首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Brain insulin and feeding: a bi-directional communication   总被引:7,自引:0,他引:7  
Insulin and specific insulin receptors are found widely distributed in the central nervous system (CNS) networks related in particular to energy homeostasis. This review highlights the complex regulatory loop between dietary nutrients, brain insulin and feeding. It is well documented that brain insulin has a negative, anorexigenic effect on food intake. At present, a specific role for brain insulin on cognitive functions related to feeding is emerging. The balance between orexigenic and anorexigenic pathways in the hypothalamus is crucial for the maintenance of energy homeostasis in animals and humans. The ingestion of nutrients triggers neurochemical events that signal nutrient and energy availability in the CNS, down regulate stimulators, activate anorexigenic factors, including brain insulin, and result in reduced eating. The effects of insulin in the CNS are under a multilevel control of food-intake peripherally and in the CNS, via the metabolic, endocrine and neural modifications induced by nutrients. Single meals as well as glucose and serotonin are able to regulate insulin release directly in the hypothalamus and may be of importance for its biological effects. Central mechanisms operating in glucose-induced insulin release show some analogy with the mechanisms operating in the pancreas. Leptin and melanocortins, peptides that down regulate food intake and are largely affected by nutrients, are highly interactive with insulin in the CNS probably via the neurotransmitter serotonin. In the hypothalamus, insulin and leptin share a common signaling pathway involved in food intake, namely the insulin receptor substrate, phosphatidylinositol 3-kinase pathway. Over or under-feeding, unbalanced single meals or diets, in particular diets enriched in fat, modify the amount of insulin actively transported into the brain, the release of brain insulin, the expression of insulin messenger RNA and potentially disrupt insulin signaling in the CNS. This impairment may result in disorders related to feeding behavior and energy homeostasis leading to profound dysregulations, obesity or diabetes.  相似文献   

2.
Watson GS  Craft S 《CNS drugs》2003,17(1):27-45
An emerging body of evidence suggests that an increased prevalence of insulin abnormalities and insulin resistance in Alzheimer's disease may contribute to the disease pathophysiology and clinical symptoms. It has long been known that insulin is essential for energy metabolism in the periphery. In the past 2 decades, convergent findings have begun to demonstrate that insulin also plays a role in energy metabolism and other aspects of CNS function. Investigators reported 20 years ago that insulin and insulin receptors were densely but selectively expressed in the brain, including the medial temporal regions that support the formation of memory. It has recently been demonstrated that insulin-sensitive glucose transporters are localised to the same regions supporting memory and that insulin plays a role in memory functions. Collectively, these findings suggest that insulin may contribute to normal cognitive functioning and that insulin abnormalities may exacerbate cognitive impairments, such as those associated with Alzheimer's disease. Insulin may also play a role in regulating the amyloid precursor protein and its derivative beta-amyloid (Abeta), which is associated with senile plaques, a neuropathological hallmark of Alzheimer's disease. It has been proposed that insulin can accelerate the intracellular trafficking of Abeta and interfere with its degradation. These findings are consistent with the notion that insulin abnormalities may potentially influence levels of Abeta in the brains of patients with Alzheimer's disease. The increased occurrence of insulin resistance in Alzheimer's disease and the numerous mechanisms through which insulin may affect clinical and pathological aspects of the disease suggest that improving insulin effectiveness may have therapeutic benefit for patients with Alzheimer's disease. The thiazolidinedione rosiglitazone has been shown to have a potent insulin-sensitising action that appears to be mediated through the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma agonists, such as rosiglitazone, also have anti-inflammatory effects that may be of therapeutic benefit in patients with Alzheimer's disease. This review presents evidence suggesting that insulin resistance plays a role in the pathophysiology and clinical symptoms of Alzheimer's disease. Based on this evidence, we propose that treatment of insulin resistance may reduce the risk or retard the development of Alzheimer's disease.  相似文献   

