共查询到20条相似文献,搜索用时 15 毫秒
1.
Fukazawa H Noguchi K Masumi A Murakami Y Uehara Y 《Molecular cancer therapeutics》2004,3(10):1281-1288
Loss of contact with substratum triggers apoptosis in many normal cell types, a phenomenon termed anoikis. We reported previously that mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors induced apoptosis in nonanchored MDA-MB231 and HBC4 human breast cancer cells, whereas anchored cells remained viable. Here, we report that activation of the BH3-only protein BimEL is the major mechanism for induction of anoikis sensitivity by MEK inhibitors in MDA-MB231 and HBC4 cells. On treatment with MEK inhibitors, BimEL in MDA-MB231 and HBC4 cells rapidly increased, irrespective of the state of anchorage. However, it translocated to mitochondria only in nonanchored cells, explaining why attached cells remain viable. MDA-MB231 and HBC4 cells had exceedingly low basal levels of BimEL compared with other breast cancer cells, suggesting that maintenance of low BimEL amount is important for survival of these cells. MEK inhibitors also induced the electrophoretic mobility shift of BimEL, indicative of reduced phosphorylation. In vitro, BimEL was phosphorylated by extracellular signal-regulated kinase on Ser(69), which resides in the BimEL-specific insert region. Using phosphospecific antibody against this site, we show that this residue is actually phosphorylated in cells. We also show that phosphorylation of Ser(69) promotes ubiquitination of BimEL. We conclude that MEK inhibitors sensitize MDA-MB231 and HBC4 cells to anoikis by blocking phosphorylation and hence degradation of BimEL, a mechanism that these cells depend on to escape anoikis. 相似文献
2.
Mattingly RR Kraniak JM Dilworth JT Mathieu P Bealmear B Nowak JE Benjamins JA Tainsky MA Reiners JJ 《The Journal of pharmacology and experimental therapeutics》2006,316(1):456-465
Type 1 neurofibromatosis (NF1) is a common autosomal dominant disorder that results in neuroectodermal tumors. The NF1 tumor-suppressor gene encodes neurofibromin, which includes a GTPase-activating domain for Ras inactivation. Affinity purification showed N-Ras to be the predominant activated isoform of Ras in two independent neurofibrosarcoma cell lines from NF1 patients (lines ST88-14 and NF90-8). These NF1 cells also demonstrated increased constitutive activity of the extracellular signal-regulated kinases 1 and 2 (ERK1,2) mitogen-activated protein (MAP) kinases compared with a sporadic malignant schwannoma cell line that maintains neurofibromin expression (STS-26T). Thus, MAP kinase kinase (MEK) inhibitors may be a rational approach to NF1 therapy. The MEK inhibitors PD98059 [2'-amino-3'-methoxyflavone], PD184352 (also called CI-1040) [2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide], and U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] all produced concentration-dependent suppression of the proliferation of the three cell lines. Individual MEK inhibitors had similar effects in all three cell lines. However, only the antiproliferative effects of PD184352 correlated closely with the elimination of ERK1,2 MAP kinase activities. PD98059 was primarily cytostatic, whereas U0126 and PD184352 were cytotoxic. Only PD184352 induced apoptosis in all three lines, as indicated by morphology, activation of DEVDase, procaspase-3 cleavage, and the appearance of populations having sub-G(0)/G(1) DNA contents. The differential effects of the MEK inhibitors on cell survival were not dependent on p53 status or effects on the ERK5 pathway. PD184352 was also proapoptotic to primary rat Schwann cells. Hence, although PD184352 effectively killed neurofibrosarcoma cells, its effects on normal Schwann cells may limit its usefulness in the clinic. 相似文献
3.
