首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heretofore unknown analogues of aminopterin (AMT) and methotrexate (MTX) in which free rotation of the amide bond between the phenyl ring and amino acid side chain is prevented by a CH(2) bridge were synthesized and tested for in vitro antifolate activity. The K(i) of the AMT analogue (9) against human dihydrofolate reductase (DHFR) was 34 pM, whereas that of the MTX analogue (10) was 2100 pM. Both compounds were less potent than the parent drugs. However, although the difference between AMT and MTX was <2-fold, the difference between 9 and 10 was 62-fold, suggesting that the effect of N(10)-methyl substitution is amplified in the bridged compounds. The K(i) values of 9 and 10 as inhibitors of [(3)H]MTX influx into CCRF-CEM human leukemia cells via the reduced folate carrier (RFC) were 0.28 and 1.1 muM, respectively. The corresponding K(i) and K(t) values determined earlier for AMT and MTX were 5.4 and 4.7 muM, respectively. Thus, in contrast to its unfavorable effect on DHFR binding, the CH(2) bridge increased RFC binding. In a 72 h growth assay with CCRF-CEM cells, the IC(50) values of 9 and 10 were 5.1 and 140 nM, respectively, a 27-fold difference that was qualitatively consistent with the observed combination of weaker DHFR binding and stronger RFC binding. Although rotationally restricted inhibitors of other enzymes of folate pathway enzymes have been described previously, 9 and 10 are the first reported examples of DHFR inhibitors of this type.  相似文献   

2.
The potent nonpolyglutamatable dihydrofolate reductase inhibitor N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-o rnithine (PT523) and six of its B-ring (5-deaza, 8-deaza, and 5,8-dideaza) analogues were compared in terms of their ability to: (a) inhibit the growth of CCRF-CEM human leukemic lymphoblasts, and (b) utilize the reduced folate carrier (RFC) in these cells as measured in a competition assay of [(3)H]methotrexate ([(3)H]MTX) influx. The IC(50) values of the hemiphthaloylornithine derivatives against CCRF-CEM cells after 72 hr of drug exposure varied from 0.64 to 1.3 nM as compared with 14 nM for MTX and 4.4 nM for aminopterin (AMT). The K(i) values of these compounds in the [(3)H]MTX influx assay were in the 0.3 to 0.7 microM range as compared with a K(i) of 5.4 microM for AMT and a K(t) of 7.1 microM for MTX. As a group, the affinities of these compounds for the RFC were approximately 10-fold greater than those of their respective glutamate analogues. These results indicate that, in addition to their previously reported tight binding to dihydrofolate reductase, a property contributing to the high potency of PT523 and its B-ring analogs as inhibitors of tumor cell growth is their strong affinity for the RFC.  相似文献   

3.
Details are disclosed for the synthesis of N(alpha)-[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]-N(delta)-hemiphthaloyl-L-ornithine (2) and N(alpha)-[4-[5-(2,4-diaminoteridin-6-yl)pent-1-yn-4-yl]benzoyl]-N(delta)-hemiphthaloyl-L-ornithine (6) as analogues of N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (1, PT523), a nonpolyglutamatable antifolate currently in advanced preclinical development. In a 72 h growth inhibition assay against cultures of CCRF-CEM human leukemic lymphoblasts, the IC(50) of 2 and 6 was 0.69 +/- 0.044 nM and 1.3 +/- 0.35 nM, respectively, as compared with previously reported values 4.4 +/- 0.10 nM for aminopterin (AMT) and 1.5 +/- 0.39 nM for PT523. In a spectrophotometric assay of dihydrofolate reductase (DHFR) inhibition using dihydrofolate and NADPH as the cosubstrates, the previously unreported compounds 2 and the mixed 10R and 10S diastereomers of 6 had K(i) values of 0.21 +/- 0.05 pM and 0.60 +/- 0.02 pM, respectively, as compared with previously reported values of 3.70 +/- 0.35 pM for AMT and 0.33 +/- 0.04 pM for PT523. Thus, while they were comparable to 1 and several of its previously studied analogues in their ability to bind to DHFR and inhibit the growth of CCRF-CEM cells, 2 and the mixed diastereomers of 6 were several times more active than AMT despite the fact that they cannot form gamma-polyglutamylated metabolites of the type formed in cells from AMT and other classical antifolates with a glutamate side chain.  相似文献   

