首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numerous epidemiological studies in the human population clearly indicate that smoking while pregnant has deleterious effects on fetal development as well as long-term adverse consequences on postnatal development and maturation of several organ systems. Low birth weight, sudden infant death syndrome (SIDS), behavioral disorders including attention deficit hyperactivity disorder (ADHD), externalizing and internalizing behavioral problems and conduct disorders in children have all been linked to prenatal exposure to tobacco smoke. The major pharmacologically active chemical found in tobacco smoke is nicotine, and prenatal exposure to nicotine has been shown to have significant effect on the development of multiple organ systems, including the nervous, respiratory, and cardiovascular systems. In this review, we define mainstream and sidestream smoke, summarize the major classes of compounds found in cigarette smoke, and describe how use of laboratory animal models can be used to assess mechanisms of toxicity and risk in the human population in general. We then discuss the association with smoking during pregnancy and the occurrence of reduced lung function, low birth weight, the incidence of congenital structural malformations, SIDS, ADHD, cognitive impairment, and mood disorders in children, and review pertinent experimental studies using a variety of animal models of developmental nicotine exposure, including, rats, mice, monkeys, lambs, and pigs that have increased our understanding of the pathophysiology of these disorders.  相似文献   

3.
Numerous epidemiological studies in the human population clearly indicate that smoking while pregnant has deleterious effects on fetal development as well as long-term adverse consequences on postnatal development and maturation of several organ systems. Low birth weight, sudden infant death syndrome (SIDS), behavioral disorders including attention deficit hyperactivity disorder (ADHD), externalizing and internalizing behavioral problems and conduct disorders in children have all been linked to prenatal exposure to tobacco smoke. The major pharmacologically active chemical found in tobacco smoke is nicotine, and prenatal exposure to nicotine has been shown to have significant effect on the development of multiple organ systems, including the nervous, respiratory, and cardiovascular systems. In this review, we define mainstream and sidestream smoke, summarize the major classes of compounds found in cigarette smoke, and describe how use of laboratory animal models can be used to assess mechanisms of toxicity and risk in the human population in general. We then discuss the association with smoking during pregnancy and the occurrence of reduced lung function, low birth weight, the incidence of congenital structural malformations, SIDS, ADHD, cognitive impairment, and mood disorders in children, and review pertinent experimental studies using a variety of animal models of developmental nicotine exposure, including, rats, mice, monkeys, lambs, and pigs that have increased our understanding of the pathophysiology of these disorders.  相似文献   

4.
It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident.  相似文献   

5.
Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni2+) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 μM for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had a greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni2+ had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants.  相似文献   

6.
Nicotine is a neuroteratogen that disrupts neurodevelopment and synaptic function, with vulnerability extending into adolescence. We assessed the permanence of effects in rats on indices of neural cell number and size, and on acetylcholine and serotonin (5HT) systems, conducting assessments at 6 months of age, after prenatal nicotine exposure, adolescent exposure, or sequential exposure in both periods. For prenatal nicotine, indices of cell number and size showed few abnormalities by 6 months, but there were persistent deficits in cerebrocortical choline acetyltransferase activity and hemicholinium-3 binding to the presynaptic choline transporter, a pattern consistent with cholinergic hypoactivity; these effects were more prominent in males than females. The expression of 5HT receptors also showed permanent effects in males, with suppression of the 5HT(1A) subtype and upregulation of 5HT(2) receptors. In addition, cell signaling through adenylyl cyclase showed heterologous uncoupling of neurotransmitter responses. Nicotine exposure in adolescence produced lasting effects that were similar to those of prenatal nicotine. However, when animals were exposed to prenatal nicotine and received nicotine subsequently in adolescence, the adverse effects then extended to females, whereas the net effect in males was similar to that of prenatal nicotine by itself. Our results indicate that prenatal or adolescent nicotine exposure evoke permanent changes in synaptic function that transcend the recovery of less-sensitive indices of structural damage; further, prenatal exposure sensitizes females to the subsequent adverse effects of adolescent nicotine, thus creating a population that may be especially vulnerable to the lasting behavioral consequences of nicotine intake in adolescence.  相似文献   

