首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Axonal transport of BDNF precursor in primary sensory neurons   总被引:2,自引:0,他引:2  
Recent studies have shown that the precursor of brain-derived neurotrophic factor (pro-BDNF) activates p75NTR with high affinity to induce apoptosis. Here we show that pro-BDNF is transported anterogradely and retrogradely in sensory neurons of adult rats. After a crush injury of sciatic nerves, dorsal roots or dorsal column in adult Sprague-Dawley rats, the immunoreactivity for pro-BDNF accumulated at both the proximal and distal segments. The accumulation reached a maximum at 24 h after injury. Western blot analysis also revealed pro-BDNF in sciatic nerve segments proximal and distal to the ligature and in the spinal cord. Biotinylated or Alexa-488-labelled pro-BDNF injected into sciatic nerve was internalized and transported both retrogradely and anterogradely within sensory neurons. These results demonstrate that pro-BDNF is anterogradely and retrogradely transported in sensory neurons, suggesting that endogenous pro-BDNF may be released and play important functions.  相似文献   

2.
Neuropoietic cytokines are known to play crucial roles in neuronal development. Among them, leukemia inhibitory factor (LIF) has been implicated in various processes of neuronal development, such as neuronal differentiation, survival and neurogenesis. Moreover, LIF is highly expressed in regions of the central nervous system where adult neurogenesis occurs. LIF was tested for its efficacy in promoting postnatal neurogenesis using LIF-null mice and dissociated cultures of early postnatal rat olfactory sensory neurons. Our results indicate that LIF promoted proliferation of olfactory sensory neuron precursors both in vivo and in vitro. In addition, LIF did not affect proliferation of non-neuronal cells. LIF may therefore be useful when developing stem cell therapy to replace damaged olfactory sensory neurons as well as a therapeutic agent to treat some anosmic symptoms.  相似文献   

3.
Glial cell line-derived neurotrophic factor (GDNF) is the most potent motoneuron survival factor. We show here that in the chick oculomotor system, endogenous GDNF is derived largely from extraocular muscle but less from glial cells and not from muscle spindles. Increased levels of GDNF exclusively in the target rescued 30% of oculomotor neurons that would normally die during developmental cell death, a rate of rescue similar to that with systemic GDNF application. Thus, GDNF supports motoneuron survival in a retrograde, target-derived fashion, as opposed to a local paracrine route or an indirect route via sensory afferents. Persephin, another member of the GDNF family, did not increase survival with target delivery, despite its retrograde transport from the target. Unlike GDNF, however, persephin increased neurite outgrowth from oculomotor nuclei in vitro. Thus, one GDNF family member acts as a muscle-derived retrograde survival factor, whereas another one has distinct functions on neurite outgrowth.  相似文献   

4.
Nilsson A  Kanje M 《Neuroreport》2005,16(3):213-218
We studied the effect of amphiregulin on axonal outgrowth and survival in sensory neurons in organ cultured and dissociated mouse dorsal root ganglia (DRG). Amphiregulin at 20 ng/ml stimulated axonal outgrowth in both preparations. The EGF receptor inhibitor AG1478 inhibited outgrowth at 10 microM but not at 1 microM, where it abolished the stimulatory effects of amphiregulin. Fluoro-Jade staining and neuronal counting showed that more neurons survived in culture in the presence of amphiregulin while AG1478 at 10 microM but not 1 microM increased cell death. Small and medium sized neurons were immunopositive for both amphiregulin and the EGF receptor. Taken together these results suggest that amphiregulin can act as an autocrine survival factor for sensory neurons and stimulate axonal outgrowth through the EGF receptor.  相似文献   

