首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.2774G>C p.(Arg925Pro); c.4730_4731delinsTGTATA p.(Ala1577Valfs*5)) in the three brothers with a homozygous deletion in CNGA3 (c.1235_1236del p.(Glu412Valfs*6)) in the youngest correcting his diagnosis to achromatopsia plus RCD. None of the three subjects had cerebral abnormalities or learning disabilities inconsistent with Meckel-Gruber and Joubert syndromes, usually associated with CC2D2A mutations. Interestingly, an African woman with RCD shared the CC2D2A missense variant (c.2774G>C p.(Arg925Pro); with c.3182+355_3825del p.(?)). The two youngest also carried compound heterozygous variants in CUBN (c.7906C>T rs137998687 p.(Arg2636*); c.10344C>G p.(Cys3448Trp)) that may explain their nephrotic-range proteinuria. Our study identifies for the first time CC2D2A mutations in isolated RCD and underlines the power of WES to decipher complex phenotypes.  相似文献   

2.
《Genetics in medicine》2023,25(2):100332
PurposeThis study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities.MethodsWe performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells.ResultsIn the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells.ConclusionWe established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.  相似文献   

3.
《Genetics in medicine》2021,23(12):2378-2385
PurposeInfantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)).MethodsWe sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies.ResultsWe identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing.ConclusionThe discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.  相似文献   

4.
Variants in the PROM1 gene are associated with cone (?rod) dystrophy, macular dystrophy, and other phenotypes. We describe the clinical and genetic characteristics of 10 patients from eight Japanese families with PROM1‐associated retinal disorder (PROM1‐RD) in a nationwide cohort. A literature review of PROM1‐RD in the Japanese population was also performed. The median age at onset/examination of 10 patients was 31.0 (range, 10–45)/44.5 (22–73) years. All 10 patients showed atrophic macular changes. Seven patients (70.0%) had spared fovea to various degrees, approximately half of whom had maintained visual acuity. Generalized cone (?rod) dysfunction was demonstrated in all nine subjects with available electrophysiological data. Three PROM1 variants were identified in this study: one recurrent disease‐causing variant (p.Arg373Cys), one novel putative disease‐causing variant (p.Cys112Arg), and one novel variant of uncertain significance (VUS; p.Gly53Asp). Characteristic features of macular atrophy with generalized cone‐dominated retinal dysfunction were shared among all 10 subjects with PROM1‐RD, and the presence of foveal sparing was crucial in maintaining visual acuity. Together with the three previously reported variants [p.R373C, c.1551+1G>A (pathogenic), p.Asn580His (likely benign)] in the literature of Japanese patients, one prevalent missense variant (p.Arg373Cys, 6/9 families, 66.7%) detected in multiple studies was determined in the Japanese population, which was also frequently detected in the European population.  相似文献   

5.
CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, which is a crucial component of the phototransduction cascade in cone outer segments. Mutations in the CNGA3 gene have been associated with complete and incomplete forms of achromatopsia (ACHR), a congenital, autosomal recessively inherited retinal disorder characterized by lack of color discrimination, reduced visual acuity, nystagmus, and photophobia. Here we report the identification of three novel CNGA3 missense mutations in ACHR patients: c.682G>A (p.E228 K), c.1315C>T (p.R439W), and c.1405G>A (p.A469 T), and the detailed functional analyses of these new as well as five previously reported mutations (R283Q, T291R, F547L, G557R, and E590 K), in conjunction with clinical data of patients carrying these mutations, to establish genotype-phenotype correlations. The functional characterization of mutant CNGA3 channels was performed with calcium imaging and patch clamp recordings in a heterologous HEK293 cell expression system. Results were corroborated by immunostaining and colocalization experiments of the channel protein with the plasma membrane. Several mutations evoked pronounced alterations of the apparent cGMP sensitivity of mutant channels. These functional defects were fully or partially compensated by coexpressing the mutant CNGA3 subunit with the wild-type CNGB3 subunit for channels with the mutations R439W, A469 T, F547L, and E590 K. We could show that several mutant channels with agonist dose-response relationships similar to the wild-type exhibited severely impaired membrane targeting. In addition, this study presents the positive effect of reduced cell culture temperature on surface expression and functional performance of mutant CNG channels with protein folding or trafficking defects.  相似文献   

6.
Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of connective tissue disorders. Overlapping features including arterial aneurysms/dissections in both classical and vascular EDS are a major challenge in the clinical diagnosis of these subtypes. The COL1A1 p.(Arg312Cys) variant leads to a phenotype of classical EDS with a propensity to arterial complications. Our report describes a two-generation family with one individual presenting with a dissection of the right external iliac artery. The primary suspicion of vascular EDS with the unsatisfactory identification of a COL3A1 benign variant was secondarily readjusted with the identification of COL1A1 p.(Arg312Cys) variant. This raises the question of the association of COL1A1 p.(Arg312Cys) with arterial complications and the need for a gene panel including not only the usual genes tested in search of classical or vascular EDS but also COL1A1.  相似文献   

7.
8.
Design and methods: A large consanguineous Pakistani family containing six subjects with autosomal recessive complete achromatopsia was ascertained. After excluding linkage to the two known achromatopsia genes (CNGA3 and CNGB3), a genome wide linkage screen was undertaken.