7.
Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS and bronchiolitis in infants and asthma in older children.  相似文献   

8.
Studies in developing rodents indicate that nicotine is a neuroteratogen that disrupts brain development by stimulating nicotinic acetylcholine receptors (nAChRs) that control neural cell replication and differentiation. We administered nicotine to pregnant Rhesus monkeys from gestational day 30 through 160 by continuous infusion, achieving maternal plasma levels comparable to those in smokers (30 ng/ml). Fetal brain regions and peripheral tissues were examined for nAChR subtypes, other neurotransmitter receptors, and indices of cell signaling and cell damage. Nicotine evoked nAChR upregulation, but with distinct regional disparities indicative of selective stimulatory responses. Similarly, indices of cell loss (reduced DNA), cell size and neuritic outgrowth (protein/DNA and membrane/total protein ratios) were distinct for each region and did not necessarily follow the rank order of nAChR upregulation, suggesting the involvement of additional mechanisms such as oxidative stress. We then attempted to offset the adverse effects of nicotine with standard dietary supplements known to interact with nicotine. By itself, choline elicited nicotine-like actions commensurate with its promotion of cholinergic neurotransmission. When given in combination with nicotine, choline protected some regions from damage but worsened nicotine's effects in other regions. Similarly, Vitamin C supplementation had mixed effects, increasing nAChR responses while providing protection from cell damage in the caudate, the brain region most susceptible to oxidative stress. Our results indicate that nicotine elicits neurodevelopmental damage that is highly selective for different brain regions, and that dietary supplements ordinarily thought to be neuroprotectant may actually worsen some of the adverse effects of nicotine on the fetal brain.  相似文献   

9.
Offspring of women who smoke during pregnancy are themselves more likely to take up smoking in adolescence, effects that are associated with a high rate of depression and increased sensitivity to withdrawal symptoms. To evaluate the biological basis for this relationship, we assessed effects on serotonin (5-hydroxytryptamine, 5HT) receptors and 5HT-mediated cellular responses in rats exposed to nicotine throughout prenatal development and then given nicotine in adolescence (postnatal days PN30-47.5), using regimens that reproduce plasma nicotine levels found in smokers. Evaluations were then made during the period of adolescent nicotine treatment and for up to one month after the end of treatment. Prenatal nicotine exposure, which elicits damage to 5HT projections in the cerebral cortex and striatum, produced sex-selective changes in the expression of 5HT(1A) and 5HT2 receptors, along with induction of adenylyl cyclase (AC), leading to sensitization of heterologous inputs operating through this signaling pathway. Superimposed on these effects, the AC response to 5HT was shifted toward inhibition. By itself, adolescent nicotine administration, which damages the same pathways, produced similar effects on receptors and the 5HT-mediated response, but a smaller overall induction of AC. Animals exposed to prenatal nicotine showed a reduced response to nicotine administered in adolescence, results in keeping with earlier findings of persistent desensitization. Our results indicate that prenatal nicotine exposure alters parameters of 5HT synaptic communication lasting into adolescence and changes the response to nicotine administration and withdrawal in adolescence, actions which may contribute to a subpopulation especially vulnerable to nicotine dependence.  相似文献   

10.
The effects of IP administered bovine growth hormone (GH) on regional brain serotonin, 5-hydroxyindoleacetic acid (5-HIAA) and norepinephrine levels in rats were examined. GH decreased the levels of both monoamines and 5-HIAA in the diencephalon and brainstem while not affecting telencephalic concentrations. In hypophysectomized rats, however GH produced significant elevations of monoamine and 5-HIAA levels in all brain regions. In normal rats the decreases in norepinephrine content produced by GH were correlated with a reduction in the stimulatory action of d-amphetamine on general activity levels. These results demonstrate that GH can affect brain biogenic amines and that these effects have behavioral consequences.  相似文献   