Muller DL Unterwald EM 《The Journal of pharmacology and experimental therapeutics》2004,310(2):774-782
In vitro evidence suggests that extracellular signal-regulated protein kinases (ERKs) and Akt (also referred to as protein kinase B) are among the myriad of intracellular signaling molecules regulated by opioid receptors. The present study examined the regulation of ERK and Akt activation in the nucleus accumbens and caudate putamen following acute and chronic morphine administration in the rat. ERK and Akt are activated by phosphorylation, hence the levels of phosphorylated ERK (pERK) and Akt (pAkt) as well as total levels of ERK and Akt protein were measured by Western blot analysis. Male Sprague-Dawley rats received either a single injection of morphine or twice daily injections of morphine for 6 or 10 days. Following acute morphine, pERK levels were significantly decreased in the nucleus accumbens but not in the caudate putamen. Phosphorylated Akt levels in the nucleus accumbens were significantly increased after a single morphine injection. Naltrexone pretreatment prevented both the morphine-induced pERK down-regulation and pAkt up-regulation. Although reductions in pERK levels were evident after 6 days of morphine administration, no differences were observed in pERK levels after 10 days. In contrast to the up-regulation seen after acute morphine, pAkt levels in the nucleus accumbens were significantly decreased after chronic morphine administration. Thus, the differential activation patterns of both ERK and Akt after acute and chronic morphine administration could have important implications for understanding additional pathways mediating opioid signaling in vivo. 相似文献
4.
Hamadmad SN Hohl RJ 《The Journal of pharmacology and experimental therapeutics》2008,324(3):1227-1233
Erythropoietin (Epo) receptor (EpoR) is expressed in several cancer cell lines, and the functional consequence of this expression is under extensive study. In this study, we used a cervical cancer cell line in which EpoR was first found to be expressed and to correlate with the severity of the disease. We demonstrate that Epo is a chemoattractant for these cancer cells, enhancing their migration under serum-starved conditions. Using a Transwell migration system, we show that Epo enhances cancer cell migration in a dose- and time-dependent manner. The effect of Epo is dependent on the activity of two signaling pathways: the mitogen-activated protein kinase (MAPK) pathway and the RhoA GTPase pathway. We show that Epo activates both pathways in a Janus kinase-dependent manner and that this activation is required for Epo effects on cell migration. Furthermore, we use both pharmacological and genetic inhibitors to demonstrate that the activation of RhoA GTPase is dependent on the activity of the MAPK pathway, providing the first evidence for interaction between these two signaling cascades. 相似文献
5.
The effects of Dox (Dox), paclitaxel (Taxol), and serum starvation on the regulation of XIAP (X-linked inhibitor of apoptosis), Bcl-2 phosphorylation, and apoptosis were evaluated in human H460 non-small cell lung cancer cells. Protein kinases that responded to these treatments as prosurvival elements in signal transduction were identified by simultaneously screening phosphorylation of protein kinases in H460 cells cultured in serum-free medium or treated with Dox. We demonstrated that Dox and Taxol induced apoptosis through down-regulation of XIAP and phosphorylation of Bcl-2 in a concentration-dependent manner without changing expression of Bcl-xL in H460 cells. These effects were paralleled by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase protein. We identified that serum starvation and Dox reduced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK), protein kinase C (PKC) alpha/beta and c-Jun NH(2)-terminal kinase. The MEK-specific inhibitor U0126 or PKC inhibitor staurosporine (STP) also down-regulated XIAP expression and induced apoptosis. Thus, our data suggest that apoptosis and down-regulation of XIAP induced by Dox exposure or serum starvation may be mediated through inactivation of the MEK/ERK and PKCalpha/beta pathways. In support of this we demonstrated that the cytotoxic effects of Dox when combined with U0126 or STP were enhanced, i.e., synergistic cytotoxic activities were demonstrated. The synergistic interaction of U0126 or STP with Dox was sequence- and concentration-dependent. 相似文献
6.
