首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The disulfide loop domain of Pseudomonas aeruginosa PAO pilin was altered by insertion of a chloramphenicol acetyltransferase gene into the pilin gene so that the C-terminal nine amino acids were replaced with 11 new amino acids. The altered pilin gene was transferred into wild-type PAO by recombination, where it did not affect normal piliation as observed by transmission electron microscopy or change of sensitivity to f116, PO4, B9, and Pf1 pilus-specific bacteriophages. However, the binding to human pneumocyte A549 cells was markedly reduced when tested in an in vitro binding assay (2 to 6 bacteria bound per A549 cell for the mutant bacteria compared with 50 bacteria per A549 cell for the wild-type bacteria). Additionally, when susceptible A.BY/SnJ mice were challenged with wild-type P. aeruginosa PAO and with P. aeruginosa PAO-MP (altered pilin gene), a 50% lethal dose of 3 x 10(6) bacteria per mouse was observed for PAO-MP compared with 7 x 10(4) bacteria per mouse for PAO. Approximately 90 of the adherence capability of P. aeruginosa PAO is seemingly attributable to the C-terminal disulfide loop adherence domain of pili. The pilus adherence function contributes significantly to the virulence of P. aeruginosa PAO in the A.BY/SnJ mouse infection model.  相似文献   

2.
Pseudomonas aeruginosa invades various epithelial cell types in vitro and in vivo. The P. aeruginosa genome possesses a gene (flhA) which encodes a protein that is believed to be part of the export apparatus for flagellum assembly and which is homologous to invA of Salmonella spp. Because invA is required for invasion of Salmonella spp., a role for flhA in P. aeruginosa invasion was explored using cultured rabbit corneal epithelial cells. An flhA mutant of P. aeruginosa strain PAO1 was constructed and was shown to be nonmotile. Complementation with flhA in trans restored motility. Corneal cells were infected for 3 h with the wild type (PAO1), the flhA mutant, the flhA mutant complemented with flhA in trans, an flhA mutant containing the plasmid vector control, or an fliC mutant (nonmotile mutant control). Invasion was quantified by amikacin exclusion assays. Both the flhA and the fliC mutants invaded at a lower level than the wild-type strain did, suggesting that both fliC and flhA played roles in invasion. However, loss of motility was not sufficient to explain the reduced invasion by flhA mutants, since centrifugation of bacteria onto cells did not restore invasion to wild-type levels. Unexpectedly, the flhA mutant adhered significantly better to corneal epithelial cells than wild-type bacteria or the fliC mutant did. The percentage of adherent bacteria that invaded was reduced by approximately 80% for the flhA mutant and approximately 50% for the fliC mutant, showing that only part of the role of flhA in invasion involves fliC. Invasion was restored by complementing the flhA mutant with flhA in trans but not by the plasmid vector control. Intracellular survival assays, in which intracellular bacteria were enumerated after continued incubation in the presence of antibiotics, showed that although flhA and fliC mutants had a reduced capacity for epithelial cell entry, they were not defective in their ability to survive within those cells after entry. These results suggest that the flagellum assembly type III secretion system plays a role in P. aeruginosa invasion of epithelial cells. Since the flhA mutants were not defective in their ability to adhere to corneal epithelial cells, to retain viability at the cell surface, or to survive inside epithelial cells after entry, the role of flhA in invasion of epithelial cells is likely to occur during the process of bacterial internalization.  相似文献   

3.
Pyoverdin is essential for virulence of Pseudomonas aeruginosa.   总被引:7,自引:1,他引:7       下载免费PDF全文
The role of pyoverdin, the main siderophore in iron-gathering capacity produced by Pseudomonas aeruginosa, in bacterial growth in vivo is controversial, although iron is important for virulence. To determine the ability of pyoverdin to compete for iron with the human iron-binding protein transferrin, wild-type P. aeruginosa ATCC 15692 (PAO1 strain) and PAO pyoverdin-deficient mutants were grown at 37 degrees C in bicarbonate-containing succinate medium to which apotransferrin had been added. Growth of the pyoverdin-deficient mutants was fully inhibited compared with that of the wild type but was restored when pyoverdin was added to the medium. Moreover, when growth took place at a temperature at which no pyoverdin production occurred (43 degrees C), the wild-type PAO1 strain behaved the same as the pyoverdin-deficient mutants, with growth inhibited by apotransferrin in the presence of bicarbonate and restored by pyoverdin supplementation. Growth inhibition was never observed in bicarbonate-free succinate medium, whatever the strain and the temperature for growth. In vivo, in contrast to results obtained with the wild-type strain, pyoverdin-deficient mutants demonstrated no virulence when injected at 10(2) CFU into burned mice. However, virulence was restored when purified pyoverdin originating from the wild-type strain was supplemented during the infection. These results strongly suggest that pyoverdin competes directly with transferrin for iron and that it is an essential element for in vivo iron gathering and virulence expression in P. aeruginosa. Rapid removal of iron from [59Fe]ferritransferrin by pyoverdin in vitro supports this view.  相似文献   

