首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Increasing evidence supports a role for oxidative stress, proinflammatory cytokines, and apoptosis in the pathophysiology of focal ischemic stroke. Previous studies have found that the multi-action drug, carvedilol, is a mixed adrenergic antagonist, and that it behaves as an antioxidant and inhibits apoptosis. In the current study, the authors investigated whether carvedilol provides protection in focal cerebral ischemia and whether this protection is associated with reduced apoptosis and the downregulation of the inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin- 1beta (IL-1beta). Male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) by an intraluminal filament technique. Carvedilol (1, 3, and 10 mg/kg) was injected daily subcutaneously 2 or 4 days before the induction of ischemia. Neurologic scores, infarct volumes, TUNEL staining, and mRNA levels of TNF-alpha and IL-1beta were assessed at 24 hours reperfusion. The effect of carvedilol on microvascular cortical perfusion was studied with continuous laser-Doppler flowmetry. Twenty-four hours after MCAO, carvedilol at all three doses reduced infarct volumes by at least 40% and reduced neurologic deficits on average by 40% compared with vehicle-treated controls when given 2 or 4 days before the induction of ischemia. This protection was not mediated by changes in temperature or blood flow. Treatment with all three dose regimens resulted in fewer TUNEL positive cells compared with controls. At 24 hours reperfusion, carvedilol decreased TNF-alpha and IL-1beta expression by 40% to 50% in the ipsilateral ischemic cortex compared with the contralateral controls. The results of the current study indicate that carvedilol is neuroprotective in focal cerebral ischemia and may protect the ischemic brain by inhibiting apoptosis and attenuating the expression of TNF-alpha and IL-1beta.  相似文献   

3.
Inflammation, upregulation of cytokines, proapoptotic molecules, and apoptosis are accepted widely as crucial players in stroke-induced brain damage. Induction of brain tolerance against ischemia by pretreatment with nonlethal stressors (preconditioning) has been found to influence expression of different molecules, in addition to reduction of infarct size. It remains unclear, however, whether and how preconditioning changes expression of cytokines after subsequent brain ischemia. We sought to analyze cortical expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta, Fas, and Fas ligand (FasL) mRNA after a transient, focal brain ischemia in rats subjected to preconditioning. The mRNA levels were determined using a semiquantitative RT-PCR in the ischemic and contralateral cortex, separately. Transient ischemia was induced by 90-min middle cerebral artery occlusion (MCAo) and neurologic deficits as well as infarct size were quantified. Preconditioning was carried out by a short-term MCAo or an injection of 3-nitropropionic acid 3 days before MCAo. In both preconditioning paradigms, similar effects on investigated mRNA levels were observed. IL-1beta and IL-6 levels were decreased in tolerant rats compared to those in nontolerant ones. Changes in TNF-alpha, TGF-beta, and Fas levels were comparable independently of tolerance state. FasL mRNA was at similar level in rats subjected to chemical preconditioning but lower after ischemic preconditioning. Our findings demonstrate that both preconditioning methods exert a very similar effect on the expression of investigated cytokines. Interestingly, we observed a selective effect of preconditioning on IL-1beta and IL-6 expression that suggests different functional properties as well as different regulation of analyzed molecules during an induction of the brain tolerance against ischemia.  相似文献   

4.
Interleukin-1beta (IL-1beta) is expressed after cerebral ischemia and blocking its action reduces subsequent ischemic brain injury. However, the mechanisms by which IL-1beta affects ischemic brain are not understood. To investigate the role of IL- 1beta in regulation of tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecule-1 (ICAM-1) during focal cerebral ischemia, the authors studied mutant mice deficient in the IL-1 converting enzyme (ICE) gene (ICE knockout [KO] mice). Ninety-four adult male ICE KO and wild-type mice underwent 3, 6, 12, and 24 hours of permanent middle cerebral artery occlusion using the suture method. Expression of TNF-alpha and ICAM-1 protein in ischemic brain was examined using immunohistochemistry and Western blot analysis. Neither ICE KO nor wild-type mice had significant differences in CBF and body temperature measurements during the ischemic procedure. TNF-alpha expression increased in the ipsilateral hemisphere after 3 hours of occlusion, peaked at 12 hours and decreased at 24 hours of ischemia in both ICE KO and wild-type mice. ICAM-1 immunohistochemistry showed that the number of ICAM-1-positive vessels in the ischemic hemisphere was reduced in ICE KO mice (P < .05). Western blot analysis showed that ICAM-1 protein expression was significantly attenuated in the ipsilateral hemisphere in the ICE KO mice, which paralleled the immunohistochemistry results. The authors' results indicate that TNF-alpha expression is increased in both ICE KO and wild-type mice suggesting that TNF-alpha expression is not related to or upregulated by IL-1beta . ICAM-1 expression is significantly reduced in the ICE KO mice suggesting that IL-1beta plays an important role in the upregulation of adhesion molecules during focal cerebral ischemia.  相似文献   

