinees noted more moderate symptoms with onset from study days 8-11 and developed maculopapular rashes distributed over trunk and extremities. Transient neutropenia (white blood cells < 4000/mm3) was noted after vaccination but not thrombocytopenia (platelets < 100,000/mm3). All dengue-3, dengue-4, and tetravalent vaccine recipients were viremic between days 7 and 12 but viremia was rarely detected in dengue-1 or dengue-2 vaccinees. All dengue-2, dengue-3, and dengue-4, and 60% of dengue-1 vaccine recipients developed neutralizing and/or immunoglobulin M antibodies. All tetravalent vaccine recipients were viremic with dengue-3 virus and developed neutralizing antibodies to dengue-3 virus. Seven volunteers also had multivalent antibody responses, yet the highest antibody titers were against dengue-3 virus. The AvP live attenuated dengue virus vaccines are safe and tolerable in humans. The live attenuated tetravalent dengue vaccine was most reactogenic, and preferential replication of dengue-3 virus may have affected its infectivity and immunogenicity.  相似文献   

13.
Wallace DB  Viljoen GJ 《Vaccine》2005,23(23):3061-3067
The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.  相似文献   

14.
In the past decade, the use of Newcastle disease virus (NDV) as a vaccine vector for the prevention of economically important livestock diseases as well as for human diseases has been extensively explored. In this study, we have constructed a recombinant NDV vaccine virus, named NDFL-Gn, that produces the Rift Valley fever virus (RVFV) Gn glycoprotein. Calves were immunized via either the intranasal route or the intramuscular route. Delivery via the intranasal route elicited no detectable antibody responses, whereas delivery via the intramuscular route elicited antibodies against both NDV and the Gn protein. The RVFV-neutralizing activity of the antisera from intramuscularly vaccinated calves was demonstrated, suggesting that NDV is a promising vaccine vector for the prevention of RVF in calves.  相似文献   

15.
Boshra H  Lorenzo G  Rodriguez F  Brun A 《Vaccine》2011,29(27):4469-4475
Current vaccine candidates against Rift Valley fever virus (RVFV) incorporate the viral structural glycoproteins as antigens, since triggering antibody responses against them usually correlates with protection. Here, we have focused solely on the nucleoprotein of RVFV as a potential target for vaccine development. Previous studies in mouse models have already demonstrated that RVFV nucleoprotein can elicit partial protection when administered by means of a DNA vaccine or in recombinant, soluble, protein form. To determine whether this partially protective immune response could be augmented to a level comparable to DNA constructs encoding for RVFV glycoproteins, several targeting sequences were cloned adjacent to the RVFV nucleoprotein (N) gene. Immunization with a plasmid construct encoding for a ubiquitinated form of the viral nucleoprotein (pCMV-Ub-N) significantly increased the survival of IFNAR−/− mice following viral challenge to levels comparable with a recombinant DNA-vaccine encoding both RVFV glycoproteins. Mice immunized with pCMV-Ub-N also displayed higher levels of non-neutralizing anti-N antibodies and antigen-specific T-cell responses. This suggests a role for other cell mediated responses in protection against RVFV. These findings show the potential of RVFV N as a candidate antigen for vaccination, and present a new strategy in vaccine design against certain bunyaviruses, where glycoprotein variation may impede effective broad-based vaccination strategies.  相似文献   

16.
《Vaccine》2015,33(42):5520-5531
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.  相似文献   

17.
《Vaccine》2015,33(35):4261-4268
Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine.  相似文献   

18.
《Vaccine》2022,40(50):7255-7261
Rift Valley fever virus (RVFV) is an important mosquito-borne pathogen that causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The development of an effective veterinary and human vaccine to protect against Rift Valley fever (RVF) disease remains a high priority. The live attenuated RVFV MP-12 is a promising vaccine candidate for the prevention of RVF in both human and domestic ruminants. The aim of this study was to determine the onset of protective immunity elicted in mice by a single dose of this vaccine. Groups of CD-1 mice were vaccinated intraperitoneally with RVFV MP-12 vaccine and challenged on days 2, 5, 6 and 7 post-vaccination (PV) with a lethal dose of virulent RVFV. The mice were observed once daily for terminal morbidity and blood samples were obtained from the retro-orbital sinus complex on days 23 and 28 PV of surviving mice to determine RVFV neutralizing antibody titers. In one test, 2 of 3 mice challenged on day 2 PV survived and all 3 mice challenged at days 5 and 7 PV also survived. A second test of 10 mice per group was performed, and half (5) of those challenged at day 2 PV survived while all (10) survived challenge at day 4 and 6 PV. All surviving animals develop antibody that ranged from 1:80 to 1:1,280 PV. In a separate experiment, RVFV MP-12 vaccinated CD-1 mice, but not challenged developed a low viremia for the first 3 days PV and neutralzing antibody was detected on days 5 through day 28 PV. These findings demonstrated that the RVFV MP-12 vaccine elicited a rapid protective immune response in mice as early as 2 days PV, thus further supporting the effectiveness of this vaccine candidate for preventing RVF among humans and domestic ruminants.  相似文献   

19.
Widespread vaccination programmes against Bluetongue virus serotype 8 (BTV-8), using inactivated vaccines, are being carried out across many countries in northern, western and southern Europe. This study investigates the extent and length of colostral antibody protection, as well as the degree of colostral antibody induced interference of the immune response to BTV-8, in sheep. Significantly lower titres of neutralising antibodies were transferred in colostrum to lambs born from sheep vaccinated once as opposed those vaccinated twice (single vaccine in the first year and a booster vaccine in the second year). On BTV-8 challenge, lambs born from sheep vaccinated on two occasions, with the second booster vaccine given approximately 1 month prior to lambing, were protected from clinical disease for up to 14 weeks. BTV-8 was isolated from 5 of the 22 challenged lambs, although only one of these lambs showed a transient rise in body temperature with no other clinical signs. Lambs born from ewes given a second booster vaccine 1 month prior to lambing, are likely to be protected from clinical disease for at least 14 weeks, whereas lambs born from ewes vaccinated once are likely to be protected for a shorter time. Colostral antibodies present in the 13–14-week-old lambs appeared to interfere with the humoral response to challenge virus. These results suggest that colostral antibodies may interfere with vaccination in lambs up to at least 14 weeks of age.  相似文献   

20.
The serological responses of conventionally reared sheep were compared after vaccination with inactivated parainfluenza 3 (PI3) virus incorporated in three different adjuvants. Inactivated PI3 virus with the double-stranded RNA, BRL 5907 in an oil emulsion was shown to stimulate higher serum antibody titres over the first 5 weeks after vaccination than virus with and without BCG emulsified in oil. The ability of this vaccine to protect specific pathogen-free lambs against challenge with PI3 virus was examined in a second experiment. In this experiment the vaccine stimulated virus neutralizing and haemagglutination inhibiting antibodies in the serum. After intranasal and intratracheal inoculation with PI3 virus at challenge, vaccinated lambs showed no clinical illness and virus isolation was confined, except in one lamb, to the first two days. In contrast, unvaccinated lambs developed respiratory disease and virus was isolated daily for 7 days after challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号