Ono M Hirata A Kometani T Miyagawa M Ueda S Kinoshita H Fujii T Kuwano M 《Molecular cancer therapeutics》2004,3(4):465-472
Gefitinib (Iressa, ZD1839), a quinazoline tyrosine kinase inhibitor that targets the epidermal growth factor receptor (EGFR), is approved for patients with advanced non-small cell lung cancer (NSCLC) in several countries including Japan. However, the mechanism of drug sensitivity to gefitinib is not fully understood. In this study, we examined the molecular basis of sensitivity to gefitinib using nine human lung cancer cell lines derived from NSCLC. PC9 was the most sensitive to gefitinib of the nine NSCLC cell lines when assayed either by colony formation or MTS assays. The various cell lines expressed different levels of EGFR, HER2, HER3, and HER4, but there was no correlation between levels of EGFR and/or HER2 expression and drug sensitivity. Phosphorylation of EGFR, protein kinase B/AKT (Akt), and extracellular signal-regulated kinase (ERK) 1/2 was inhibited by much lower concentration of gefitinib in PC9 cells than in the other eight cell lines under exponential growing conditions. About 80% of cell surface EGFR in PC-9 was internalized within 10 min, whereas only about 30-50% of the cell surface EGFR was internalized in more drug-resistant cell lines in 15-60 min. The present study is the first to demonstrate that sensitivity to growth inhibition by gefitinib in NSCLC cell lines under basal growth condition is associated with dependence on Akt and ERK1/2 activation in response to EGFR signaling for survival and proliferation and also that drug sensitivity may be related to the extent of EGF-induced down-regulation of cell surface EGFR. 相似文献
7.
The circulating monocyte possesses a markedly different functional phenotype relative to the macrophage (Mphi). The adhesive interactions encountered by the monocyte, en route to the inflammatory focus, generate signals that culminate in the expression of a pro-inflammatory Mphi phenotype, marked by enhanced cytokine production. Previously, we demonstrated that calcium and calmodulin are essential for maximal Mphi activation and, in particular, TNFalpha production. These effects are likely to be mediated through signal transduction kinases that require the calcium/calmodulin complex. Here, we investigated the effect of adherence on calcium/calmodulin-dependent protein kinase (CaMK) II and IV activation of the extracellular-signal regulated kinase (ERK) 1/2 cascade and on lipopolysaccharide (LPS)-induced TNFalpha production by human monocytes. Adherence activated ERK 1/2 and led to an 8-fold potentiation in LPS-induced TNFalpha production over similarly stimulated non-adherent cells. Inhibition of CaMK II prior to adherence prevented ERK 1/2 activation and attenuated by up to 40%, the TNFalpha response to subsequent LPS stimulation. CaMK II inhibition after adherence, however, failed to modify cytokine release. Inhibition of CaMK IV, both after adherence and in non-adherent monocytes, significantly inhibited LPS-induced ERK 1/2 activation and abrogated TNFalpha production by up to 75%. These data suggest that the function of CaMK II in TNFalpha production by adherent monocytes occurs during adhesion, is mediated in part by activation of ERK 1/2, and appears to "prime" the monocyte for enhanced cytokine production. CaMK IV, through activation of ERK 1/2, appears to have a direct role in the LPS signal transduction for TNFalpha production. 相似文献
8.
Chen YL Lin PC Chen SP Lin CC Tsai NM Cheng YL Chang WL Lin SZ Harn HJ 《The Journal of pharmacology and experimental therapeutics》2007,323(2):746-756
The novel lignan isochaihulactone inhibits cell proliferation and is an effective inducer of apoptosis in a variety of carcinoma cell lines. To determine the mechanisms underlying these effects, we examined isochaihulactone-induced changes in gene expression using oligodeoxynucleotide-based microarray screening of a human lung carcinoma cell line, A549. Isochaihulactone-inducible genes included the early growth response gene-1 (EGR-1) and nonsteroidal anti-inflammatory drug-activated gene (NAG-1). Isochaihulactone increased EGR-1 and then NAG-1 mRNA and protein expression. Pure isochaihulactone induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Isochaihulactone-induced increases in EGR-1 and NAG-1 expression were reduced by the mitogen-activated protein kinase kinase 1/2 inhibitor 2'-amino-3'-methoxyflavone (PD98059), and this effect was not blocked by the phosphatidylinositol 3-kinase/protein kinase B pathway inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002). Inhibition of isochaihulactone-induced NAG-1 expression by EGR-1 small interfering RNA blocked isochaihulactone-induced apoptosis in A549 cells, suggesting that induction of EGR-1 expression decreases survival of A549 cells. RNA interference using double-stranded RNA specific for NAG-1 also inhibited isochaihulactone-induced apoptosis, and cells transfected to increased NAG-1 expression had a greater apoptotic response to isochaihulactone and reduced colony formation efficiency. In addition, treatment of nude mice with isochaihulactone increased the in vivo NAG-1 expression as examined by immunohistochemistry from tumor biopsy. Isochaihulactone treatment increased the luciferase activity of NAG-1 in A549 cells transfected with the NAG-1 promoter construct. This induction increased expression of NAG-1 that was p53-independent and Sp1-dependent. Our findings suggest that NAG-1 expression is up-regulated by isochaihulactone through an ERK-dependent pathway involving the activation of EGR-1. 相似文献
9.