5.
This study investigated the effects of exogenous nerve growth factor (NGF) on the survival and differentiation in primary culture of sensory neurons isolated from adult (6 months) and aged (2 years) mice. For neurons prepared from adult mice, a concentration effect was evident during a 2 week culture period: Neuronal counts in cultures supplemented with 25 and 50 ng/ml NGF did not differ significantly from those of control cultures without exogenous NGF or those with anti-NGF included in the culture medium, whereas cultures supplemented with either 100 or 200 ng/ml NGF contained higher numbers of neurons throughout the culture period. Cultures prepared from aged mice contained less neurons than those from adult mice, although those supplemented with 100 ng/ml NGF retained higher neuronal numbers than cultures from aged mice which did not receive exogenous NGF. Neuronal diameters were measured to investigate whether specific subpopulations of neurons were more dependent on NGF; the results indicate that neurons of a medium-larger diameter were more prevalent than cells with a smaller diameter following NGF administration. A shape index was calculated for each culture regimen; with longer culture periods a higher proportion of spindle-shaped neurons was observed. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Neurons in the peripheral nervous system depend on single neurotrophic factors, whereas those in the brain are thought to utilize many different trophic factors. This study examined whether some neurons in the brain critically depend on a single trophic factor during development. Neurons in the isthmo-optic nucleus (ION) of chick embryos respond to exogenous brain-derived neurotrophic factor (BDNF). Relatively high concentrations of endogenous BDNF were present in the ION of 14-18-day-old chick embryos. ION target cells in the retina were immunolabeled for BDNF but showed surprisingly low levels of BDNF mRNA. These data suggest that ION target cells derive some BDNF from other retinal sources. No BDNF mRNA was detected in the ION itself. ION neurons had a very efficient retrograde transport system for BDNF and exogenous BDNF arrived in the ION intact. When the ION was deprived of endogenous trkB ligands by injection of trkB fusion proteins in the eye, cell death of ION neurons was enhanced, and this effect was mimicked by BDNF-specific blocking antibodies in the eye. TrkB fusion proteins in the retina induced cell death of ION neurons prior to visible effects on ION target cells in the retina. Immunolabel for endogenous BDNF was sparse in pyknotic ION neurons, suggesting that ION neurons with low BDNF content were eliminated by apoptosis. These data show that BDNF is an essential target-derived trophic factor for developing ION neurons and thereby validate the neurotrophic hypothesis for at least one neuronal population in the brain.  相似文献   

7.
8.
9.
Glial cell line-derived neurotrophic factor (GDNF) has been known for many years to protect and restore dopamine neurons of the substantia nigra (SN) in lesion models of parkinsonism, but much less has been known of its normal physiologic role. We have found that GDNF injected into the striatum postnatally suppresses naturally-occurring cell death in SN dopamine neurons, and neutralizing antibodies augments it. Neutralizing antibodies augment cell death during the first phase, which occurs during the first postnatal week, but not during the second phase in the second week. To further explore the possible neurotrophic role of GDNF, we created double transgenic mice which overexpress GDNF exclusively in the target regions of mesencephalic neurons, particularly the striatum. As anticipated for a limiting, target-derived factor, this resulted in an increased surviving number of SN dopamine neurons after the first phase of cell death. However, this increase did not persist into adulthood. We conclude that GDNF is the leading candidate for a target-derived neurotrophic factor for SN dopamine neurons during the first phase of cell death, but that other factors must play an essential role in later development.  相似文献   

10.
G Grant  J Arvidsson 《Brain research》1975,95(2-3):265-279
In 16 kittens either the frontal or the inferior alveolar nerve was transected and in 17 adult rats either the supraorbital, the infraorbital or the mental nerve was divided. The postoperative survival periods were kept at 3-28 days for the kittens and 15-26 days for the rats. Sections from the caudal brain stem and the upper part of the cervical cord were impregnated according to the Fink-Heimer method, procedure II. In the kittens degeneration was found after the 8th postoperative day ipsilaterally in both the spinal and main sensory trigeminal nuclei and the spinal trigeminal tract. In the rats degeneration was found in all cases in the same ipsilateral structures as in the kittens. The amount of degeneration was relatively great in the rats, whereas it was very modest in the kittens. A somatotopical pattern was found for the degeneration both within the spinal and the main sensory nuclei. It was in agreement with what has been found in earlier studies, where other techniques have been used. By a comparison with the results of a previous study on the trigeminal nerve in the rat, where partial lesions of the ganglia had been made, it was found that the degeneration in the present study did not cover the whole area receiving primary trigeminal afferents. Possible explanations for this are discussed.  相似文献   