5.
6.
A short duration of ischemia (i.e., ischemic preconditioning) was shown to result in significant tolerance to subsequent ischemic injury. Since previous reports suggest that interleukin-1beta (IL-1beta) may be involved in both ischemic damage and neuroprotection, the present work examined the expression of IL-1beta mRNA in cortical brain tissue after an established preconditioning (PC) stimulus known to produce significant brain tolerance to focal stroke after 1-7 days. Significant induction of IL-1beta mRNA was observed in the ipsilateral cortex at 6 hr (87+/-9 copies of the mRNA per microgram of brain tissue compared to 16+/-5 copies in sham-operated samples, P < 0.001, n = 4) and 8 hr (46+/-4 copies, P < 0.01, n = 4) after PC by means of real-time Taqman polymerase chain reaction (PCR). The peak expression of IL-1beta mRNA after PC was significantly (P < 0.01) lower than that after permanent occlusion of the middle cerebral artery (MCAO), i.e., 87+/-9 and 546+/-92 copies of RNA per microgram tissue at peak levels for PC and focal stroke, respectively. Immunohistochemistry studies revealed a parallel induction of IL-1beta in the ipsilateral cortex after PC. The maximal expression of IL-1beta was observed during the first week post-PC, showing marked parallelism with the duration of ischemic tolerance. These data suggest that the significant but low levels of IL-1beta induction after PC may contribute to ischemic brain tolerance.  相似文献   

7.
8.
目的观察大鼠局灶性脑缺血再灌注后不同时间点iNOS表达及行为学变化。方法线栓法制备大鼠大脑中动脉闭塞再灌注模型,术后不同时间点进行神经功能缺损评分,并动态检测iNOS活性变化。结果缺血后6h大鼠神经功能缺损程度最严重,iNOS表达在缺血后6h开始出现,缺血后48h达峰,7d时基本降至基线水平。结论由iNOS产生的NO参与了脑缺血再灌注后的迟发性病理损伤过程。  相似文献   

9.
We evaluated the proinflammatory cytokines, TNF-alpha and IL-1beta, mRNA expression in the rat sciatic and tibial nerves following ischemia-reperfusion (IR) injury, using competitive RT-PCR, to explore the role of cytokines in IR injury. The expressions of both TNF-alpha and IL-1beta mRNA were related to severity of ischemia and occurred with reperfusion rather than ischemia alone. TNF-alpha gene expression peaked at 24 h of reperfusion, while that of IL-1beta peaked at 12 h. These data support the notion that the proinflammatory cytokines TNF-alpha and IL-1beta are involved in the inflammatory response of IR injury to the peripheral nervous system and may be involved in the pathophysiology of ischemic fiber degeneration.  相似文献   

10.
We used in situ hybridization, RT PCR and immunohistochemistry to study the time course of expression and the cellular localization of inducible nitric oxide synthase (iNOS) and interleukin-1beta (IL-1beta) during the first 7 days after induction of a standardized cryogenic lesion on the right parietal cortex in male rats. Cryogenic lesion induced iNOS mRNA in the lesioned hemisphere after 6 to 72 h with a maximum (15+/-2 cells/mm2, n=4, p<0.01 vs. sham) at 24 h. Microglia, invading monocytes and granulocytes in and around the lesion expressed iNOS immunoreactivity starting at 12 h and peaking (29+/-10 cells/mm2, n=4, p<0.05 vs. sham) at 24 h after lesion. Induction of IL-1beta mRNA expression was immediate with a peak (9+/-1 cells/mm2, n=4, p<0.01 vs. sham) at 24 h after cryogenic lesion. The number of round cells with IL-1beta immunoreactivity around the lesion was maximal (8+/-2 cells/0.1 mm2, n=3, p<0.01 vs. sham) at 24 h. A weak astrocytic expression of IL-1beta-immunoreactivity was seen in sham animal brains. Astrocytic IL-1beta-expression was significantly increased in the lesion hemisphere and both hippocampi. Interleukin converting enzyme (ICE) was expressed in astrocytes and microglia around the lesion 6 h after injury. The number of ICE immunoreactive cells (8+/-2 cells/0. 1 mm2, n=3, p<0.05 vs. sham) peaked at 72 h after lesion. Neuronal expression of ICE and IL-1beta was seen in the lesion periphery 72 h and 7 days after injury. At this time, morphological features of apoptosis were evident in cells in the lesion periphery. The data indicate an early activation of microglia and monocyte invasion into the lesion hemisphere leading to multicellular expression of iNOS, ICE, and IL-1beta. These events may contribute to the expansion of neuronal damage after brain injury.  相似文献   