11.
Experimenter-administered nicotine produces reliable increases in blood pressure and changes in heart rate. However, an extensive literature demonstrates that the effects of psychoactive drugs are dependent on whether administration is contingent on behavior. The present study assessed the cardiovascular effects of nicotine and whether those effects vary as a function of whether nicotine was self-administered or response-independent. Rats were divided into three groups according to a yoked design. The pattern of infusions for each triad was determined by the animal self-administering nicotine; the other two animals received either yoked nicotine or saline. Heart rate and blood pressure were measured during eighteen daily, 1 h drug sessions by radiotelemetry. Each session was preceded and followed by a 20 minute period during which cardiovascular function was monitored in the operant chambers, but drug was not available. Acute exposure to yoked nicotine produced a rapid rise in blood pressure that was larger than the increase observed with self-administered nicotine. Additional infusions during the first session resulted in a similar sustained elevation in blood pressure in the nicotine groups. Over subsequent sessions, self-administered nicotine produced a larger effect on systolic blood pressure particularly early in each session, although for both self-administered and yoked nicotine the hypertensive effects waned partially with repeated test sessions. This decrease was fully accounted for by a pre-session decrease in pressure; relative to pre-session levels the strong hypertensive effects of nicotine persisted. Initial exposure to nicotine produced a short-lived bradycardia that in subsequent sessions was replaced with a longer-lasting nicotine-induced tachycardia; neither effect was related to the behavioral contingency of nicotine delivery. Together, these data provide a rich picture of the cardiovascular effects of nicotine. Effects of behavioral contingency were observed, but differences were limited. Other non-pharmacological factors such as baseline shifts potentially related to nicotine-associated cues deserve further attention.  相似文献   

12.
  • 1 Maternal tobacco smoking is the principal risk factor associated with sudden infant death syndrome (SIDS), a leading cause of death of infants under 1 year of age. Victims of SIDS show a higher incidence of respiratory control abnormalities, including central apnoeas, delayed arousal responses and diminished ventilatory chemoreflexes.
  • 2 Nicotine is likely the link between maternal tobacco smoking and SIDS. Prenatal nicotine exposure can alter the breathing pattern and can reduce hypoxia‐ and hypercarbia‐induced ventilatory chemoreflexes. In vitro approaches have revealed that prenatal nicotine exposure impairs central chemosensitivity, switching the cholinergic contribution from a muscarinic to a nicotinic receptor‐based drive. In addition, serotonergic, noradrenergic, GABAergic, glycinergic and glutamatergic, among others, are affected by prenatal nicotine.
  • 3 Here we propose that prenatal nicotine affects the respiratory network through two main processes: (i) reorganization of neurotransmitter systems; and (ii) remodelling of neural circuits. These changes make breathing more vulnerable to fail in early postnatal life, which could be related to the pathogenesis of SIDS.
  相似文献   

13.
Maternal smoking during pregnancy increases the likelihood that the offspring will become smokers in adolescence. In the current study, we evaluated effects of prenatal and adolescent nicotine exposure in rats to assess whether there is a biological basis for this relationship. Pregnant rats were given nicotine or vehicle throughout pregnancy and the offspring then again received nicotine or vehicle during adolescence (postnatal days PN30-47.5), using a regimen (6 mg/kg/day by subcutaneous infusion) that produces plasma nicotine levels similar to those in smokers. Evaluations were made in the cerebral cortex and midbrain during adolescent nicotine administration (PN45) and for up to 1 month after the end of treatment. We assessed the magnitude and persistence of nicotinic acetylcholine receptor (nAChR) upregulation; in addition, we evaluated cholinergic synaptic activity by comparing the effects on choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, with those on hemicholinium-3 (HC-3) binding to the presynaptic choline transporter, which is regulated by nerve impulse activity. Prenatal nicotine exposure had only minor effects on nAChRs but produced persistent cholinergic hypoactivity (reduced HC-3 binding relative to ChAT) throughout adolescence and into adulthood (PN75). Adolescent nicotine exposure evoked robust nAChR upregulation and also suppressed cholinergic activity. Prenatal nicotine exposure reduced the upregulation of nAChRs evoked by adolescent nicotine but worsened the cholinergic hypoactivity during withdrawal. Our results indicate that prenatal nicotine exposure alters the subsequent response to nicotine in adolescence, effects that may contribute to the association between maternal smoking during pregnancy and subsequent adolescent smoking in the offspring.  相似文献   