4.
Studies of immunity to Pseudomonas aeruginosa have indicated that a variety of potential immunogens can elicit protection in animal models, utilizing both antibody- and cell-mediated immune effectors for protection. To attempt to optimize delivery of multiple protective antigens and elicit a broad range of immune effectors, we produced an aroA deletion mutant of the P. aeruginosa serogroup O2/O5 strain PAO1, designated PAO1deltaaroA. Previously, we reported that this strain elicits high levels of opsonic antibody directed against many serogroup O2/O5 strains after nasal immunization of mice and rabbits. Here, we assessed the protective efficacy of immunization with PAO1deltaaroA against acute fatal pneumonia in mice. After active immunization, high levels of protection were achieved against an ExoU-expressing cytotoxic variant of the parental strain PAO1 at doses up to 1,000-fold greater than the 50% lethal dose. Significant protection against PAO1 and two of four other serogroup O2/O5 strains was also found, but there was no protection against serogroup-heterologous strains. The serogroup O2/O5 strains not protected against were killed in opsonophagocytic assays as efficiently as the strains with which protection was seen, indicating a lack of correlation of protection and opsonic killing within the serogroup. In passive immunization experiments using challenge with wild-type PAO1 or other noncytotoxic members of the O2/O5 serogroup, there was no protection despite the presence of high levels of opsonic antibody in the mouse sera. However, passive immunization did prevent mortality from pneumonia due to the cytotoxic PAO1 variant at low-challenge doses. These data suggest that a combination of humoral and cellular immunity is required for protection against P. aeruginosa lung infections, that such immunity can be elicited by using aroA deletion mutants, and that a multivalent P. aeruginosa vaccine composed of aroA deletion mutants of multiple serogroups holds significant promise.  相似文献   

5.
The MexZ-MexX-MexY multidrug efflux system in Pseudomonas aeruginosa was studied to determine its contribution to aminoglycoside resistance. Amikacin-resistant (AR) mutants were generated from P. aeruginosa strain PAO1, and clinical isolates of P. aeruginosa were collected from cystic fibrosis patients. The regulatory gene mexZ and the intergenic region (mexOZ) between mexZ and mexX were investigated for mutation by PCR and DNA sequence analysis. The results showed that 14 of 15 AR clinical isolates and one of ten laboratory mutants had at least one mutation in mexZ and/or mexOZ. To study the effect of mexZ and mexOZ mutations, the production of MexY mRNA was investigated quantitatively by real-time PCR. Seven of ten AR mutants (MIC 4-8 mg/L) produced 8-21-fold more MexY mRNA than PAO1. These isolates were sensitive to fluoroquinolones, carbapenems and ceftazidime. One AR mutant (MIC 64 mg/L) that produced > 200-fold more MexY mRNA than PAO1 was also resistant to fluoroquinolones, carbapenems and ceftazidime. Thirteen of 15 AR clinical isolates produced 3.4-727-fold more MexY mRNA. No evidence was found for the aminoglycoside-modifying enzymes 6'-N-acetyltransferase type Ib, 4'-O-nucleotidyltransferase type IIb or aminoglycoside 3'-phosphotransferase IIps in these strains. Nine AR mutants overproduced MexY without mutations in mexZ or mexOZ, suggesting that MexXY efflux is also regulated by gene(s) other than mexZ.  相似文献   