3.
Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an endogenous 30-amino acid gut peptide, which binds at the GLP-1 receptor coupled to the cyclic AMP second messenger pathway. GLP-1 receptor stimulation enhances pancreatic islet beta-cell proliferation, glucose-dependent insulin secretion and lowers blood glucose and food intake in patients with type 2 diabetes mellitus. Not limited to the pancreas, the chemoarchitecture of GLP-1 receptor distribution in the brain of rodents and humans correlates with a central role for GLP-1 in the regulation of food intake. However emerging evidence suggests that stimulation of neuronal GLP-1 receptors plays an important role in regulating neuronal plasticity and cell survival. GLP-1 has been documented to induce neurite outgrowth and to protect against excitotoxic cell death and oxidative injury in cultured neuronal cells. Moreover, GLP-1 and exendin-4, a naturally occurring more stable analogue of GLP-1 that likewise binds at the GLP-1 receptor, were shown to reduce endogenous levels of amyloid-beta peptide (Abeta) in mouse brain and to reduce levels of beta-amyloid precursor protein (betaAPP) in neurons. Collectively these data suggest that treatment with GLP-1 or a related peptide beneficially affects a number of the therapeutic targets associated with Alzheimer's disease (AD). Although much remains to be elucidated with regards to the downstream signaling pathways involved in the pro-survival properties of GLP-1, modulation of calcium homeostasis may be critical. This review will consider the potential therapeutic relevance of GLP-1 to CNS disorders, such as AD.  相似文献   

4.
The discovery of apelin, an endogenous ligand of the orphan APJ receptor is an important advance for fundamental research and clinical medicine. Apelin and its receptor have a wide tissue distribution not only in the brain but also in peripheral organs including kidney, heart, vessels, and adipose tissue. Apelin is implicated in many physiological and pathophysiological processes such as the regulation of body fluid homeostasis, cardiovascular functions, glucose homeostasis, cell proliferation, and angiogenesis. This review focuses on, i) the various signaling cascades evoked upon stimulation of the apelin receptor by the different molecular forms of apelin found in vivo, ii) the distribution of apelin and its receptor in the brain and the cardiovascular system, iii) the opposing actions of vasopressin and apelin in the regulation of water balance at the central and kidney levels, and on the cardiovascular system regarding regulation of arterial blood pressure, vascular tone, and cardiac function.  相似文献   

5.
Diabetes mellitus refers to a spectrum of syndromes characterized by abnormally high levels of glucose in blood. These syndromes are associated with an absolute (Type 1 diabetes) or relative (Type 2 diabetes) deficiency of insulin, coupled with varying degrees of peripheral resistance to the actions of insulin. Clinical studies have shown that controlling hyperglycemia significantly reduces the appearance and progression of the vascular complications associated with diabetes. Insulin's regulation of glucose homeostasis is mediated by a cascade of signaling events that take place upon insulin binding to its cell surface receptor. Autophosphorylation of the receptor and activation of its intrinsic tyrosine kinase are critical processes for transmitting these intracellular signals. Type 1 diabetes patients depend on exogenous insulin to achieve these effects, whereas Type 2 diabetes patients can accomplish a similar response through oral medications that increase the production of endogenous insulin or enhance its actions on the target tissues. Current biochemical and clinical evidence suggests that defects within the insulin receptor itself may be a cause of insulin resistance leading to Type 2 diabetes. This review focuses on the insulin receptor as a target for therapeutic intervention, and describes the recent discovery of small molecules that act on the receptor and either enhance or directly emulate the actions of insulin both in vitro and in vivo.  相似文献   

6.
Leptin regulation of neuronal excitability and cognitive function   总被引:1,自引:0,他引:1  
Leptin, a hormone produced by adipocytes, provides signals to specific regions of the hypothalamus to control energy homeostasis. However, the past decade of research has not only revealed that leptin receptors are widely expressed in the CNS, but has also identified numerous additional functions for this hormone in the brain. In particular, there is evidence that leptin influences neuronal excitability via the activation as well as trafficking of specific potassium channels in several brain regions. Leptin-induced alterations in neuronal excitability have been implicated in the regulation of food intake, reward behaviour and anti-convulsant effects. A number of studies have also identified a role for leptin in cognitive processes that involve activation of leptin receptors in limbic structures, such as the hippocampus. Indeed, leptin influences hippocampal-dependent learning and memory, and more recently leptin has been shown to have anti-depressant properties. Characterisation of these novel actions of leptin is providing valuable insights into the role of this hormone in the regulation of diverse neuronal functions in health and disease.  相似文献   