Hsu YL Kuo PL Lin LT Lin CC 《The Journal of pharmacology and experimental therapeutics》2005,313(1):333-344
This study first investigates the anticancer effect of asiatic acid in two human breast cancer cell lines, MCF-7 and MDA-MB-231. Asiatic acid exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased p21/WAF1 levels and reduced amounts of cyclinB1, cyclinA, Cdc2, and Cdc25C in a p53-independent manner. Asiatic acid also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the level of inactivated phospho-Cdc2 and phospho-Cdc25C. Asiatic acid treatment triggered the mitochondrial apoptotic pathway indicated by changing Bax/Bcl-2 ratios, cytochrome c release, and caspase-9 activation, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8. We also found that mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2), and p38, but not c-Jun NH2-terminal kinase (JNK), are critical mediators in asiatic acid-induced cell growth inhibition. U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], specific inhibitors of mitogen-activated protein kinase kinase and p38 kinase activities, significantly decreased or delayed apoptosis. Asiatic acid was likely to confine the breast cancer cells in the S-G2/M phase mainly through the p38 pathway, because both SB203580 and p38 small interfering RNA (siRNA) inhibition significantly attenuated the accumulation of inactive phospho-Cdc2 and phospho-Cdc25C proteins and the cell numbers of S-G2/M phase. Moreover, U0126 and ERK siRNA inhibition completely suppressed asiatic acid-induced Bcl-2 phosphorylation and Bax up-regulation, and caspase-9 activation. Together, these results imply a critical role for ERK1/2 and p38 but not JNK, p53, and Fas/Fas ligand in asiatic acid-induced S-G2/M arrest and apoptosis of human breast cancer cells. 相似文献
10.
Kuo PL Hsu YL Chang CH Chang JK 《The Journal of pharmacology and experimental therapeutics》2005,314(3):1290-1299
The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis. 相似文献
11.
Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. 总被引:5,自引:0,他引:5 下载免费PDF全文
Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/2) activation in adhesion- and shear stress-stimulated human umbilical vein endothelial cells (HUVEC). Adhesion of HUVEC to fibronectin, but not to poly-L-lysine, rapidly activated ERK1/2. Fluid shear stress (12 dyn/cm2) enhanced ERK1/2 activation stimulated by adhesion, suggesting the presence of a separate pathway. Two differences in signal transduction were identified: focal adhesion kinase phosphorylation was increased rapidly by adhesion but not by shear stress; and ERK1/2 activation in response to adhesion was inhibited to a significantly greater extent when actin filaments were disrupted by cytochalasin D. Two similarities in activation of ERK1/2 were observed: protein kinase C (PKC) activity was necessary as shown by complete inhibition when PKC was downregulated; and an herbimycin-sensitive (genistein- and tyrphostin-insensitive) tyrosine kinase was required. c-Src was identified as a candidate tyrosine kinase as it was activated by both shear stress and adhesion. These findings suggest that adhesion and shear stress activate ERK1/2 via a shared pathway that involves an herbimycin-sensitive tyrosine kinase and PKC. In addition, shear stress activates ERK1/2 through another pathway that is partially independent of cytoskeletal integrity. 相似文献
12.