6.
Acute pneumonias and corneal infections due to Pseudomonas aeruginosa are typically caused by lipopolysaccharide (LPS)-smooth strains. In cystic fibrosis patients, however, LPS-rough strains of P. aeruginosa, which lack O antigen, can survive in the lung and cause chronic infection. It is not clear whether an LPS-rough phenotype affects cytotoxicity related to the type III secretion system (TTSS). We previously reported that interruption of the galU gene in P. aeruginosa results in production of a rough LPS and truncated LPS core. Here we evaluated the role of the galU gene in the pathogenesis of murine lung and eye infections and in cytotoxicity due to the TTSS effector ExoU. We studied galU mutants of strain PAO1, of its cytotoxic variant expressing ExoU from a plasmid, and of the inherently cytotoxic strain PA103. The galU mutants were more serum sensitive than the parental strains but remained cytotoxic in vitro. In a corneal infection model, the galU mutants were significantly attenuated. In an acute pneumonia model, the 50% lethal doses of the galU mutants were higher than those of the corresponding wild-type strains, yet these mutants could cause mortality and severe pneumonia, as judged by histology, even with minimal systemic spread. These findings suggest that the galU gene is required for corneal infection and for efficient systemic spread following lung infection but is not required for infection confined to the lung. Host defenses in the lung appear to be insufficient to control infection with LPS-rough P. aeruginosa when local bacterial levels are high.  相似文献   

7.
We examined the virulence of Pseudomonas aeruginosa strain PAO and xcp (extracellular proteins deficient) and xch (extracellular proteins hyperproducing) mutants derived from strain PAO in an experimental mouse burn infection model. The results showed that xcp mutants, which produced little or no extracellular elastase and exotoxin A, were as virulent as their corresponding xcp+ strains. The xch mutants produced more elastase and exotoxin A than the wild type strain, however, they had significantly lower virulence, probably due to reduced ability of these strains to take up iron. Treatment of mice with ferric ammonium citrate had no effect on the wild type strain but enhanced mortality in mice challenged with xch mutants. Neither elastase nor exotoxin A seem to play any role in burn infections with P. aeruginosa strain PAO. However, ability for iron uptake is an important virulence factor.  相似文献   

8.
The phospholipase C (PLC) operon of Pseudomonas aeruginosa consists of plcS, which encodes a heat-labile secreted hemolysin, and two in-phase, overlapping genes, plcR1 and plcR2, which may encode Pi-regulatory genes. A 2.8-kilobase-pair deletion mutation in this operon was constructed, and a tetracycline resistance (Tcr) cartridge replaced the deleted sequences. A deletion mutant of strain PAO1 was obtained through recombination between the flanking regions of the mutated cloned PLC operon and the homologous chromosomal regions. The deletion of the chromosomal PLC operon and its replacement by the Tcr cartridge was confirmed by Southern hybridization. The deletion strain, PLC SR, is nonhemolytic. However, it retains PLC activity when measured on a synthetic substrate. A second mutant strain, PLC R, contains a deletion in the plcR genes. This mutant is more hemolytic and produces more enzymatic activity than PAO1. The virulence of both of these mutants was compared with that of PAO1 in the mouse burn model of infection. When mice were infected with cultures grown in a high-Pi medium, there was a 10-fold increase in the 50% lethal dose of the mutants compared with PAO1. In contrast, when the inoculum originated from low-Pi cultures, there was a 200- to 10,000-fold increase in the 50% lethal dose of the mutants over PAO1.  相似文献   

9.
The data presented indicate that in experimental Pseudomonas aeruginosa infection of mice, protease enhances the virulence of the organism. Anesthetized CBA/Lü mice were subjected to a 15-s flame burn and infected with a wild-type protease-producing strain and two of its protease-deficient mutants. The average bacterial cell mean lethal dose (LD50) of 3.8 +/- 0.3 standard deviation (log10) for mice infected with the protease-producing P. aeruginosa was at least 1 log lower than the LD50 of the protease-deficient mutants (0.02 greater than P greater than 0.01). The addition of purified protease to the infecting inoculum of protease-deficient strains reduced the LD50. Although the generation time in vitro was the same for all three bacterial strains used, there were consistently fewer viable bacteria in the blood of mice infected with protease-deficient strains than in those infected with the protease-producing strain. When a protease-deficient strain was mixed with the protease-producing wild-type strain, the number of protease-producing pseudomonas found in the blood remained constant, whereas the number of protease-deficient organisms increased, suggesting that protease contributed to the invasiveness of the organisms. The survival of mice infected with protease-producing pseudomonas was enhanced by antiprotease serum. Antiprotease serum had no effect in mice infected with protease-deficient mutants.  相似文献   