4.
The variations of the pharmacological properties of melatonin receptors between different mammalian species in transfected cell lines have been poorly investigated. In the present study, melatonin analogues have been used to characterize the pharmacology of the recombinant ovine melatonin receptor (oMT1) expressed in CHO cell lines and the native oMT1 from the pars tuberalis (PT). Studies with selective ligands on native and transfected oMT1 showed similar properties for binding affinities [r2(PT/CHO) = 0.85]. The affinities and the functional activities of these ligands were compared with the human receptors (hMT1 or hMT2) expressed in CHO cells as well. The oMT1 and hMT1 receptors had similar pharmacological profiles (r2=0.82). Nevertheless, some of the selective compounds at the human receptor presented a reduced affinity at the ovine receptor. Furthermore, some compounds showed marked different functional activities at oMT1 vs. hMT1 receptors. Our findings demonstrated differences in the pharmacological properties of melatonin receptors in ovine and human species.  相似文献   

5.
Herbal drugs were screened for their activity in reversing multidrug resistance (MDR) in P-glycoprotein (P-gp) over-expressing cancer cells. Through bio-assay guided fractionation an active compound was isolated from Rhizoma Alismatis, the underground part of Alisma orientale and the chemical structure of the isolate compound was confirmed by HPLC, LC-MS and NMR as Alisol B 23-acetate (ABA). ABA restored the sensitivity of MDR cell lines HepG2-DR and K562-DR to anti-tumor agents that have different modes of action but are all P-gp substrates. It restored the activity of vinblastine, a P-gp substrate, in causing G2/M arrest in MDR cells. In a dose-dependent manner, ABA increased doxorubicin accumulation and slowed down the efflux of rhodamin-123 from MDR cells. ABA inhibited the photoaffinity labeling of P-gp by [125I]iodoarylazidoprazosin and stimulated the ATPase activity of P-gp in a concentration-dependent manner, suggesting that it could be a transporter substrate for P-gp. In addition, ABA was also a partial non-competitive inhibitor of P-gp when verapamil was used as a substrate. Our results suggest that ABA may be a potential MDR reversal agent and could serve as a lead compound in the development of novel drugs.  相似文献   

6.
This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.  相似文献   

7.
We have recently reported evidence that a simple beta-linked alkylated mannose reversibly increased the magnitude of GABA(A) receptor currents evoked in cultured rat pyramidal neurons whilst concomitantly reducing the incidence of spontaneous synaptic activity. In this present study, the effects of the simple beta-linked disaccharide, lactose was investigated using a [3H] TBOB (t-[3H] butylbicycloorthobenzoate) binding assay in adult rat forebrain and cerebellum membranes. Lactose elicited a significant potentiation of [3H] TBOB binding to well-washed forebrain and cerebellar membranes (mean E(max) values=367 and 287%; mean EC(50) values=1.5 and 30 microM, respectively, N=4). The alpha-linked disaccharides, maltose and sucrose also potentiated [3H] TBOB binding, but with 100-600-fold higher EC(50) values than lactose. The lactose-mediated potentiation of [3H] TBOB in the forebrain and cerebellum was completely abolished in the presence of 0.3 microM GABA. Over the concentration range in which significant potentiation of [3H] TBOB binding was detected, lactose elicited no significant effect upon [3H] flunitrazepam binding. This study demonstrated that lactose can modulate the GABA(A) receptor channel, allosterically coupled to the agonist site, but independent of the benzodiazepine site. Furthermore, lactose displayed differential effects upon forebrain and cerebellar GABA(A) receptors indicating that it may be a novel subtype selective agent.  相似文献   