Hepatocellular carcinoma (HCC) is a common malignancy in Asia and Africa. We previously reported that overexpression of extracellular signal-regulated kinase (ERK) kinase 1/2 (MEK1/2) and ERK1/2 was detected in HCC, and that their activation was required for liver cancer cell proliferation and survival. In the present study, we determined the efficacy of a specific MEK1/2 inhibitor AZD6244 (ARRAY-142886) in treatment of HCC. Treatment of primary HCC cells with AZD6244 led to growth inhibition, elevation of the cleavage of caspase-3 and caspase-7, and cleaved poly(ADP)ribose polymerase, but inhibition of ERK1/2 and p90RSK phosphorylation. Studying the protein expression profile of seven HCC xenografts revealed that their growth rate was positively correlated with the levels of phosphorylated MEK. AZD6244, when given p.o. to mice bearing these xenografts, resulted in a dose-dependent inhibition of tumor growth. AZD6244-induced growth suppression was associated with inactivation of ERK1/2 and p90RSK, and up-regulation of activated caspase-3 and caspase-7, and cleaved poly(ADP)ribose polymerase. Our data suggest that the MEK-ERK pathway plays an important role in the growth and survival of liver cancer cells and that the HCC xenograft models are excellent tools for screening preclinical drugs. Targeted inhibition of the MEK-ERK pathway with AZD6244 may represent an alternative approach for the treatment of this disease. 相似文献
13.
14.
背景:近年来大量临床研究表明针刺风池、太冲、曲池等穴位能有效降低血压,可用于高血压,但对其治疗的分子机制尚未阐明.目的:观察针刺大鼠风池、太冲、曲池等穴位对丝裂原活化蛋白激酶信号转导调控系统的影响,从而探讨针刺治疗高血压的分子机制.方法:选取8月龄自发性高血压雄性Wistar大鼠14只,随机分为针刺组和模型组,每组7只;另选取同月龄正常血压雄性Wistar-Kyoto大鼠7只作为对照组.对针刺组大鼠采用电针针刺双侧风池、曲池和三阴交穴,毫针刺太溪和太冲穴.3周后采用RT-PCR方法检测各组大鼠主动脉组织丝裂原活化蛋白激酶磷酸酶1 mRAN的表达,Western blot方法检测丝裂原活化蛋白激酶磷酸酶1、磷酸化细胞外信号调节激酶1/2蛋白表达.结果与结论:与对照组比较,模型组主动脉组织磷酸化细胞外信号调节激酶1/2蛋白表达水平升高,丝裂原活化蛋白激酶磷酸酶1 mRNA及其蛋A表达水平降低(P<0.01);与模型组比较,针刺组主动脉组织磷酸化细胞外信号调节激酶1/2蛋白表达水平降低,丝裂原活化蛋白激酶磷酸酶1 mRNA及其蛋白表达水平升高(P<0.05).提示针刺治疗自发性高血压大鼠可能是通过调控丝裂原活化蛋白激酶信号转导途径,增强磷酸化细胞外信号调节激酶1/2蛋白表达,降低丝裂原活化蛋白激酶磷酸酶1蛋白表达,从而改善血管重塑,降低血压. 相似文献
15.
Gupta A Zhang Y Unadkat JD Mao Q 《The Journal of pharmacology and experimental therapeutics》2004,310(1):334-341
Breast cancer resistance protein (BCRP) is a recently discovered ATP-binding cassette drug transporter. Hence, the full spectrum of therapeutic agents that interact with BCRP remains to be elucidated. Because human immunodeficiency virus protease inhibitors (HPIs) are well known P-glycoprotein (P-gp) substrates, and there is an overlap in substrate specificity between P-gp and BCRP, this study was performed to investigate whether HPIs are substrates and/or inhibitors of BCRP. First, the effect of HPIs on BCRP efflux activity in human embryonic kidney (HEK) cells stably expressing wild-type BCRP (482R) and its two mutants (482T and 482G) was studied by measuring intracellular mitoxantrone fluorescence using flow cytometry. We found that ritonavir, saquinavir, and nelfinavir were effective inhibitors of wild-type BCRP (482R) with IC50 values of 19.5 +/- 0.8 microM, 19.5 +/- 7.6 microM, and 12.5 +/- 4.1 microM, respectively. Ritonavir, saquinavir, and nelfinavir inhibited 482T and 482G with IC50 values that were approximately 2 times greater than that for 482R. Indinavir and amprenavir had no significant inhibition on BCRP activity. Direct efflux of radiolabeled HPIs in HEK cells was measured to determine whether the HPIs are substrates of BCRP. None of the HPIs were found to be transported by BCRP. Together, ritonavir, saquinavir, nelfinavir, indinavir, and amprenavir are not substrates for BCRP. However, ritonavir, saquinavir, and nelfinavir are effective inhibitors of the transporter. These results suggest that BCRP may play an important role in drug-drug interactions involving coadministration of the HPIs with drugs that are substrates of the transporter. 相似文献
16.