10.
The Pseudomonas aeruginosa quorum-sensing systems, las and rhl, control the production of numerous virulence factors. In this study, we have used the burned-mouse model to examine the contribution of quorum-sensing systems to the pathogenesis of P. aeruginosa infections in burn wounds. Different quorum-sensing mutants of P. aeruginosa PAO1 that were defective in the lasR, lasI, or rhlI gene or both the lasI and rhlI genes were utilized. The following parameters of the P. aeruginosa infection were examined: (i) lethality to the burned mouse, (ii) dissemination of the P. aeruginosa strain within the body of the infected mouse (by determining the numbers of CFU of P. aeruginosa within the liver and spleen), and (iii) spread of the P. aeruginosa strain within the burned skin (by determining the numbers of CFU of P. aeruginosa at the inoculation site and at a site about 15 mm from the inoculation site [distant site]). In comparison with that of PAO1, the in vivo virulence of lasI, lasR, and rhlI mutants was significantly reduced. However, the most significant reduction in in vivo virulence was seen with the lasI rhlI mutant. The numbers of CFU that were recovered from the livers, spleens, and skin of mice infected with different mutants were significantly lower than those of PAO1. At 8 and 16 h post burn infection, comparable numbers of CFU of PAO1 and lasI and rhlI mutants were obtained from both the inoculation and distant sites of the burned skin of infected mice. In contrast, CFU of the lasR mutant and the lasI rhlI double mutant were recovered only from the inoculation site of infected mice at 8 and 16 h post burn infection. The ability of a plasmid carrying either the lasI or rhlI gene or the lasI and rhlI genes to complement the defect of the lasI rhlI double mutant was also examined. The presence of any of these plasmids within the lasI rhlI double mutant significantly enhanced its in vivo virulence, as well as its ability to spread within the burned skin. These results suggest that the quorum-sensing systems play an important role in the horizontal spread of P. aeruginosa within burned skin and in the dissemination of P. aeruginosa within the bodies of burned-and-infected mice and contributed to the overall virulence of P. aeruginosa in this animal model.  相似文献   

11.
The virulence of wild-type Pseudomonas aeruginosa PAO1 and that of a genetically defined algC mutant, PAO1 algC::tet, were compared in a burned-mouse model of infection. Unlike PAO1, PAO1 algC::tet was avirulent, grew less well in the eschar, and did not disseminate to the liver of challenged animals. We have previously shown that the P. aeruginosa algC gene is required for biosynthesis of alginate and lipopolysaccharide (M.J. Coyne, Jr., K.S. Russell, C.L. Coyle, and J.B. Goldberg, J. Bacteriol. 176:3500-3507, 1994). In order to determine whether the alginate or lipopolysaccharide (LPS) defect was responsible for the avirulence of this strain, we constructed a strain with a mutation in an alginate-specific gene, algD. PAO1-algD was virulent in the burned-mouse model, thus implicating the LPS defect in PAO1 algC::tet as the relevant alteration responsible for the avirulence of this strain.  相似文献   

12.
Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment.  相似文献   

13.
Fibronectin is capable of activating macrophages for enhanced nonopsonic phagocytosis of Pseudomonas aeruginosa grown in vivo in rats or mice or in vitro on nutrient agar plates. In this study it was determined that while fibronectin was able to significantly increase phagocytosis of organisms grown in static broth, uptake of agitated bacteria could not be promoted. Agitated P. aeruginosa cultures were proven to lack surface pili expression, as assessed by electron microscopic studies. A pilus-deficient pilA::Tn501 mutant of P. aeruginosa PAO was constructed by gene replacement techniques. Phagocytosis of this mutant could not be enhanced by fibronectin regardless of growth conditions. Furthermore, 60 micrograms of exogenously added Pseudomonas pili per ml was capable of abrogating the enhanced phagocytosis of the wild-type strain observed with fibronectin-stimulated macrophages. It is concluded that Pseudomonas pili were the bacterial ligands required for attachment to fibronectin-stimulated macrophages in the initial stages of nonopsonic phagocytosis.  相似文献   