7.
Sulfonyl group-containing compounds constitute an important class of therapeutical agents in medicinal chemistry presumably because of the tense chemical structure and functionality of the sulfonyl, which could not only form hydrogen bonding interactions with active site residues of biological targets but also, as incorporated into core ring structure, constrain the side chains and allowed their specific conformations that fit the active sites. This review focuses on sulfonamides and sulfones, which cover more than 40 series and are associated with at least 10 potential pharmaceutical targets in pathways of glucose metabolism and insulin signaling. A large number of such compounds have been reported as pharmaceuticals every year in the last decade. In particular, increasing studies suggest that sulfonamides and sulfones play a key role in the design of pharmaceutical agents with potential application for the treatment of diabetes and its complications. First, they are inhibitors of a variety of enzymes including 11β-hydroxysteroid dehydrogenase type 1, α- glucosidase, carnitine palmitoyltransferase and cytosolic phosphoenolpyruvate carboxykinase, and in turn involved in the regulation of the metabolism of glucose. In addition, they are active as activators of glucokinase and as antagonists of ghrelin receptors. These enzyme and receptors are tightly associated with the regulation of glucose metabolism and the improvement of insulin resistance. Secondly, sulfonamides and sulfones act in the insulin secretion. As agonists, they activate insulin receptor tyrosine kinase and thus increase insulin sensitivity. Moreover, they as inhibitors suppress protein tyrosine phosphatase 1B and dipeptidyl peptidase IV, and thus normalize the insulin signaling pathway. Finally, a number of sulfonamides and sulfones are inhibitors of aldose reductase, which have been linked to diabetic complications.  相似文献   

8.
γ-Aminobutyric acid (GABA) inhibits insulin secretion through GABA(B) receptors in pancreatic β-cells. We investigated whether GABA(B) receptors participated in the regulation of glucose homeostasis in vivo. BALB/c mice acutely pre-injected with the GABA(B) receptor agonist baclofen (7.5mg/kg, i.p.) presented glucose intolerance and diminished insulin secretion during a glucose tolerance test (GTT, 2g/kg body weight, i.p.). The GABA(B) receptor antagonist 2-hydroxysaclofen (15 mg/kg, i.p.) improved the GTT and reversed the baclofen effect. Also a slight increase in insulin secretion was observed with 2-hydroxysaclofen. In incubated islets 1.10(-5)M baclofen inhibited 20mM glucose-induced insulin secretion and this effect was reversed by coincubation with 1.10(-5)M 2-hydroxysaclofen. In chronically-treated animals (18 days) both the receptor agonist (5mg/kg/day i.p.) and the receptor antagonist (10mg/kg/day i.p.) induced impaired GTTs; the receptor antagonist, but not the agonist, also induced a decrease in insulin secretion. No alterations in insulin tolerance tests, body weight and food intake were observed with the treatments. In addition glucagon, insulin-like growth factor I, prolactin, corticosterone and growth hormone, other hormones involved in glucose metabolism regulation, were not affected by chronic baclofen or 2-hydroxysaclofen. In islets obtained from chronically injected animals with baclofen, 2-hydroxysaclofen or saline (as above), GABA(B2) mRNA expression was not altered. Results demonstrate that GABA(B) receptors are involved in the regulation of glucose homeostasis in vivo. Treatment with receptor agonists or antagonists, given acutely or chronically, altered glucose homeostasis and insulin secretion alerting to the need to evaluate glucose metabolism during the clinical use of these drugs.  相似文献   

9.
Energy balance is a highly regulated, complex process which is modulated by central and peripheral systems. Dysregulation of energy homeostasis can result in metabolic disorders, such as obesity and type II diabetes. Obesity and type II diabetes are two of the most prevalent and challenging clinical conditions in society today. A growing body of evidence has implicated the melanocortin system as an important component in the maintenance of energy balance. alpha-MSH, a 13 amino acid peptide secreted as a product of the pro-opiomelanocortin (POMC) gene in the pituitary is a potent agonist of 4 of the 5 cloned melanocortin receptors (MCR). MC receptors are members of a G-protein-coupled receptor (GPCR) family, which signal through cAMP. Agouti and agouti-related protein (AGRP) are natural antagonists of melanocortin receptors and participate in regulation of skin/fur pigmentation, body weight, and adiposity. Stimulation of MC receptors has pleiotropic effects, which impact the nervous system as well as endocrine and immune functions. One of the most prominent effects of MC receptor stimulation is a dramatic suppression of food intake and body weight, which has led to the hypothesis that the MC receptor system plays a primary role in the maintenance of energy balance. This idea is supported by a large body of pharmacological, molecular and human genetic evidence. The following review summarizes the role of melanocortin receptors in the regulation of food intake and energy homeostasis and highlights the opportunities for MC receptors as drug development targets in treating eating disorders and diabetes.  相似文献   