Results: Significant linkage was detected to a 12 cM autozygous segment between markers D1S485 and D1S2881 on chromosome 1p13. Direct sequence analysis of the candidate gene GNAT2 located within this interval identified a frameshift mutation in exon 7 (c842_843insTCAG; M280fsX291) that segregated with the disease.

Conclusions: The GNAT2 gene codes for cone α-transducin, the G protein that couples the cone pigments to cGMP-phosphodiesterase in phototransduction. Although cone α-transducin has a fundamental role in cone phototransduction, mutations in GNAT2 have not been described previously. Since mutations in the CNGA3 gene may cause a variety of retinal dystrophies (complete and incomplete achromatopsia and progressive cone dystrophy), GNAT2 mutations may also prove to be implicated in other forms of retinal dystrophy with cone dysfunction.

  相似文献   

9.
Choline acetyltransferase catalyzes the synthesis of acetylcholine at cholinergic nerves. Mutations in human CHAT cause a congenital myasthenic syndrome due to impaired synthesis of ACh; this severe variant of the disease is frequently associated with unexpected episodes of potentially fatal apnea. The severity of this condition varies remarkably, and the molecular factors determining this variability are poorly understood. Furthermore, genotype–phenotype correlations have been difficult to establish in patients with biallelic mutations. We analyzed the protein expression of phosphorylated ChAT of seven CHAT mutations, p.Val136Met, p.Arg207His, p.Arg186Trp, p.Val194Leu, p.Pro211Ala, p.Arg566Cys, and p.Ser694Cys, in HEK‐293 cells to phosphorylated ChAT, determined their enzyme kinetics and thermal stability, and examined their structural changes. Three mutations, p.Arg207His, p.Arg186Trp, and p.Arg566Cys, are novel, and p.Val136Met and p.Arg207His are homozygous in three families and associated with severe disease. The characterization of mutants showed a decrease in the overall catalytic efficiency of ChAT; in particular, those located near the active‐site tunnel produced the most seriously disruptive phenotypic effects. On the other hand, p.Val136Met, which is located far from both active and substrate‐binding sites, produced the most drastic reduction of ChAT expression. Overall, CHAT mutations producing low enzyme expression and severe kinetic effects are associated with the most severe phenotypes.  相似文献   

10.
《Genetics in medicine》2019,21(8):1761-1771
PurposeABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability.MethodsBy locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4.ResultsWe identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells.ConclusionNoncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders.  相似文献   

11.
The CNGA3 gene encodes the A3 subunit of the cone photoreceptor cyclic nucleotide‐gated (CNG) channel, an essential component of the phototransduction cascade. Certain mutations in CNGA3 cause autosomal recessive achromatopsia, a retinal disorder characterized by severely reduced visual acuity, lack of color discrimination, photophobia, and nystagmus. We identified three novel mutations in the pore‐forming region of CNGA3 (L363P, G367V, and E376K) in patients diagnosed with achromatopsia. We assessed the expression and function of channels with these three new and two previously described mutations (S341P and P372S) in a heterologous HEK293 cell expression system using Western blot, subcellular localization on the basis of immunocytochemistry, calcium imaging, and patch clamp recordings. In this first comparative functional analysis of disease‐associated mutations in the pore of a CNG channel, we found impaired surface expression of S341P, L363P, and P372S mutants and reduced macroscopic currents for channels with the mutations S341P, G367V, and E376K. Calcium imaging and patch clamp experiments after incubation at 37°C revealed nonfunctional homo‐ and heteromeric channels in all five mutants, but incubation at 27°C combined with coexpression of the B3 subunit restored residual function of channels with the mutations S341P, G367V, and E376K. Hum Mutat 31:830–839, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous muscular diseases that predominantly affect the proximal muscles. Pathogenic variants in TNPO3 have been associated with a rare, autosomal dominant limb-girdle muscular dystrophy 1F (LGMD1F) in a large Italian-Spanish family and an isolated LGMD1F case. Here we present two individuals from a Hungarian family with an early-onset, slowly progressive muscular dystrophy. Both the female proband and her affected son had delayed early motor milestones including first walking at 14 months and 18 months, respectively. Both present with progressive weakness of facial, bulbar, axial, and distal muscles especially of the lower extremities. Electromyography indicated myogenic damage and muscle biopsy from the proband showed myopathic alterations with sarcoplasmic masses and signs of mitochondrial dysfunction. Exome sequencing of the female proband identified a novel c.2767delC p.(Arg923AspfsTer17) variant in TNPO3. Sanger sequencing confirmed the presence of the TNPO3 variant in the affected son; the unaffected son did not have the variant. The identification of the c.2767delC variant further supports the clinical significance of TNPO3 and expands the clinical spectrum of TNPO3-associated LGMD1F.  相似文献   