8.
We have shown previously that chronic ethanol administration impairs the maturation of lysosomal enzymes in rat hepatocytes. The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR) is a protein that facilitates the transport of lysosomal enzymes into the lysosome. Therefore, we examined whether ethanol consumption altered the ligand binding properties and the cellular content of M6P/IGF-IIR. Rats were pair-fed liquid diets containing either ethanol (36% of calories) or isocaloric maltose-dextrin for either 1 week or 5-7 weeks. Hepatocytes prepared from these animals were examined for receptor-ligand binding and receptor content. One week of ethanol feeding had no significant effect on ligand [radioiodinated pentamannose phosphate conjugated to bovine serum albumin ((125)I-PMP-BSA)] binding to hepatocytes, but cells from rats fed ethanol for 5-7 weeks bound less (125)I-PMP-BSA than pair-fed controls. Scatchard plot analysis revealed that the number of (125)I-PMP-BSA binding sites in hepatocytes from ethanol-fed rats was 49% lower than that of controls. (125)I-PMP-BSA binding by perivenular (PV) and periportal (PP) hepatocytes from ethanol-fed rats was, respectively, 40 and 48% lower than their controls, but there was no significant difference between these two types of hepatocytes. Ligand blot analysis using (125)I-insulin-like growth factor II ((125)I-IGF-II) also showed that the receptor in lysates of hepatocytes from ethanol-fed rats bound 26-27% less ligand than controls. Similarly, immunoblot analysis of cell lysates from ethanol-fed rats revealed 62% lower levels of immunoreactive M6P/IGF-IIR than controls. Feeding rats a low carbohydrate-ethanol diet did not exacerbate the reduction in M6P/IGF-IIR-ligand binding nor did it reduce the levels of immunoreactive receptor. Our findings indicate that chronic ethanol consumption lowers M6P/IGF-IIR activity and content in hepatocytes. This reduction may account, in part, for the impaired processing and delivery of acid hydrolases to lysosomes previously observed in ethanol-fed rats.  相似文献   

9.
Inhibition of acetylcholine-mediated effects by borneol   总被引:6,自引:0,他引:6  
We previously reported that the aqueous extract from a medicinal plant Dryobalanops aromatica specifically inhibits the nicotinic acetylcholine receptor (nAChR) (Oh et al. Pharmacol Res 2000;42(6):559-64). Here, the effect of borneol, the main constituent of D. aromatica, on nAChR activity was investigated in bovine adrenal chromaffin cells. Borneol inhibited a nAChR agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP)-induced calcium increase with a half maximal inhibitory concentration (IC(50)) of 56+/-9 microM. In contrast, borneol did not affect the calcium increases induced by high K+, veratridine, and bradykinin. The sodium increase induced by DMPP was also inhibited by borneol with similar potency (49+/-12 microM), suggesting that the activity of nAChRs is inhibited by borneol. Borneol inhibited DMPP-induced secretion of [3H]norepinephrine with an IC(50) of 70+/-12 microM. Carbon-fiber amperometry also confirmed the inhibition of DMPP-induced exocytosis by borneol in single chromaffin cells. [3H]nicotine binding, however, was not affected by borneol. The inhibitory effect by borneol is more potent than the effect by lidocaine, a commonly used local anesthetic. The data suggest that borneol specifically inhibits the nAChR-mediated effects in a noncompetitive way.  相似文献   