14.
Pseudomonas aeruginosa produces siderophores, pyoverdin and pyochelin, for high-affinity iron uptake. To investigate their contribution to P. aeruginosa infections, we constructed allelic exchange mutants from strain PAO1 which were deficient in producing one or both of the siderophores. When inoculated into the calf muscles of immunosuppressed mice, pyochelin-deficient and pyoverdin-deficient mutants grew and killed the animals as efficiently as PAO1. In contrast, the pyochelin- and pyoverdin-deficient (double) mutant did not show lethal virulence, although it did infect the muscles. On the other hand, when inoculated intranasally, all mutants grew in the lungs and killed immunosuppressed mice. Compared with PAO1, however, the pyoverdin-deficient mutant and the double mutant grew poorly in the lungs, and the latter was significantly attenuated for virulence. Irrespective of the inoculation route, the pyoverdin-deficient and doubly deficient mutants detected in the blood were significantly less numerous than PAO1. Additionally, in vitro examination demonstrated that the growth of the double mutant was extremely reduced under a free-iron-restricted condition with apotransferrin but that the growth reduction was completely canceled by supplementation with hemoglobin as a heme source. These results suggest that both pyoverdin and pyochelin are required for efficient bacterial growth and full expression of virulence in P. aeruginosa infection, although pyoverdin may be comparatively more important for bacterial growth and dissemination. However, the siderophores were not always required for infection. It is possible that non-siderophore-mediated iron acquisition, such as via heme uptake, might also play an important role in P. aeruginosa infections.  相似文献   

15.
Pseudomonas aeruginosa strains PAO1 and CHA showing type III system-dependent cytotoxicity towards macrophages ex vivo are able to induce rapid death of adult fly Drosophila melanogaster accompanied by bacterial multiplication to high-titers. The role of P. aeruginosa type III secretion system in rapid fly killing was demonstrated here by using several isogenic CHA mutants, selectively affected in this system. The activation of P. aeruginosa pexsCBA, the regulatory operon of the type III system, and the activation of the Drosophila gene diptericin, showed the host-pathogen recognition during infection process.  相似文献   

16.
Infection by the bacterial opportunist Pseudomonas aeruginosa frequently assumes the form of a biofilm, requiring motility for biofilm formation and dispersal and an ability to grow in nutrient- and oxygen-limited environments. Anaerobic growth by P. aeruginosa is accomplished through the denitrification enzyme pathway that catalyzes the sequential reduction of nitrate to nitrogen gas. Mutants mutated in the two-component nitrate sensor-response regulator and in membrane nitrate reductase displayed altered motility and biofilm formation compared to wild-type P. aeruginosa PAO1. Analysis of additional nitrate dissimilation mutants demonstrated a second level of regulation in P. aeruginosa motility that is independent of nitrate sensor-response regulator function and is associated with nitric oxide production. Because motility and biofilm formation are important for P. aeruginosa pathogenicity, we examined the virulence of selected regulatory and structural gene mutants in the surrogate model host Caenorhabditis elegans. Interestingly, the membrane nitrate reductase mutant was avirulent in C. elegans, while nitrate sensor-response regulator mutants were fully virulent. The data demonstrate that nitrate sensing, response regulation, and metabolism are linked directly to factors important in P. aeruginosa pathogenesis.  相似文献   

17.
Exposure of Pseudomonas aeruginosa to aminoglycosides frequently selects for recalcitrant subpopulations exhibiting an unstable, < adaptive > resistance to these antibiotics. In this study, we investigated the implication in the phenomenon of MexXY-OprM, an active efflux system known to export aminoglycosides in P. aeruginosa. Immunoblotting experiments demonstrated that the transporter MexY, but not the outer membrane pore OprM, was overproduced during the post-drug exposure adaptation period in wild-type strain PAO1. Furthermore, MexY production was dependent upon the degree of bacterial exposure to gentamicin (drug concentration). In contrast to parental strain PAO1, mutants defective in MexXY or in OprM were unable to develop adaptive resistance. Altogether, these results indicate that the resistance process requires the rapid production of MexXY and the interaction of these proteins with the constitutively produced component OprM.  相似文献   