14.
Variants in the ABCA4 gene are associated with a spectrum of inherited retinal diseases (IRDs), most prominently with autosomal recessive (ar) Stargardt disease (STGD1) and ar cone‐rod dystrophy. The clinical outcome to a large degree depends on the severity of the variants. To provide an accurate prognosis and to select patients for novel treatments, functional significance assessment of nontruncating ABCA4 variants is important. We collected all published ABCA4 variants from 3,928 retinal dystrophy cases in a Leiden Open Variation Database, and compared their frequency in 3,270 Caucasian IRD cases with 33,370 non‐Finnish European control individuals. Next to the presence of 270 protein‐truncating variants, 191 nontruncating variants were significantly enriched in the patient cohort. Furthermore, 30 variants were deemed benign. Assessing the homozygous occurrence of frequent variants in IRD cases based on the allele frequencies in control individuals confirmed the mild nature of the p.[Gly863Ala, Gly863del] variant and identified three additional mild variants (p.(Ala1038Val), c.5714+5G>A, and p.(Arg2030Gln)). The p.(Gly1961Glu) variant was predicted to act as a mild variant in most cases. Based on these data, in silico analyses, and American College of Medical Genetics and Genomics guidelines, we provide pathogenicity classifications on a five‐tier scale from benign to pathogenic for all variants in the ABCA4‐LOVD database.  相似文献   

15.
Congenital adrenal hyperplasia (CAH) is one of the most common autosomal recessive inherited endocrine disease. Steroid 11β-hydroxylase deficiency (11β-OHD) is the second most common form of CAH. The aim of the study was to study the functional consequences of three novel and one previously described CYP11B1 gene mutations (p.(Arg143Trp), p.(Ala306Val), p.(Glu310Lys) and p.(Arg332Gln)) detected in patients suffering from classical and non-classical 11β-OHD. Functional analyses were performed by using a HEK293 cell in vitro expression system comparing wild type (WT) with mutant 11β-hydroxylase activity. Mutant proteins were examined in silico to study their effect on the three-dimensional structure of the protein. Two mutations (p.(Ala306Val) and p.(Glu310Lys)) detected in patients with classical 11β-OHD showed a nearly complete loss of 11β-hydroxylase activity. The mutations p.(Arg143Trp) and p.(Arg332Gln) detected in patients with non-classical 11β-OHD showed a partial functional impairment with approximately 8% and 6% of WT activity, respectively. Functional mutation analysis allows the classification of novel CYP11B1 mutations as causes of classical and non-classical 11β-OHD. The detection of patients with non-classical phenotypes underscores the importance to screen patients with a phenotype comparable to non-classical 21-hydroxylase deficiency for mutations in the CYP11B1 gene in case of a negative analysis of the CYP21A2 gene. As CYP11B1 mutations are most often individual for a family, the in vitro analysis of novel mutations is essential for clinical and genetic counselling.  相似文献   

16.
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron‐specific ATP‐dependent anterograde axonal transporter of synaptic cargo, are well‐recognized to cause a spectrum of neurological conditions, commonly known as KIF1A‐associated neurological disorders (KAND). Here, we report one mutation‐negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH‐SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.  相似文献   

17.
Genotype–phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype–phenotype correlation study, collected epidemiological data, and investigated structure–function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty‐four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR‐related disorders. The present study emphasizes the importance of comprehensive genotype–phenotype and functional studies in elucidating the impact of mutations on clinical phenotype. Hum Mutat 33:1557–1565, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) is a rare form of hereditary neuropathy. Mutations in HINT1 gene have been identified to be the cause of this disorder. We report two unrelated patients who presented gait impairment, progressive distal muscle weakness and atrophy, neuromyotonia and foot deformities. Electrophysiological studies showed axonal motor neuropathy and neuromyotonic discharges. Using Next-generation sequencing, we identified two homozygous mutations, NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene. Based on the clinical presentation and molecular genetic analyses, ARAN-NM was diagnosed in both patients and NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene were believe to be causative for the disorder.  相似文献   

19.
Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration (‘retinal disease-specific''); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one ‘retinal disease-specific'' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype–phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.  相似文献   

20.
Mutations in the CLCNKB gene encoding the ClC‐Kb Cl? channel cause Bartter syndrome, which is a salt‐losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%–60% reduction in conductance as compared with wild‐type ClC‐Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca2+ and H+, typical of the ClC‐Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit‐conductance of closely related ClC‐K1. Western blot analysis in HEK293 cells showed that ClC‐Kb protein abundance was lower for the nonconducting mutants but similar to wild‐type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC‐Kb protein abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号