14.
Although recent studies have demonstrated prenatal nicotine can increase cardiovascular risk in the offspring, it is unknown whether exposure to nicotine during pregnancy also may be a risk for development of arrhythmia in the offspring. In addition, in previous studies of fetal arrhythmia affected by smoking, only two patterns, bradycardia and tachycardia, were observed. The present study examined acute effects of maternal nicotine on the fetal arrhythmia in utero, and chronic influence on offspring arrhythmia at adult stage following prenatal exposure to nicotine. Nicotine was administered to pregnant ewes and rats. In the fetal sheep, intravenous nicotine not only induced changes of fetal heart rate, but also caused cardiac cycle irregularity, single and multiple dropped cardiac cycles. Although maternal nicotine had no influence on fetal blood pH, lactic acid, hemocrit, Na+, K+ levels and plasma osmolality, fetal blood PO2 levels were significantly decreased following maternal nicotine in ewes. In offspring rats at 4–5 months after birth, prenatal exposure to nicotine significantly increased heart rate and premature ventricular contraction in restraint stress. In addition, arrhythmias induced by injection of nicotine were higher in the offspring prenatal exposure to nicotine in utero. The results provide new evidence that exposure to nicotine in pregnancy can cause fetal arrhythmia in various patterns besides tachycardia and bradycardia, the possible mechanisms for nicotine‐induced fetal arrhythmia included in utero hypoxia. Importantly, following exposure to nicotine significantly increased risk of arrhythmia in the adult offspring. The finding offers new insight for development of cardiac rhythm problems in fetal origins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Purpose The aim of the study is to identify specific protein kinase C (PKC) isoforms involvement in K+ transport mediated at altered blood–brain barrier (BBB) response to stroke conditions with prior nicotine exposure, which provides ways to intervene pharmacologically in PKC-mediated molecular pathways that could lead to effective treatment for smoking stroke patients. Methods Changes in PKC isoform levels were studied in the cytosolic and membrane fractions of bovine brain microvessel endothelial cells subjected to stroke conditions as well as nicotine/cotinine exposure. Furthermore, abluminal Na,K,2Cl-cotransporter (NKCC) activity regulated by specific conventional PKC isoform activators and inhibitors was investigated using rubidium (86Rb) uptake studies. Results Membrane-bound PKCα, PKCβI, and PKCɛ levels were increased after 6 h hypoxia/aglycemia, and this was attenuated by 24-h nicotine/cotinine exposure. Interestingly, membrane-bound PKCγ protein level was decreased after 6 h hypoxia/aglycemia and increased by 24-h nicotine/cotinine exposure. 86Rb uptake studies showed that basolateral NKCC activity was down-regulated by both a conventional PKC inhibitor and specific inhibitors for PKCα, PKCβ, and PKCɛ and was up-regulated by an activator of conventional PKCs during 6-h hypoxia/aglycemia treatment. Conclusion Specific PKC inhibitors or activators might be designed to individualize stroke therapies and improve health outcome for smokers by rebalancing ion transport into and out of the brain.  相似文献   

16.
Several classes of antidepressant drug exist, divided into three broad families, the monoamine reuptake inhibitors, the monoamine oxidase inhibitors and the monoamine receptor antagonists. All these drugs have a common pharmacological effect, to raise the synaptic concentrations of noradrenaline and serotonin. Although different drugs have different relative selectivity for noradrenaline and serotonin systems, these two neurotransmitter pathways work in parallel and in a coherent manner to produce the same final antidepressant response. The lag-time in the onset of action of antidepressants can be explained by the activation of inhibitory autoreceptors on serotonergic and noradrenergic neurones which initially attenuate the effects of antidepressants on synaptic transmitter levels. Over time, these autoreceptors desensitize, allowing the emergence of an overt antidepressant response. This theory has led to the proposition that antagonists at these autoreceptors such as pindolol may be useful adjuncts to antidepressant treatment, in order to hasten the appearance of a clinical response. Evidence for the clinical validity of this idea remains equivocal, however. The use of central monoamine depletion studies has demonstrated that it is elevated synaptic monoamine levels themselves, rather than some downstream postsynaptic changes in, for example, receptor sensitivity, that are responsible for the therapeutic effect of antidepressant drugs. Taken together, the data collected over the last 40 years have allowed the emergence of a unified monoamine hypothesis of antidepressant drug action.  相似文献   