11.
12.
13.
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.  相似文献   

14.
15.
目的 探讨重组人促红细胞生成素(EPO)对大鼠局灶性脑缺血再灌注损伤所致炎性反应的保护机制。方法采用线拴法制备大鼠局灶性大脑中动脉缺血再灌注模型,应用TTC染色法、干湿重法、常规HE染色法观察EPO治疗前后再灌注24h脑梗死体积、脑组织含水量以及组织学变化,应用RT- PCR方法检测EPO治疗前后再灌注lh、3h、6h、12 h、24h、72 h缺血侧脑皮质IL-1β、TNF-α基因表达的变化。结果与假手术组相比,EPO可显著缩小缺血再灌注24h所致的脑梗死体积(P<0.01),降低梗死侧脑组织含水量(P<0.01),减轻病理学变化。缺血再灌注各时相点缺血侧皮层IL -lβ mRNA和TNF -α mRNA表达均显著上调(P<0.01),12 h达高峰。EPO治疗后lh、3h、6h缺血侧皮层IL - 13 mRNA表达显著下降,与病理组相应时间点相比,分别降低了63%、55%和84%(P<0.01)。EPO治疗后lh、3h、6h缺血侧皮层TNF -α mRNA表达亦显著下降,与病理组相应时间点相比,分别降低了75%、76%和95%(P<0.01)。结论EPO可能通过抑制IL - 1β、TNF-α的基因表达,降低缺血再灌注的炎性反应损伤而改善脑组织的结构和功能。  相似文献   

16.
17.
目的观察诱生型血红素氧合酶(HO-1)mRNA、诱生型一氧化氮合酶(iNOS)mRNA在局灶性脑缺血中的表达及其不同作用。方法采用逆转录酶多聚酶链反应(RT-PCR)方法,测定HO-1mRNA、iNOSmRNA在局灶性缺血脑组织中不同时间点的表达变化。结果iNOSmRNA的表达在缺血后2 h出现,24 h达最高峰,以后逐渐下降。HO-1mRNA表达在缺血后2 h即出现,缺血后12 h达最高峰。结论脑缺血的病理生理过程中存在着一氧化氮(NO)及一氧化碳(CO)两种信使系统之间的相互作用。HO-1mRNA及iNOSmRNA的表达上调并具有时相性。缺血后期HO-1mRNA仍然维持在一定的水平,可能具有对抗后期iNOSmRNA增高所产生的NO毒性作用。  相似文献   

18.
We have reported previously the delayed and differential induction of p38alpha and p38beta mitogen-activated protein kinases (MAPKs) in microglia and astrocytes, respectively, in brain after transient global ischemia. We report here the sustained induction and activation of p38alpha MAPK in activating microglia in rat brain after transient middle cerebral artery occlusion (MCAO). The intraventricular administration of SB203580, a p38 MAPK inhibitor, 30 min before MCAO reduced the infarct volume to 50% of the control, which was accompanied by the significant improvement of neurological deficits. More interestingly, the infarct volume was reduced to 72% and 77% when SB203580 was administered 6 hr and 12 hr after MCAO, respectively. The induction of various factors involved in inflammatory processes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and cyclooxygenase-2 (COX-2), was suppressed by the administration of SB203580 at 6 hr after MCAO. These results suggest that sustained activation of p38 MAPK pathway and p38 MAPK-associated inflammatory processes play a crucial role in postischemic brain.  相似文献   

19.
Okada K  Yamashita U  Tsuji S 《Brain research》2006,1102(1):175-178
Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, delayed the development of seizure responses and mildly shortened the duration of convulsion of genetically epileptic EL mice. mRNA levels of IL-1beta, IL-6 and TNF-alpha before seizure and mRNA levels of IL-6 and TNF-alpha after seizure were decreased in the brains of the mice with pioglitazone. These results suggest that pioglitazone may have ameliorative effects on epileptic seizure responses partly through the reduction of inflammatory responses in the brain.  相似文献   

20.
目的探讨1,25(OH)_2D_3对小鼠局灶性脑缺血再灌注后炎性反应的作用及其机制。方法造模前,通过一个月低维生素D饮食喂养,小鼠随机分为假手术组、局部缺血再灌注组(模型组)和1,25(OH)_2D_3组(治疗组)。造模前3 d始,假手术组和模型组每天腹腔注射2.4%乙醇,治疗组腹腔注射1,25(OH)_2D_3,共持续6 d。再灌注72 h后,Zea Longa法对鼠进行神经功能评分,干湿重法测量缺血侧脑组织含水量,RT-PCR法检测缺血侧半球IL-1βmRNA和TNF-αmRNA表达,采用Western blot法检测缺血侧半球NF-κB p65和Claudin-5的表达。结果与模型组比较,缺血再灌注后72 h,治疗组小鼠神经功能评分较低,缺血侧半球脑含水量、IL-1βmRNA、TNF-αmRNA和NF-κB p65表达显著减少,Claudin-5表达显著增加,差异均有统计学意义(P0.05)。结论 1,25(OH)_2D_3减轻小鼠局灶性脑缺血再灌注损伤后炎性反应,其机制通过抑制NF-κB的活化有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号