首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A common aim in cancer research is to investigate mechanisms of malignant progression by genetic analysis of key stages, including pre-malignancy, microinvasion, and micrometastases. As such lesions are small and require microdissection from clinical samples, the amount of DNA that can be recovered is limited and frequently inadequate for commonly used techniques of genomic analysis, such as comparative genomic hybridization (CGH). There is a critical requirement for techniques of whole-genome amplification that minimize representation bias in the amplified sample. Several techniques have been described, although their relative suitability for CGH has not been examined adequately. Here we compare the abilities of degenerate oligonucleotide-primed PCR (DOP-PCR), multiple-strand displacement amplification (MDA), and balanced PCR accurately to amplify limited amounts of template DNA for use in CGH. Amplification by DOP-PCR and MDA, but not balanced PCR faithfully preserved the original genomic content following amplification, as evidenced by generally concordant CGH copy number karyograms. Whereas the amplification products of DOP-PCR were immediately available for labeling and hybridization, the products of MDA required a further digestion step to produce optimal-sized probes for CGH. Moreover, MDA was less reliable overall than DOP-PCR at the lowest starting amount of 10 pg of template DNA. We conclude that DOP-PCR is the method of choice for whole-genome amplification of minute quantities of DNA to enable global genomic analysis to be performed on limited clinical samples.  相似文献   

2.
Merkel cell carcinoma was diagnosed in a 79-year-old Caucasian woman. The tumour was localised to the upper lip and was in stage T2. After successful cryosurgery and a 7-year tumour-free period, a new tumour developed in her palatine tonsil. Histologically and immunohistochemically, this resembled the tumour in the lip. The regional lymph nodes were devoid of metastasis. The paraffin-embedded material of the two tumours and the unaffected lymphatic tissue were analysed with DNA microarrays for comparative genomic hybridisation to assess the genetic relationship of the tumours. In both tumours, regions on 2p and 10p were commonly over-represented, while 41 regions on chromosomes 1–4, 6, 8–9, 11 and 14–22 were commonly under-represented. Chromosomes 1, 3, 4, 16–18 and X were most frequently involved in the DNA losses. In gene copy numbers in the two tumours, 31 chromosome locations were found to be differently affected. The partly similar and partly different molecular patterns indicated a genetic relationship between the tumours and excluded the possibility that the tonsillar tumour was a metastasis. The findings suggest that a genetically altered field was the reason for the development of the tonsillar cancer; thus, it can be regarded pathogenetically as a second field tumour.  相似文献   

3.
High-throughput genetic studies often require large quantities of DNA for a variety of analyses. Developing and assessing a whole-genome amplification method is thus important, especially with the current desire for large-scale genotyping in previously collected samples for which limited DNA is available. The method we have developed, called PRSG, is based on an adaptor-ligation-mediated PCR of randomly sheared genomic DNA. An unbiased representation was evaluated by performing PCR on 2,607 exons of 367 genes, which are randomly distributed throughout the genome, on PRSG products of hundreds of individuals. An infrequent loss (<1%) of the exon sequence on the PRSG products was found. Out of 307 microsatellites on various chromosomes, 258 (84%) were amplified in both the PRSG product and an original DNA, whereas 49 (16%) microsatellites were lost only in the PRSG product. Array CGH analysis of 287 loci for measuring the relative gene copy number demonstrated that a low bias was detected. Moreover, this method was validated on 100-1,000 laser-captured cells from paraffin-embedded tissues. These data show that PRSG can provide a sufficient amount of genomic sequence for a variety of genetic analyses as well as for long-term storage for future work.  相似文献   

4.
High resolution comparative genomic hybridisation (HR-CGH) is a diagnostic tool in our clinical cytogenetics laboratory. The present survey reports the results of 253 clinical cases in which 47 abnormalities were detected. Among 144 dysmorphic and mentally retarded subjects with a normal conventional karyotype, 15 (10%) had small deletions or duplications, of which 11 were interstitial. In addition, a case of mosaic trisomy 9 was detected. Among 25 dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, four had deletions at translocation breakpoints and two had deletions elsewhere in the genome. Seventeen of 19 complex rearrangements were clarified by HR-CGH. A small supernumerary marker chromosome occurring with low frequency and the breakpoint of a mosaic r(18) case could not be clarified. Three of 19 other abnormalities could not be confirmed by HR-CGH. One was a Williams syndrome deletion and two were DiGeorge syndrome deletions, which were apparently below the resolution of HR-CGH. However, we were able to confirm Angelman and Prader-Willi syndrome deletions, which are about 3-5 Mb. We conclude that HR-CGH should be used for the evaluation of (1) dysmorphic and mentally retarded subjects where normal karyotyping has failed to show abnormalities, (2) dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, (3) apparently balanced de novo translocations detected prenatally, and (4) for clarification of complex structural rearrangements.