17.
Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28–31), but not late adolescence (P38–41) or adulthood (P86–89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic function by both 5-HT1A and non-5-HT1A receptor mechanisms.  相似文献   

18.
The identification of an equatorial frog toxin, epibatidine, as a potent non-morphinic analgesic, selective for neuronal nicotinic acetylcholine receptors, provoked a marked renewal in our understanding of pain and its mechanisms. In this work we have examined the effects of epibatidine at the major brain rat alpha4beta2 nicotinic acetylcholine receptor expressed in a cell line. Fast drug applications obtained with a modified liquid filament system were used for the analyses of the currents evoked by acetylcholine, nicotine and epibatidine. Characterized by a slow onset and offset, epibatidine responses were of smaller amplitude to those evoked by acetylcholine or nicotine. About a thousand times more sensitive to epibatidine than acetylcholine, the alpha4beta2 receptor also displayed a more pronounced apparent desensitization to this compound. Finally, overnight exposure to 1 nM epibatidine failed to produce the functional upregulation observed with nicotine. These data indicate that, at the rat alpha4beta2 receptor, epibatidine acts as a partial agonist causing a pronounced inhibition of agonist evoked currents at concentrations that do not activate the receptors.  相似文献   

19.
A significant fraction of infants born to mothers taking selective serotonin reuptake inhibitors (SSRIs) during late pregnancy display clear signs of antidepressant withdrawal indicating that these drugs can penetrate fetal brain in utero at biologically significant levels. Previous studies in rodents have demonstrated that early exposure to some antidepressants can result in persistent abnormalities in adult behavior and indices of monoaminergic activity. Here, we show that chronic neonatal (postnatal days 8-21) exposure to citalopram (5 mg/kg, twice daily, s.c.), a potent and highly selective SSRI, results in profound reductions in both the rate-limiting serotonin synthetic enzyme (tryptophan hydroxylase) in dorsal raphe and in serotonin transporter expression in cortex that persist into adulthood. Furthermore, neonatal exposure to citalopram produces selective changes in behavior in adult rats including increased locomotor activity and decreased sexual behavior similar to that previously reported for antidepressants that are nonselective monoamine transport inhibitors. These data indicate that the previously reported neurobehavioral effects of antidepressants are a consequence of their effects on the serotonin transporter. Moreover, these data argue that exposure to SSRIs at an early age can disrupt the normal maturation of the serotonin system and alter serotonin-dependent neuronal processes. It is not known whether this effect of SSRIs is paralleled in humans; however, these data suggest that in utero, exposure to SSRIs may have unforeseen long-term neurobehavioral consequences.  相似文献   

20.
Nicotinic receptors play an essential role in central cardiorespiratory function, however, the types of nicotinic receptors responsible for activating cardiac vagal neurons in the nucleus ambiguus that control heart rate are unknown. This study tests whether alpha-conotoxin MII and alpha-conotoxin AuIB sensitive nicotinic receptors are involved in augmentation of glutamatergic neurotransmission and changes in holding current in cardiac vagal neurons, and whether exposure to nicotine in the prenatal period alters these responses. The nicotinic agonist cytisine significantly increased the holding current and amplitude of glutamatergic mEPSCs. In unexposed animals alpha-conotoxin MII (100nM) significantly reduced the increase in mEPSC amplitude and change in holding current evoked by cytisine. However, in animals prenatally exposed to nicotine, alpha-conotoxin MII blunted but did not block the increase in mEPSC amplitude but blocked the increase in holding current evoked by cytisine. In unexposed animals, alpha-conotoxin AuIB (10microM) blocked the cytisine evoked increase in mEPSC amplitude and inhibited but did not abolish the increase in holding current. In contrast, in animals exposed to nicotine, alpha-conotoxin AuIB blunted the increase in mEPSC amplitude, and completely abolished the cytisine evoked increase in holding current. These data demonstrate that the prenatal nicotine exposure alters the nicotinic receptors involved in excitation of cardiac vagal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号