10.
Alcoholic liver disease has been associated with abnormalities in receptor-mediated endocytosis (RME) which results in abnormal degradation of metabolically altered proteins. Model systems using formaldehyde-modified albumin (f-Alb) have shown an impairment in RME following chronic alcohol consumption utilizing both in situ perfused rat livers and isolated rat liver endothelial cells (LECs). The discovery that alcohol metabolite derived aldehydes can modify proteins prompted a study to determine if malondialdehyde-acetaldehyde-modified albumin (MAA-Alb) would be degraded similar to that reported for f-Alb, and whether ethanol-fed rats would demonstrate an impaired RME with respect to this ligand which occurs as a consequence of chronic ethanol consumption. MAA-Alb was degraded slightly more than f-Alb in both in situ perfused livers and at the single cell level. This degradation was completely inhibited with 100x unlabeled f-Alb, which suggests the use of a similar receptor. Following alcohol consumption there was a 50-60% decrease in MAA-Alb degradation in whole livers and isolated LECs. Utilizing isolated LECs it was determined that impairment in internalization was the most likely mechanism for the decrease in the amount of MAA-Alb that was degraded. These data show that chronic alcohol consumption by rats does in fact impair RME of alcohol metabolite-derived adducted proteins, and this impairment is due to a defect in the post-internalization step rather than the binding or degradation of the modified protein.  相似文献   

11.
Increased amounts of monohydroxylated bile salts (BS) have been found in neonatal cholestasis, parenteral nutrition-induced cholestasis and Byler's disease, among others. We analyzed whether the hepatoprotector silymarin (SIL), administered i.p. at the dose of 100mg/kg/day for 5 days, prevents the cholestatic effect induced by a single injection of the model monohydroxylated BS taurolithocholate (TLC, 30 micromol/kg, i.v.) in male Wistar rats. TLC, administered alone, reduced bile flow, total BS output, and biliary output of glutathione and HCO(3)(-) during the peak of cholestasis (-75, -67, -81, and -80%, respectively, P<0.05). SIL prevented partially these alterations, so that the drops of these parameters induced by TLC were of only -41, -25, -60, and -64%, respectively (P<0.05 vs. TLC alone); these differences between control and SIL-treated animals were maintained throughout the whole (120 min) experimental period. Pharmacokinetic studies showed that TLC decreased the intrinsic fractional constant rate for the canalicular transport of both sulfobromophthalein and the radioactive BS [14C]taurocholate by 60 and 68%, respectively (P<0.05), and these decreases were fully and partially prevented by SIL, respectively. SIL increased the hepatic capability to clear out exogenously administered TLC by improving its own biliary excretion (+104%, P<0.01), and by accelerating the formation of its non-cholestatic metabolite, tauromurideoxycholate (+70%, P<0.05). We conclude that SIL counteracts TLC-induced cholestasis by preventing the impairment in both the BS-dependent and -independent fractions of the bile flow. The possible mechanism/s involved in this beneficial effect will be discussed.  相似文献   

12.
Models of G protein-coupled melatonin receptor structure suggest that ligand recognition occurs in a binding pocket formed by transmembrane helices III, V and VII. Constitutively active mutations in G protein-coupled receptors have revealed that transmembrane helix III/intracellular loop 2 interface and transmembrane domain VI are critical regions in receptor activation. In this study, nine site-directed mutants of the human MT1 melatonin receptor were created to test the importance of specific amino acids in these regions in ligand recognition and receptor activation events. We analyzed ligand binding, G protein activation and subcellular localization of MT1 receptors transiently expressed in COS-7 cells. Receptor ELISA was employed to study expression levels of N-terminally HA epitope tagged wild-type and mutant MT1 receptors. Mutations in histidine H195 (His(5.46)) in transmembrane domain V reduced receptor affinity for 2-[125I]iodomelatonin. Several other mutants had diminished expression on the plasma membrane. Amino acids M107 (Met(3.32)) in transmembrane domain III and S280 (Ser(7.46)) in transmembrane domain VII were found not to participate in ligand recognition in human MT1 receptor. Constitutive activity was not obtained with mutations in N124 (Asn(3.49)) or P253 (Pro(6.50)). These mutants failed to bind 2-[125I]iodomelatonin and had reduced expression levels. The need to upgrade current melatonin receptor models has become evident. Several important amino acids for the human MT1 melatonin receptor function were revealed in the current study, with effects of mutations ranging from slightly reduced affinity or efficacy to complete loss of function.  相似文献   