Keywords: comparative genomic hybridisation; chromosome analysis; chromosome aberrations; dysmorphism  相似文献   

5.
G band cytogenetic analysis often leads to the discovery of unbalanced karyotypes that require further characterisation by molecular cytogenetic studies. In particular, G band analysis usually does not show the chromosomal origin of small marker chromosomes or of a small amount of extra material detected on otherwise normal chromosomes. Comparative genomic hybridisation (CGH) is one of several molecular approaches that can be applied to ascertain the origin of extra chromosomal material. CGH is also capable of detecting loss of material and thus is also applicable to confirming or further characterising subtle deletions. We have used comparative genomic hybridisation to analyse 19 constitutional chromosome abnormalities detected by G band analysis, including seven deletions, five supernumerary marker chromosomes, two interstitial duplications, and five chromosomes presenting with abnormal terminal banding patterns. CGH was successful in elucidating the origin of extra chromosomal material in 10 out of 11 non-mosaic cases, and permitted further characterisation of all of the deletions that could be detected by GTG banding. CGH appears to be a useful adjunct tool for either confirming deletions or defining their breakpoints and for determining the origin of extra chromosomal material, even in cases where abnormalities are judged to be subtle. We discuss internal quality control measures, such as the mismatching of test and reference DNA in order to assess the quality of the competitive hybridisation effect on the X chromosome.  相似文献   

6.
Methods of comprehensive microarray-based aneuploidy screening in single cells are rapidly emerging. Whole-genome amplification (WGA) remains a critical component for these methods to be successful. A number of commercially available WGA kits have been independently utilized in previous single-cell microarray studies. However, direct comparison of their performance on single cells has not been conducted. The present study demonstrates that among previously published methods, a single-cell GenomePlex WGA protocol provides the best combination of speed and accuracy for single nucleotide polymorphism microarray-based copy number (CN) analysis when compared with a REPLI-g- or GenomiPhi-based protocol. Alternatively, for applications that do not have constraints on turnaround time and that are directed at accurate genotyping rather than CN assignments, a REPLI-g-based protocol may provide the best solution.  相似文献   

7.
8.
《Genetics in medicine》2007,9(9):553-559
Array-based comparative genomic hybridization is ushering in a new standard for analyzing the genome, overcoming the limits of resolution associated with conventional G-banded karyotyping. The first genomic arrays were based on bacterial artificial chromosome clones mapped during the initial phases of the Human Genome Project. These arrays essentially represented multiple fluorescence in situ hybridization assays performed simultaneously. The first arrays featured a targeted design, consisting of hundreds of bacterial artificial chromosome clones limited mostly to genomic regions of known medical significance. Then came whole-genome arrays, which contained bacterial artificial chromosome clones from across the entire genome. More recently, alternative designs based on oligonucleotide probes have been developed, and all these are high-density whole-genome arrays with resolutions between 3 and 35 kb. Certain clinical circumstances are well suited for investigation by targeted arrays, and there are others in which high-resolution whole-genome arrays are necessary. Here we review the differences between the two types of arrays and the clinical contexts for which they are best suited. As array-based comparative genomic hybridization is integrated into diagnostic laboratories and different array designs are used in appropriate clinical contexts, this novel technology will invariably alter the testing paradigm in medical genetics and will lead to the discovery of novel genetic conditions caused by chromosomal anomalies.  相似文献   

9.
10.
We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and phi29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications.  相似文献   