18.
To investigate the contribution of the TonB protein to high-affinity iron acquisition in Pseudomonas aeruginosa, we constructed tonB-inactivated mutants from strain PAO1 and its derivative deficient in producing the siderophores pyoverdin and pyochelin. The tonB mutants could not grow in a free-iron-restricted medium prepared by apotransferrin addition, even though the medium was supplemented with each purified siderophore or with a heme source (hemoglobin or hemin). The tonB inactivation was shown to make P. aeruginosa unable to acquire iron from the transferrin with either siderophore. Introduction of a plasmid carrying the intact tonB gene restored growth of the tonB mutant of PAO1 in the free-iron-restricted medium without any supplements and restored growth of the tonB mutant of the siderophore-deficient derivative in the medium supplemented with pyoverdin, pyochelin, hemoglobin, or hemin. In addition, animal experiments showed that, in contrast to PAO1, the tonB mutant of PAO1 could not grow in vivo, such as in the muscles and lungs of immunosuppressed mice, and could not kill any of the animals. The in vivo growth ability and lethal virulence were also restored by introduction of the tonB-carrying plasmid in the tonB mutant. These results indicate clearly that the intact tonB gene-and, therefore, the TonB protein encoded by it-is essential for iron acquisition mediated by pyoverdin and pyochelin and via heme uptake in P. aeruginosa and suggest that the TonB-dependent iron acquisition may be essential for P. aeruginosa to infect the animal host.  相似文献   

19.
The plcHR operon of Pseudomonas aeruginosa includes the structural gene for the hemolytic phospholipase C,plcH (previously known as plcS), and two overlapping, in-phase, genes designated plcR1 and plcR2. Hemolytic and phospholipase C (PLC) activities produced by Escherichia coli and P. aeruginosa T7 expression systems were measured in strains carrying both plcH and plcR genes and in strains carrying each gene separately. When plcH was expressed by itself in the E. coli T7 system, the area of the hemolytic zone on blood agar was less than twice the area of growth. By contrast, when plcR was coexpressed with plcH in this system, the area of the hemolytic zone was approximately 10 times that of the area of the growth on blood agar. Native polyacrylamide gel electrophoretic analyses of PlcH activity expressed in either the E. coli or the P. aeruginosa T7 system carrying plcH alone, or along with the plcR genes, suggest that PlcR either posttranslationally alters the physical or biochemical nature of PlcH or releases PlcH from a complex in the cell so that it can be secreted. The hypothesis that PlcR is involved in the secretion of PlcH is supported by the observation that the ratio of extracellular to cell-associated PlcH activity produced by P. aeruginosa strains containing an in-frame deletion in the chromosomal plcR genes is significantly reduced in comparison with this ratio seen with the wild-type parental strain. This defect in the secretion of PlcH can be complemented by the plcR genes in trans. Additional data suggest that PlcR does not directly affect the secretion of the nonhemolytic phospholipase C (PlcN). PlcR is highly similar to a calcium-binding protein (CAB) from Streptomyces erythraeus. PlcR and CAB contain typical motifs (EF hands) characteristic of eucaryotic calcium-binding proteins, including calmodulin. P. aeruginosa naturally produces membrane vesicles (MVs) containing extracellular proteins including PLC. MVs from the PAO1WT strain contained at least 10-fold more PLC specific activity than those isolated from a strain carrying a deletion of plcR (PAO1 deltaR). Immunogold electron microscopy of PAO1WT and PAO1 deltaR whole cells revealed a distribution of PlcH in these strains consistent with the hypothesis that PlcR is required for the secretion of PlcH.  相似文献   

20.
Effect of pyochelin on the virulence of Pseudomonas aeruginosa.   总被引:25,自引:5,他引:20       下载免费PDF全文
A virulent isolate of Pseudomonas aeruginosa PAO1, which had been obtained from eight sequential intraperitoneal infections in mice compromised with iron and methotrexate, expressed greater lethality than the avirulent parent strain when both strains were injected into mice treated with iron. The present study demonstrates that pyochelin, a siderophore produced by P. aeruginosa, also increases the lethality of the virulent bacteria but not of the avirulent bacteria. Analysis of the growth and clearance of both virulent and avirulent strains in mice revealed that pyochelin increased the growth and lethality of virulent bacteria but only increased the survival of the avirulent bacteria. A streptomycin-dependent mutant of strain PAO1 (strd1) was used to demonstrate that pyochelin did not affect the clearance activity of mice. This strongly suggests that the effects of pyochelin in stimulating the persistence of avirulent bacteria and in increasing the lethality of virulent bacteria are due solely to the promotion of bacterial growth. Since the virulent bacteria were equivalent to the avirulent bacteria in utilizing pyochelin during in vitro growth in the presence of transferrin, it appears that the stimulation of growth by pyochelin allows the expression of additional virulence properties by the virulent bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号