Activation of extracellular signal-regulated kinases (ERK) 1/2 in dorsal horn neurons is important for the development of somatic hypersensitivity and spinal central sensitization after peripheral inflammation. However, data regarding the roles of spinal ERK1/2 in the development of visceral hyperalgesia are sparse. Here we studied the activation of ERK1/2 in the lumbosacral spinal cord after innocuous and noxious distention of the inflamed (cyclophosphamide-treated) and noninflamed urinary bladder in mice. We also correlated the spinal ERK1/2 activation to distention-evoked bladder nociception as quantified by the abdominal visceromotor response (VMR). Cyclophosphamide treatment (bladder inflammation) evoked increased bladder hyperalgesia and allodynia to bladder distention, as evident from an upward and leftward shift of the VMR stimulus-response curve compared with that of noninflamed mice. Development of bladder hyperalgesia was associated with robust enhancement of ERK1/2 activation in the dorsal horn and deeper laminae bilaterally in the L6-S1 spinal cord. Functional blockade of spinal ERK1/2 activity via intrathecal administration of the upstream MEK inhibitor U0126 attenuated distention-evoked bladder nociception and caused a significant downward shift of the VMR stimulus-response curve. In summary, we have provided functional and immunohistochemical evidence that activation of lumbosacral spinal ERK1/2 is associated with the development of primary visceral (bladder) hyperalgesia. Our results suggest that aberrant processing of visceral nociceptive information at the level of the lumbosacral spinal cord via activation of ERK1/2 signaling may contribute to chronic bladder pain in the context of inflammation. 相似文献
17.
Growth inhibitory properties of endothelin-1 in activated human hepatic stellate cells: a cyclic adenosine monophosphate-mediated pathway. Inhibition of both extracellular signal-regulated kinase and c-Jun kinase and upregulation of endothelin B receptors. 总被引:3,自引:1,他引:3 下载免费PDF全文
A Mallat A M Praux C Serradeil-Le Gal D Raufaste C Gallois D A Brenner C Bradham J Maclouf V Iourgenko L Fouassier D Dhumeaux P Mavier S Lotersztajn 《The Journal of clinical investigation》1996,98(12):2771-2778
During chronic liver diseases, hepatic stellate cells (HSC) acquire an activated myofibroblast-like phenotype, proliferate, and synthetize fibrosis components. We have shown that endothelin-1 (ET-1) inhibits the proliferation of activated human HSC via endothelin B (ETB) receptors. We now investigate the transduction pathway involved in the growth inhibitory effect of ET-1 in activated HSC. Endothelin-1 and the ETB receptor agonist, sarafotoxin-S6C, increased synthesis of PGI2 and PGE2, leading to elevation of cAMP. The cyclooxygenase inhibitor ibuprofen and the adenylyl cyclase inhibitor SQ22536 both blunted the growth inhibitory effect of ET-1. Analysis of early steps associated with growth inhibition indicated that: (a) similar to ET-1, forskolin decreased c-jun mRNA induction without affecting c-fos and krox 24 mRNA expression; (b) ET-1, sarafotoxin-S6C, as well as forskolin, reduced activation of both c-Jun kinase and extracellular signal-regulated kinase. Finally, forskolin, PGI2, and PGE2 raised by fivefold the number of ET binding sites after 6 h, and increased the proportion of ETB receptors from 50% in control cells to 80% in treated cells. In conclusion, ET-1 inhibits proliferation of activated HSC via ETB receptors, through a prostaglandin/cAMP pathway that leads to inhibition of both extracellular signal-regulated kinase and c-Jun kinase activities. Upregulation of ETB receptors by prostaglandin/cAMP raises the possibility of a positive feedback loop that would amplify the growth inhibitory response. These results suggest that ET-1 and agents that increase cAMP might be of interest to limit proliferation of activated HSC during chronic liver diseases. 相似文献
18.