11.
Abstract The aim of this study is to find any specific genetic defect occurring frequently in bilateral breast cancer by examining the genetic changes of each chromosome using comparative genomic hybridisation (CGH). CGH was conducted for 36 breast cancer tissues taken from patients treated with surgery for bilateral breast cancer. Tumour and control DNAs were hybridised to metaphase chromosome with differential staining with fluorescein and rhodamine-dUTP. An average rate of green (DNA of tumour cell) against red (DNA of a normal peripheral blood lymphocyte) was calculated in these captured metaphase chromosomes and a ratio of more than 1.17 was defined as an acquisition, less than 0.85 as a loss and, finally, more than 2 as amplification. Twenty-six out of 36 cases (72.2%) showed a change in the number of DNA copies by CGH in one or more regions of gene. On average, 5.3 alterations for each chromosome (range, 1–14) were found, and gain was present more than loss at a ratio of 1.3:1. Loci that showed amplification were X, 17q, Xq, 8q, 14q11-21 and 17q22-qter. The locus showing the most gain was the X chromosome, which was observed in 15 (57.7%) out of 26 cases. Loss was most frequently observed in the short arm of chromosome 8. The concordance of genetic transformation of primary cancer and secondary cancer in bilateral breast cancer was an average of 18.7% in synchronous and 10.7% in metachronous cancer, showing higher similarity in synchronous breast cancer.  相似文献   

12.
BACKGROUND: Currently, comparative genomic hybridisation array (array CGH) is the method of choice for studying genome wide DNA copy number changes. To date, either amplified representations of bacterial artificial chromosomes (BACs)/phage artificial chromosomes (PACs) or cDNAs have been spotted as probes. The production of BAC/PAC and cDNA arrays is time consuming and expensive. AIM: To evaluate the use of spotted 60 mer oligonucleotides (oligos) for array CGH. METHODS: The hybridisation of tumour cell lines with known chromosomal aberrations on to either BAC or oligoarrrays that are mapped to the human genome. RESULTS: Oligo CGH was able to detect amplifications with high accuracy and greater spatial resolution than other currently used array CGH platforms. In addition, single copy number changes could be detected with a resolution comparable to conventional CGH. CONCLUSIONS: Oligos are easy to handle and flexible, because they can be designed for any part of the genome without the need for laborious amplification procedures. The full genome array, containing around 30000 oligos of all genes in the human genome, will represent a big step forward in the analysis of chromosomal copy number changes. Finally, oligoarray CGH can easily be used for any organism with a fully sequenced genome.  相似文献   

13.
14.
Background: Malformations are a major cause of morbidity and mortality in full term infants and genomic imbalances are a significant component of their aetiology. However, the causes of defects in many patients with multiple congenital malformations remain unexplained despite thorough clinical examination and laboratory investigations.

Methods: We used a commercially available array based comparative genomic hybridisation method (array CGH), able to screen all subtelomeric regions, main microdeletion syndromes, and 201 other regions covering the genome, to detect submicroscopic chromosomal imbalances in 49 fetuses with three or more significant anomalies and normal karyotype.

Results: Array CGH identified eight genomic rearrangements (16.3%), all confirmed by quantitative multiplex PCR of short fluorescent fragments. Subtelomeric and interstitial deletions, submicroscopic duplications, and a complex genomic imbalance were identified. In four de novo cases (15qtel deletion, 16q23.1–q23.3 deletion, 22q11.2 deletion, and mosaicism for a rearranged chromosome 18), the genomic imbalance identified clearly underlay the pathological phenotype. In one case, the relationship between the genotype and phenotype was unclear, since a subtelomeric 6q deletion was detected in a mother and her two fetuses bearing multiple malformations. In three cases, a subtelomeric 10q duplication, probably a genomic polymorphism, was identified.

Conclusions: The detection of 5/49 causative chromosomal imbalances (or 4/49 if the 6qtel deletion is not considered as causative) suggests wide genome screening when standard chromosome analysis is normal and confirms that array CGH will have a major impact on pre and postnatal diagnosis as well as providing information for more accurate genetic counselling.