10.
Obesity is an increasing health problem not only in the industrialized western countries but, also in the developing countries like India. The adipose tissue specific obese (ob) gene and its peptide product leptin were discovered in 1994. Leptin binding to specific receptors in the hypothalamus results in altered expression of orexigenic and anorexigenic neuropeptides that regulate neuroendocrine functions and energy homeostasis. Recent patents and experimental evidence suggest that leptin plays an important role in the pathogenesis of obesity and eating disorders. Central leptin action also includes regulation of blood pressure, bone mass, and immune function. Peripherally also, leptin plays an important role in direct regulation of immune cells, pancreatic beta cells, adipocytes and muscle cells. Leptin receptors are present on human endothelial cells, and it has been shown to induce angiogenesis both in vitro and in vivo. Further, leptin appears to be a potential pressure and volume regulating factor and may function pathophysiologically as a common link to obesity and hypertension. Obesity is also a risk factor for several other cardiovascular diseases like myocardial hypertrophy, myocardial infarction, coronary atherosclerosis and increased cardiovascular morbidity and mortality. Recent progress in understanding central and peripheral leptin receptor signaling pathways may provide potential new targets to combat obesity, hypertension etc.  相似文献   

11.
G-protein-coupled receptors (GPCRs) are key regulators of several physiological functions. Their roles in cellular signal transduction have made them the target for majority of all currently prescribed drugs. Additionally, there are many orphan GPCRs that provide potential novel therapeutic targets. Several GPCRs are involved in metabolic regulation and glucose homeostasis such as GLP-1 receptor, glucagon receptor, adiponectin receptor and so on. Recently, free fatty acids (FFAs) have been demonstrated as ligands for orphan GPCRs and have been proposed to play a critical role in physiological glucose homeostasis. GPR40 and GPR120 are activated by medium and long-chain FFAs, whereas GPR41 and GPR43 can be activated by short-chain FFAs. GPR40, which is preferentially expressed in pancreatic β-cells, mediates the majority of the effects of FFAs on insulin secretion. In this review, these findings and also critical analysis of these GPCRs as novel targets for diabetes are discussed.  相似文献   

12.
G-protein-coupled receptors (GPCRs) are key regulators of several physiological functions. Their roles in cellular signal transduction have made them the target for majority of all currently prescribed drugs. Additionally, there are many orphan GPCRs that provide potential novel therapeutic targets. Several GPCRs are involved in metabolic regulation and glucose homeostasis such as GLP-1 receptor, glucagon receptor, adiponectin receptor and so on. Recently, free fatty acids (FFAs) have been demonstrated as ligands for orphan GPCRs and have been proposed to play a critical role in physiological glucose homeostasis. GPR40 and GPR120 are activated by medium and long-chain FFAs, whereas GPR41 and GPR43 can be activated by short-chain FFAs. GPR40, which is preferentially expressed in pancreatic beta-cells, mediates the majority of the effects of FFAs on insulin secretion. In this review, these findings and also critical analysis of these GPCRs as novel targets for diabetes are discussed.  相似文献   

13.
It has been well established that there is a connection between type II diabetes (DMTII) and Alzheimer''s disease (AD). In fact, the increase in AD incidence may be an emerging complication of DMTII. Both pathologies are related to estradiol (E2) exposure; on the one hand, estrogen receptors (ER) are emerging as important modulators of glucose homeostasis through ß-pancreatic cell function; on the other hand, brain bioenergetic and cognitive deficits have been related to the down regulation of brain ERs, contributing to women ageing and AD susceptibility, both related to the reduction in estradiol levels and the deficits in brain metabolism. Here we discuss that environmental contaminants with estrogenic capacity such as bisphenol A (BPA) could develop pharmacological effects similar to those of E2, which could affect ß-pancreatic cell function by increasing the biosynthesis of glucose-induced insulin after extranuclear ER binding. BPA-induced hyperinsulinemia would promote the translocation of glucose transporter 4 (GLUT4), which is located next to insulin-regulated aminopeptidase (IRAP) in intracellular vesicles. In insulin-responsive tissues, IRAP and GLUT 4 are routed together to the cell surface after insulin stimulation. IRAP is also the angiotensin IV (AngIV) receptor, and AngIV associates the brain renin-angiotensin system (bRAS) with AD, since AngIV is related to learning, memory, emotional responses, and processing of sensory information not only through its inhibitory effect on IRAP but also through the stimulation of glucose uptake by increasing the presence of IRAP/GLUT4 at the cell surface. Thus, the IRAP/GLUT4 pathway is an emerging target for pharmacological intervention against AD.  相似文献   