11.
Cell adhesion molecules play a central role in neural development and are also critically involved in axonal regeneration and synaptic plasticity in the adult nervous system. We investigated whether the neural cell adhesion molecule L1 was capable of stimulating survival and differentiation in the mid-brain dopaminergic neurons which degenerate in Parkinson's disease. Monoclonal L1 antibodies, known to enhance neurite outgrowth, were substrate-coated or added at the time of plating to medium of cultures containing mid-brain dopaminergic neurons from 14-day-old fetal rats. Tritiated dopamine uptake per well and the number of tyrosine hydroxylase-immunopositive neurons increased in a dose-dependent manner with increasing concentrations of L1 antibody, suggesting that L1 acts directly or indirectly as a growth factor for dopaminergic neurons. A monoclonal L1 antibody not enhancing neurite outgrowth was ineffective. The growth-promoting effects of L1 antibodies on dopaminergic neurons in culture did not appear to be mediated by the cAMP-activated protein kinase A pathway, since combined treatment with a phosphodiesterase inhibitor had only additive effects on the L1-induced increase of dopamine uptake, and in addition, antibodies against L1 failed to protect cultures of dopaminergic neurons against the neurotoxin MPP+, whereas pretreatment with forskolin and phosphodiesterase type-IV inhibitors was strongly protective. J. Neurosci. Res. 53:129–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
BDNF gene is a risk factor for schizophrenia in a Scottish population   总被引:2,自引:0,他引:2  
Schizophrenia is a severe psychiatric disease with a strong genetic component. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of schizophrenia and bipolar (BP) disorders. The present study has examined two polymorphisms in linkage disequilibrium in the BDNF gene, which have been variously reported as associated with schizophrenia and BP. In our study, 321 probands with a primary diagnosis of schizophrenia or schizoaffective disorder, and 263 with a diagnosis of bipolar affective disorder, were examined together with 350 controls drawn from the same geographical region of Scotland. The val66met single-nucleotide polymorphism (SNP) showed significant (P = 0.005) association for valine (allele G) with schizophrenia but not bipolar disorder. Haplotype analysis of val/met SNP and a dinucleotide repeat polymorphism in the putative promoter region revealed highly significant (P < 1 x 10(-8)) under-representation of the methionine or met-1 haplotype in the schizophrenic but not the BP population. We conclude that, although the val66met polymorphism has been reported to alter gene function, the risk may depend upon the haplotypic background on which the val/met variant is carried.  相似文献   

14.
Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture enzyme-linked immunosorbent assay (ELISA), in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways.  相似文献   

15.
Largely on the basis of studies with nerve growth factor (NGF), it is now widely accepted that development of the peripheral nervous system of vertebrates is dependent in part on the interaction of immature sensory and autonomic neurons with specific survival factors that are derived from peripheral target fields. I have found, in marked contrast to an absolute requirement for NGF during development, that adult rat dorsal root ganglion sensory neurons are not dependent on NGF or other survival factors for long-term (3-4 weeks) maintenance in vitro. When dissociated and enriched, at least 70-80% of adult DRG neurons survived and extended long processes either in the absence of exogenously added NGF or upon the removal of any possible source of endogenous NGF or other neurotrophic activity (i.e., nonneuronal cells, in chemically defined culture medium, in the presence of an excess of anti-NGF antibodies, or when cultured as single neurons in microwells). Although not required for survival or expression of a range of complex morphologies, both NGF and brain-derived neurotrophic factor (BDNF) were found to stimulate the regeneration of axons from adult DRG neurons.  相似文献   

16.
Transforming growth factor alpha (TGF alpha) is a mitogenic polypeptide that is structurally homologous to epidermal growth factor (EGF) and appears to bind to the same receptor in all systems tested previously. In the present study, TGF alpha was found to enhance survival and neurite outgrowth of cultured neonatal rat dorsal root ganglion (DRG) neurons in a dose-dependent manner. This effect was observed with TGF alpha concentrations as low as 17.8 pM. By contrast, EGF at concentrations up to 83 nM was ineffective. Moreover, EGF did not antagonize the TGF alpha survival-promoting effect unless present in large excess (500-fold the concentration for which TGF alpha is effective); even in this case, only partial antagonism was achieved. Survival of neurons from nodose, trigeminal, and sympathetic ganglia was not increased by TGF alpha. Both a subpopulation of DRG neurons and of macrophages in the cultures bound iodinated TGF alpha. This binding was inhibited by excess unlabeled TGF alpha but not EGF. Our data are consistent with the possibilities that the actions of TGF alpha on DRG neurons occur indirectly via unidentified neurotrophic molecules other than NGF as well as directly on the neurons themselves. Thus, TGF alpha, in contrast to EGF, may act as a survival or maintenance factor for a subset of rat sensory neurons. Mediation of this neurotrophic effect appears to occur via a new form of TGF alpha receptor.  相似文献   

17.
To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, [125I]NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of [125I]NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. [125I]NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little [125I]NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of [125I] cytochrome C or [125I]oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of [125I]NGF by intraspinal axons arising from dorsal root ganglia. Following injection of [125I]NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号