13.
Although in the respiratory system there is great therapeutic interest in manipulating and understanding the beta-adrenoceptor-G-protein-adenylate cyclase (AC) signal transduction pathway, little is known on segmental differences among lung, bronchus, and trachea with regard to the receptor concentration and interaction to G-proteins and coupling to AC. In this study, patterns of distribution and absolute quantities of beta-adrenoceptor subtypes beta(1) and beta(2) were determined in membranes of equine lung parenchyma, bronchial and tracheal epithelium with the underlying smooth muscle by saturation and competition binding assays using the radioligand (-)-[125I]-iodocyanopindolol (ICYP). Additionally, the functional coupling of beta-adrenoceptors to G-proteins (assessed by beta-agonist competition binding in the presence and absence of GTP) as well as the coupling efficiency and biochemical activities of AC was investigated in each region. The specific ICYP binding was rapid, reversible, saturable with time and of high affinity. The radioligand binding identified more total beta-adrenoceptors in the lung than in bronchus or trachea (428+/-19, 162.4+/-4.8, 75.6+/-1.2 fmol/mg protein, respectively) with about 40% of receptors in the high affinity state. The beta(2)-adrenoceptor subtype predominated in all segments (approximately 74-80%), as the highly selective beta(2)-adrenoceptor antagonist ICI 118,551 was about 10,000 times more potent in inhibiting ICYP binding than was the beta(1)-selective adrenoceptor antagonist CGP 20712A, and beta-adrenoceptor agonists inhibited ICYP binding with an order of potency: (-)-isoprenaline>(-)-adrenaline>(-)-noradrenaline. The dissociation constant (K(d)) was higher in the trachea than in bronchus or lung (13.0+/-0.9 pM vs. 20.0+/-2.3 pM vs. 30.8+/-4.4 pM, P<0.05, respectively). The beta(2)-adrenoceptor-mediated AC response was tissue-dependent; stimulants acting on beta-adrenoceptor (isoproterenol), G-protein (GTP, NaF) and AC (forskolin, Mn(2+)) enhanced AC responses in all three regions, but the AC activity was higher in tracheal crude membranes than in bronchus or lung (trachea>bronchus>lung), hence, the number of beta(2)-adrenoceptors correlated inversely with the amount of AC. We conclude that (1) the stoichiometry of components within the pulmonary beta-adrenoceptor-G-protein complex is segment-dependent, and (2) the receptor number or AC activity is possibly the rate-limiting factor in the beta-adrenoceptor-G-protein-AC-mediated physiological responses. Thus, it is speculated that this could have important therapeutic consequences in beta-adrenoceptor agonist-induced receptor regulation in bronchial asthma.  相似文献   

14.
15.
There is considerable evidence that the sympathetic nervous system influences the immune response via activation and modulation of beta(2)-adrenergic receptors (beta(2)R). Furthermore, it has been suggested that stress has effects on the sympathetic nervous system. In the present study, we analyzed the influence of catecholamines on the reactivity of lymphocytes from mice exposed to a chronic mild stress (CMS) model of depression (CMS-animals). The effects of the CMS treatment on catecholamine and corticosterone levels and on beta(2)R lymphoid expression were also assessed. For this purpose, animals were subjected to CMS for 8 weeks. Results showed that catecholamines (epinephrine and norepinephrine) exert an inhibitory effect on mitogen-induced normal T-cell proliferation and a stimulatory effect on normal B-cell proliferation in response to selective B lymphocyte mitogens. Specific beta- and beta(2)-antagonists abolished these effects. Lymphocytes from mice subjected to CMS had an increased response to catecholamine-mediated inhibition or enhancement of proliferation in T and B cells, respectively. Moreover, a significant increase in beta(2)R density was observed in animals under CMS compared to normal animals. This was accompanied by an increment in cyclic AMP production after beta-adrenergic stimulation. On the other hand, neither catecholamine levels, determined in both urine and spleen samples, nor serum corticosterone levels showed significant variation between normal and CMS-animals. These findings demonstrate that chronic stress is associated with an increased sympathetic influence on the immune response and may suggest a mechanism through which chronic stress alters immunity.  相似文献   