  相似文献   

15.
Contiguous gene syndromes cause disorders via haploinsufficiency for adjacent genes. Some contiguous gene syndromes (CGS) have stereotypical breakpoints, but others have variable breakpoints. In CGS that have variable breakpoints, the extent of the deletions may be correlated with severity. The Greig cephalopolysyndactyly contiguous gene syndrome (GCPS-CGS) is a multiple malformation syndrome caused by haploinsufficiency of GLI3 and adjacent genes. In addition, non-CGS GCPS can be caused by deletions or duplications in GLI3. Although fluorescence in situ hybridisation (FISH) can identify large deletion mutations in patients with GCPS or GCPS-CGS, it is not practical for identification of small intragenic deletions or insertions, and it is difficult to accurately characterise the extent of the large deletions using this technique. We have designed a custom comparative genomic hybridisation (CGH) array that allows identification of deletions and duplications at kilobase resolution in the vicinity of GLI3. The array averages one probe every 730 bp for a total of about 14,000 probes over 10 Mb. We have analysed 16 individuals with known or suspected deletions or duplications. In 15 of 16 individuals (14 deletions and 1 duplication), the array confirmed the prior results. In the remaining patient, the normal CGH array result was correct, and the prior assessment was a false positive quantitative polymerase chain reaction result. We conclude that high-density CGH array analysis is more sensitive than FISH analysis for detecting deletions and provides clinically useful results on the extent of the deletion. We suggest that high-density CGH array analysis should replace FISH analysis for assessment of deletions and duplications in patients with contiguous gene syndromes caused by variable deletions.  相似文献   

16.
We report the use of comparative genomic hybridisation (CGH) to define the origin of a supernumerary ring chromosome which conventional cytogenetic banding and fluorescence in situ hybridisation (FISH) methods had failed to identify. Targeted FISH using whole chromosome 19 library arm and site specific probes then confirmed the CGH results. This study shows the feasibility of using CGH for the identification of supernumerary marker chromosomes, even in fewer than 50% of cells, where no clinical or cytogenetic clues are present.  相似文献   

17.
18.
AIMS: To investigate the status of chromosome 17 in a series of medulloblastomas using comparative genomic hybridisation (CGH) and fluorescence in situ hybridisation (FISH). METHODS: Frozen tissue and formalin fixed, paraffin was embedded tissue from 27 medulloblastomas were analysed by CGH and FISH, respectively. CGH ratio profiles for chromosome 17 were compared with the results of FISH, for which loss or gain of 17p or 17q was assessed in two distinct ways using a combination of differentially labelled subtelomeric and centromeric probes and analysing 200 nuclei in each tumour. RESULTS: CGH revealed imbalances consistent with isochromosome 17q in eight of 27 tumours. Either loss of 17p or gain of 17q was identified in a further nine tumours, whereas 10 tumours were apparently balanced. Using control results from preparations of paraffin wax embedded tonsils, thresholds for the detection of abnormalities by FISH were established, either by determining the dominant pattern of signals in each case, or the mean ratio of subtelomeric to centromeric signals. Results by CGH and FISH were concordant in 21 of 27 tumours. In the remainder, most discrepancies related to methodological differences. CONCLUSIONS: CGH has a role in disclosing common, genome wide chromosomal gains or losses in tumours, the clinical relevance of which can then be studied in large archival series of paraffin wax embedded tumours using FISH.  相似文献   

19.
AIM: To investigate overall chromosomal alterations using array-based comparative genomic hybridisation (CGH) of myxoid liposarcomas (MLSs) and myxofibrosarcomas (MFSs). Materials and methods: Genomic DNA extracted from fresh-frozen tumour tissues was labelled with fluorochromes and then hybridised on to an array consisting of 1440 bacterial artificial chromosome clones representing regions throughout the entire human genome important in cytogenetics and oncology. RESULTS: DNA copy number aberrations (CNAs) were found in all the 8 MFSs, but no alterations were found in 7 (70%) of 10 MLSs. In MFSs, the most frequent CNAs were gains at 7p21.1-p22.1 and 12q15-q21.1 and a loss at 13q14.3-q34. The second most frequent CNAs were gains at 7q33-q35, 9q22.31-q22.33, 12p13.32-pter, 17q22-q23, Xp11.2 and Xq12 and losses at 10p13-p14, 10q25, 11p11-p14, 11q23.3-q25, 20p11-p12 and 21q22.13-q22.2, which were detected in 38% of the MFSs examined. In MLSs, only a few CNAs were found in two sarcomas with gains at 8p21.2-p23.3, 8q11.22-q12.2 and 8q23.1-q24.3, and in one with gains at 5p13.2-p14.3 and 5q11.2-5q35.2 and a loss at 21q22.2-qter. CONCLUSIONS: MFS has more frequent and diverse CNAs than MLS, which reinforces the hypothesis that MFS is genetically different from MLS. Out-array CGH analysis may also provide several entry points for the identification of candidate genes associated with oncogenesis and progression in MFS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号