14.
Recent evidence suggests that metabotropic glutamate (mGlu) receptors are involved in the regulation of hormone secretion in the endocrine pancreas. We report here that endogenous activation of mGlu5 receptors is required for an optimal insulin response to glucose both in clonal beta-cells and in mice. In clonal beta-cells, mGlu5 receptors were expressed at the cell surface and were also found in purified insulin-containing granules. These cells did not respond to a battery of mGlu5 receptor agonists that act extracellularly, but instead responded to a cell-permeant analog of glutamate with an increase in [Ca2+]i and insulin secretion. Both effects were largely attenuated by the mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP). MPEP and its structural analog, (E)-2-methyl-6-styryl-pyridine (SIB-1893), reduced the increase in [Ca2+]i and insulin secretion induced by glucose in clonal beta-cells, whereas a mGlu1 receptor antagonist was inactive. mGlu5 knockout mice showed a defective insulin response at all times after a glucose pulse (1.5 g/kg, i.p.), whereas wild-type mice treated with MPEP (10 mg/kg, i.p.) showed a selective impairment in the late phase of insulin secretion in response to glucose challenge. Mice injected with MPEP or lacking mGlu5 receptors also showed a blunted glucagon response to an insulin challenge. We conclude that insulin secretion is under the control of mGlu5 receptors both in clonal beta-cells and in vivo. Drugs that modulate the function of mGlu5 receptors might affect glucose homeostasis by altering the secretion of pancreatic hormones.  相似文献   

15.
The link between signaling and metabolism was first recognized with insulin signal transduction. Efficient glucose uptake by the endothelium requires insulin receptor activation to deliver GLUT receptors to the cell surface. More recently however, additional evidence has emerged for a broader crosstalk as signaling events have been shown to regulate a large number of metabolic enzymes. Changes in the metabolic status of endothelial and smooth muscle cells are observed at times of increased proliferative activity and these coincide with activation of cell surface receptors. Intriguingly, a rise in glycolysis appears to be associated with remodeling of the actin cytoskeleton during migration and angiogenesis. Overall, understanding how do signaling and metabolic pathways intersect and cross-regulate each other has become an important question and an emerging cornerstone in vascular biology.  相似文献   

16.
The liver plays a key role in glucose homeostasis, lipid and energy metabolism. Its function is primarily controlled by the anabolic hormone insulin and its counterparts glucagon, catecholamines and glucocorticoids. Dysregulation of this homeostatic system is a major cause for development of the metabolic syndrome and type 2 diabetes mellitus. The features of the underlying dynamic molecular network that coordinates systemic nutrient homeostasis are less clear. But recently, considerable progress has been made in elucidating molecular pathways and potential factors involved in the regulation of energy and lipid metabolism and affected in diabetic states. In this review we will focus on important stations in the complex network of molecules that control the balance between glucose production, glucose utilization and regulation of lipid metabolism. Special attention will be paid to the insulin receptor substrate (IRS) proteins with the two major isoforms IRS-1 and IRS-2 as a critical node in hepatic insulin signalling. IRS proteins act as docking molecules to connect tyrosine kinase receptor activation to essential downstream kinase cascades, including activation of the PI-3 kinase or MAPK cascade. IRS-1 and IRS-2 are complementary key players in the regulation of hepatic insulin signalling and expression of genes involved in gluconeogenesis, glycogen synthesis and lipid metabolism. The function of IRS proteins is regulated by their expression levels and posttranslational modifications. This regulation within the dynamic molecular network that coordinates systemic nutrient homeostasis will be outlined in detail under the following conditions: after feeding, during fasting and during exercise. Dysfunction of IRS proteins initially leads to post-prandial hyperglycemia, increased hepatic glucose production, and dysregulated lipid synthesis and is discussed as major pathophysiological mechanism for the development of insulin resistance and type 2 diabetes mellitus. Understanding the molecular regulation and the pathophysiological modifications of IRS proteins is crucial in order to identify new sites for potential intervention to treat or prevent hepatic insulin resistance and type 2 diabetes mellitus.  相似文献   