16.
The metabolite profiles from livers of toxin-treated rats were investigated using high resolution 1H NMR spectroscopy of aqueous (acetonitrile/water), lipidic (chloroform/methanol) extracts and magic angle spinning (MAS)-NMR spectroscopy of intact tissue. Rats were treated with the model cholestatic hepatotoxin, alpha-naphthylisothiocyanate (ANIT, 150 mg/kg) and NMR spectra of liver were analysed using principal components analysis (PCA) to extract novel toxicity biomarker information. 1H NMR spectra of control aqueous extracts showed signals from a range of organic acids and bases, amino acids, sugars, and glycogen. Chloroform/methanol extracts showed signals from a range of saturated and unsaturated triglycerides, phospholipids and cholesterol. The MAS 1H NMR spectra of livers showed a composite of signals found in both aqueous and lipophilic extracts. Following ANIT treatment, 1H NMR-PCA of aqueous extracts indicated a progressive reduction in glucose and glycogen, together with increases in bile acid, choline, and phosphocholine signals. 1H NMR-PCA of chloroform/methanol extracts showed elevated triglyceride levels. The 1H MAS-NMR-PCA analysis allowed direct detection of all of the ANIT-induced tissue perturbations revealed by 1H NMR of extracts, enabling metabolic characterisation of the lesion, which included steatosis, bile duct obstruction and altered glucose/glycogen metabolism. MAS-NMR spectroscopy requires minimal sample preparation and, unlike 1H NMR spectroscopy of tissue extracts, does not discriminate metabolites based on their solubility in a particular solvent and so this is a particularly useful exploratory tool in biochemical toxicology.  相似文献   

17.
Nonpolyglutamatable antifolates are potentially of therapeutic interest for the treatment of tumors that are inherently refractory, or have become resistant, to classical antifolates as a result of decreased expression of the enzyme folylpolyglutamate synthetase. An interesting class of water-soluble nonpolyglutamatable analogs of aminopterin (AMT) have been developed, which are much more cytotoxic because they bind more tightly to dihydrofolate reductase (DHFR) and also utilize the reduced folate carrier (RFC) pathway more efficiently for influx into the cell. This review summarizes the in vitro and in vivo preclinical data on the initial lead compound, Nalpha-(4-amino-4-deoxypteroyl)-Ndelta- hemiphthaloyl-L-ornithine (PT523). In addition, the synthesis and in vitro biochemical and biological properties of several types of second-generation analogs are discussed. Analogs modified in the B-ring of the pteridine moiety have been found to be of particular interest because their affinity for DHFR and their influx rate into cells via the RFC pathway are even greater than those of PT523. The hemiphthaloylornithine moiety, which is larger and more hydrophobic than the glutamate side chain of classical antifolates, appears to be chiefly responsible for the exceptionally high biological potency of PT523 and its B-ring analogs.  相似文献   