Zuo KQ Zhang XP Zou J Li D Lv ZW 《The Journal of international medical research》2010,38(4):1428-1435
Multidrug resistance of tumours is one of the most important factors that leads to chemotherapy failure. A multidrug-resistant breast cancer cell line, MCF-7/Taxol, was established from the drug-sensitive parent cell line MCF-7. The biological properties of MCF-7/Taxol, including its drug resistance profile and profile of paclitaxel binding proteins, were analysed and compared with the parent cell line. A number of paclitaxel binding proteins were present in MCF-7 cells but absent from MCF-7/Taxol cells, namely heat shock protein 90, actinin and dermcidin precursor. The identification of differential paclitaxel binding proteins between the multidrug-resistant MCF-7/Taxol cell line and the parent drug-sensitive cell line MCF-7 provides insight into possible mechanisms involved in resistance to these chemotherapy drugs. 相似文献
19.
Lu H Guizzetti M Costa LG 《The Journal of pharmacology and experimental therapeutics》2002,300(3):818-823
We have previously reported that lead acetate activates protein kinase Calpha (PKCalpha) and induces DNA synthesis in human 1321N1 astrocytoma cells. In this study, we investigated the ability of lead to activate the mitogen-activated protein kinase (MAPK) cascade. We found that exposure to lead acetate (1-50 microM) resulted in concentration- and time-dependent activation of MAPK (extracellular signal responsive kinase 1/2), as shown by increased phosphorylation and increased kinase activity. This effect was significantly reduced by the PKC-specific inhibitor bisindolylmaleimide (GF109203X), by down-regulation of PKC with 12-O-tetradecanoyl-phorbol 13-acetate, by a pseudosubstrate to PKCalpha, and by selective down-regulation of PKCalpha by prior lead exposure. Lead was also shown to activate MAPK kinase (MEK1/2), and this effect was mediated by PKC. Two MEK inhibitors, 2-(2'-amino-3'-methoxyphenol)-oxanaphthalen-4-one (PD98059) and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (UO126), blocked lead-induced MAPK activation and inhibited lead-induced DNA synthesis, as measured by incorporation of [methyl-3H]thymidine into cell DNA. The 90 kDa ribosomal S6 protein kinase, p90(RSK), a substrate of MAPK, was also found to be activated by lead in a PKC- and MAPK-dependent manner. Stimulation of DNA synthesis by lead in astrocytoma cells may be of interest in light of the observed association between exposure to lead and an increased risk of astrocytomas. 相似文献
20.
Rizvi MA Ghias K Davies KM Ma C Weinberg F Munshi HG Krett NL Rosen ST 《Molecular cancer therapeutics》2006,5(7):1783-1789
Enzastaurin (LY317615), an acyclic bisindolylmaleimide, is an oral inhibitor of the protein kinase Cbeta isozyme. The objective of this study was to assess the efficacy of enzastaurin in inducing apoptosis in multiple myeloma (MM) cell lines and to investigate possible mechanisms of apoptosis. Cell proliferation assays were done on a variety of MM cell lines with unique characteristics (dexamethasone sensitive, dexamethasone resistant, chemotherapy sensitive, and melphalan resistant). The dexamethasone-sensitive MM.1S cell line was used to further assess the effect of enzastaurin in the presence of dexamethasone, insulin-like growth factor-I (IGF-I), interleukin-6, and the pan-specific caspase inhibitor ZVAD-fmk. Enzastaurin increased cell death in all cell lines at clinically significant low micromolar concentrations (1-3 micromol/L) after 72 hours of treatment. Dexamethasone and enzastaurin were shown to have an additive effect on MM.1S cell death. Although IGF-I blocked the effect of 1 micromol/L enzastaurin, IGF-I did not abrogate cell death induced with 3 mumol/L enzastaurin. Moreover, enzastaurin-induced cell death was not affected by interleukin-6 or ZVAD-fmk. GSK3beta phosphorylation, a reliable pharmacodynamic marker for enzastaurin activity, and AKT phosphorylation were both decreased with enzastaurin treatment. These data indicate that enzastaurin induces apoptosis in MM cell lines in a caspase-independent manner and that enzastaurin exerts its antimyeloma effect by inhibiting signaling through the AKT pathway. 相似文献