17.
Lipids are essential components of biological membranes, fuel molecules and metabolic regulators that control cellular functions, metabolism and homeostasis. The liver plays a central role in regulating lipid metabolism and whole body lipid homeostasis. Sterols, bile acids and fatty acids are the endogenous ligands of the liver orphan receptor, farnesoid X receptor, peroxisome proliferator-activated receptor, vitamin D receptor, constitutive androstane receptor and pregnane X receptor. These metabolic receptors coordinately regulate lipid, glucose, energy and drug metabolism. Alteration of lipid homeostasis causes dyslipidemia, which is a major risk factor contributing to atherosclerotic cardiovascular diseases, diabetes, obesity and liver diseases. Advances in the understanding of the mechanisms of nuclear receptor regulation of lipid homeostasis have provided an opportunity to investigate potential therapeutic drugs targeted to nuclear receptors. This could be useful for the treatment of diabetes, and cardiovascular and chronic liver diseases.  相似文献   

18.
Insulin is the main anabolic and anticatabolic hormone in mammals. The stimulatory effect of insulin on glucose uptake in muscle and adipose tissue is a consequence of the rapid translocation of GLUT4 glucose transporters from an intracellular site to the cell surface. The actions of insulin are initiated by hormone binding to its cell surface receptors. Insulin receptors are ligand-stimulated protein tyrosine kinases and phosphorylate a number of proteins, known as insulin receptor substrate proteins. Insulin resistance has been recognized as a main pathogenic factor in the development of type 2 diabetes, and has been associated with dyslipidemia, hypertension, endothelial dysfunction, inflammation and coagulative state. The current challenge is the study of impaired insulin signaling pathways leading to beta-cell dysfunction and its progression to type 2 diabetes, as well as control of chronic inflammation processes that may improve insulin action.  相似文献   

19.
Neuroprotection with Angiotensin Receptor Antagonists   总被引:2,自引:0,他引:2  
The peptide hormone angiotensin (A)-II, the major effector peptide of the renin-angiotensin system (RAS), is well established to play a pivotal role in the systemic regulation of blood pressure, fluid, and electrolyte homeostasis. Recent biochemical and neurophysiologic studies have documented local intrinsic angiotensin-generating systems in organs and tissues such as the brain, retina, bone marrow, liver, and pancreas. The locally generated angiotensin peptides have multiple and novel actions including stimulating cell growth and anti-proliferative and/or antiapoptotic actions. In the mammalian brain, all components of the RAS are present including angiotensin receptor subtypes 1 (AT(1)) and 2 (AT(2)). A-II exerts most of its well defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its AT(1) receptor subtype. While the AT(1) receptor is responsible for the classical effects of A-II, it has been found that the AT(2) receptor is linked to totally different signalling mechanisms and this has revealed hitherto unknown functions of A-II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are upregulated in a variety of human diseases. This receptor not only contributes to stroke-related pathologic mechanisms (e.g. hypertension, atherothrombosis, and cardiac hypertrophy) but may also be involved in post-ischemic damage to the brain. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation, and neuronal tissue regeneration, and also modulates programmed cell death. In this article, we review the experimental evidence supporting the notion that blockade of brain AT(1) receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT(2) receptors could be involved in neuronal regeneration following brain injury such as stroke or CNS trauma. The current review is focussed on some of the new functions arising from the locally formed A-II with particular attention to its emerging neuroprotective role in the brain.  相似文献   

20.
G‐protein‐coupled receptors (GPCRs) respond to various physiological ligands such as photons, ions, and small molecules that include amines, fatty acids, and amino acids to peptides, proteins and steroids. Therefore, this family of proteins represents an attractive target for biopharmaceutical research [1]. The physiological role of fatty acids and other lipid molecules as important signal mediators is well studied in various metabolic pathways [2]. Acute administration of free fatty acids (FFAs) stimulates insulin release. Conversely, chronic exposure to high levels of free fatty acids leads to impairment of β cell function and lipotoxicity. However, the receptors through which these fatty acids and lipids act were unknown, until the identification of fatty acid binding receptors: GPR40, GPR41, GPR43, and GPR119. Based on their tissue‐expression profile, and pharmacologic analysis, the fatty acid binding receptors along with lipid binding receptor GPR119 are linked to diabetes and obesity. They play a critical role in the metabolic regulation of insulin release and glucose homeostasis. In this review, the mechanism of receptor activation, pharmacology, and the physiological functions of the fatty acid binding receptors will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号