18.
Although tricyclic antidepressants are among the drugs of choice for the treatment of neuropathic pain, their mechanism of action in this regard remains unknown. Because previous reports suggest these agents may influence gamma-aminobutyric acid (GABA) neurotransmission, and GABAB receptors are known to participate in the transmission of pain impulses, the present experiments were undertaken to examine whether the administration of desipramine alters GABAB receptor subunit expression and function in the dorsal horn of the rat spinal cord. For the study, rats were injected (i.p.) once daily with desipramine (15 mg/kg) for 7 consecutive days, during which their thermal withdrawal threshold was monitored, and after which GABAB receptor function, and the levels of GABAB receptor subunit mRNA, were quantified in the spinal cord dorsal horn. The results indicate that 4-7 days of continuous administration of desipramine are necessary to observe a significant increase in the thermal pain threshold. Moreover, it was found that 7 days of treatment with desipramine enhances GABAB receptor function, as measured by baclofen-stimulated [35S]GTPgammaS binding, and increases mRNA expression for the GABAB(1a) and GABAB(2), but not GABAB(1b), subunits. These findings suggest the antinociceptive effect of desipramine is accompanied by a change in spinal cord GABAB receptor sensitivity that could be an important component in the analgesic response to this agent.  相似文献   

19.
Deoxycytidine kinase (dCK) catalyses the rate-limiting step of the salvage of three natural deoxyribonucleosides as well as several therapeutic nucleoside analogues, which in turn can enhance its enzymatic activity [Biochem Pharmacol 56 (1998) 1175], improving the efficacy of the cytostatic therapy. Here, we measured the effect of the 5'-thiosulphate (5'-TS) derivatives of four deoxyribonucleosides (deoxyadenosine, deoxycytidine (dCyd), azidothymidine, thymidine) and two ribonucleosides (ribopurine, ribouridine (Urd)) on the activity of the two main salvage deoxynucleoside kinases, and on the salvage of dCyd and deoxythymidine (dThd). It turned out that only 2'-deoxythymidine-5'-thiosulphate (dThd-5'-TS) can potentiate the dCK activity, without influencing the thymidine kinase isoenzymes during short-time treatments of human peripheral blood and tonsillar lymphocytes. The enhancement of dCK activity by dThd-5'-TS can be reversed by dCyd, but dThd had no effect on the enzyme activation in cells. Neither dThd-5'-TS nor Urd-5'-TS had any effect on the dCK and thymidine kinase activities tested in cell-free extracts. The stimulation of dCK activity in cells was accompanied by an imbalance in the dThd and dCyd metabolism. The incorporation of 3H-dThd into DNA was suppressed by 90% in cells by dThd-5'-TS, while Urd-5'-TS only slightly influenced the same process. The 3H-dCyd incorporation into DNA was inhibited only to 50% of the control, while the 3H-dCyd labelling of the nucleotide fraction was enlarged in dThd-5'-TS-treated cells, as a consequence of the increased dCK activity. We suggest that the enhancement of dCK activity is a compensatory mechanism in cells that might be induced by different "inhibitors" of DNA synthesis leading to damage of DNA. The increased dCK activity is able to supply the repair of DNA with dNTPs in quiescent cells; this suggestion seems to be supported by the counteracting effect of extracellular dCyd, too.  相似文献   

20.
We purified the major glycolipids in the class of monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) from a green vegetable, spinach (Spinacia oleracea L.). MGDG was an inhibitor of the growth of NUGC-3 human gastric cancer cells, but DGDG and SQDG had no such cytotoxic effect. Therefore, we studied MGDG and its monoacyglycerol-form, monogalactosyl monoacylglycerol (MGMG), in detail. MGMG with one fatty acid molecule was obtained from MGDG with two fatty acid molecules by hydrolyzing with a pancreatic lipase. MGMG was also found to prevent the cancer cell growth. MGDG was a potent inhibitor of replicative DNA polymerases such as alpha, delta and epsilon. MGMG inhibited the activities of all mammalian DNA polymerases including repair-related DNA polymerase beta with IC(50) values of 8.5-36 microg/mL, and the inhibition by MGMG was stronger than that by MGDG. Both MGDG and MGMG could halt the cell cycle at the G1 phase, and subsequently induced severe apoptosis. The relationship between the DNA polymerase inhibition and the cell growth effect by these glycolipids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号