首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Shiga-toxin-converting bacteriophages.   总被引:13,自引:0,他引:13  
Shiga toxins (Stx) comprise a family of potent cytotoxins that are involved in severe human disease. Stx are mainly produced by Escherichia coli isolated from human and nonhuman sources, and by Shigella dysenteriae type 1. The genes encoding Stx are thought to be generally encoded in the genome of lambdoid prophages (Stx-converting bacteriophages; Stx phages). They share a unique position in the late region of the phage genome downstream of the late promoter PR'. This location suggests that expression of stx is controlled by a Q-like antiterminator. Therefore, induction of Stx-converting prophages appears to trigger increased production of Stx. Following induction, Stx phages can be transduced in vivo and in vitro into other bacteria. Stx phages play an important role in the expression of Stx and in lateral gene transfer and are therefore a contribution to the emergence of new Stx-producing E. coli (STEC) variants.  相似文献   

2.
The Shiga toxins (Stx) are critical virulence factors for Escherichia coli O157:H7 and other serotypes of enterohemorrhagic E. coli (EHEC). These potent toxins are encoded in the genomes of temperate lambdoid bacteriophages. We recently demonstrated that induction of the resident Stx2-encoding prophage in an O157:H7 clinical isolate is required for toxin production by this strain. Since several factors produced by human cells, including hydrogen peroxide (H2O2), are capable of inducing lambdoid prophages, we hypothesized that such molecules might also induce toxin production by EHEC. Here, we studied whether H2O2 and also human neutrophils, an important endogenous source of H2O2, induced Stx2 expression by an EHEC clinical isolate. Both H2O2 and neutrophils were found to augment Stx2 production, raising the possibility that these agents may lead to prophage induction in vivo and thereby contribute to EHEC pathogenesis.  相似文献   

3.
It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the hemolytic uremic syndrome (HUS). Although it is recognized that Stx damage the glomerular endothelium, clinical and experimental evidence suggests that the inflammatory response is able to potentiate Stx toxicity. Lipopolysaccharides (LPS) and neutrophils (PMN) represent two central components of inflammation during a gram-negative infection. In this regard, patients with high peripheral PMN counts at presentation have a poor prognosis. Since the murine model has been used to study LPS-Stx interactions, we analyzed the effects of Stx alone or in combination with LPS on the kinetics of neutrophil production and activation and their participation in renal damage. We observed a sustained neutrophilia after Stx2 injection. Moreover, these neutrophils showed increased expression of CD11b, enhanced cytotoxic capacity, and greater adhesive properties. Regarding the cooperative effects of LPS on Stx2 action, we demonstrated potentiation of neutrophilia and CD11b induction at early times by pretreatment with LPS. Finally, a positive correlation between neutrophil percentage and renal damage (assayed as plasmatic urea) firmly suggests a role for PMN in the pathogenesis of HUS.  相似文献   

4.
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic strains responsible for bloody diarrhea and hemorrhagic colitis, with often severe complications. Shiga toxins are the main factors causing the phathogenicity of STEC. Production of these toxins depends on the presence of stx1 and stx2 genes, which are located on lambdoid prophages, and their expression is stimulated upon prophage induction. Therefore, a transition of the phage genome from the prophage state to an extrachromosomal genetic element, and its further propagation, is crucial for the pathogenic effects. However, our knowledge on specific conditions for induction of these prophages in bacteria occurring in human intestine is very limited. In this report we present results of our studies on five different phages, originally occurring in STEC strains, in comparison to bacteriophage lambda. We found that efficiencies of induction of prophages and their further development vary considerably in response to different induction agents. Moreover, efficiency of progeny phage production might be modulated by other factors, like temperature or bacterial growth rate. Therefore, it is likely that pathogenicity of different STEC strains may be significantly different under specific conditions in their natural habitats.  相似文献   

5.
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.  相似文献   

6.
7.
《Microbial pathogenesis》2010,48(6):289-298
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic strains responsible for bloody diarrhea and hemorrhagic colitis, with often severe complications. Shiga toxins are the main factors causing the phathogenicity of STEC. Production of these toxins depends on the presence of stx1 and stx2 genes, which are located on lambdoid prophages, and their expression is stimulated upon prophage induction. Therefore, a transition of the phage genome from the prophage state to an extrachromosomal genetic element, and its further propagation, is crucial for the pathogenic effects. However, our knowledge on specific conditions for induction of these prophages in bacteria occurring in human intestine is very limited. In this report we present results of our studies on five different phages, originally occurring in STEC strains, in comparison to bacteriophage lambda. We found that efficiencies of induction of prophages and their further development vary considerably in response to different induction agents. Moreover, efficiency of progeny phage production might be modulated by other factors, like temperature or bacterial growth rate. Therefore, it is likely that pathogenicity of different STEC strains may be significantly different under specific conditions in their natural habitats.  相似文献   

8.
A Shiga toxin (Stx)-encoding temperate bacteriophage of Shigella sonnei strain CB7888 was investigated for its morphology, DNA similarity, host range, and lysogenization in Shigella and Escherichia coli strains. Phage 7888 formed plaques on a broad spectrum of Shigella strains belonging to different species and serotypes, including Stx-producing Shigella dysenteriae type 1. With E. coli, only strains with rough lipopolysaccharide were sensitive to this phage. The phage integrated into the genome of nontoxigenic S. sonnei and laboratory E. coli K-12 strains, which became Stx positive upon lysogenization. Moreover, phage 7888 is capable of transducing chromosomal genes in E. coli K-12. The relationships of phage 7888 with the E. coli Stx1-producing phage H-19B and the E. coli Stx2-producing phage 933W were investigated by DNA cross-hybridization of phage genomes and by nucleotide sequencing of an 8,053-bp DNA region of the phage 7888 genome flanking the stx genes. By these methods, a high similarity was found between phages 7888 and 933W. Much less similarity was found between phages H-19B and 7888. As in the other Stx phages, a regulatory region involved in Q-dependent expression is found upstream of stxA and stxB (stx gene) in phage 7888. The morphology of phage 7888 was similar to that of phage 933W, which shows a hexagonal head and a short tail. Our findings demonstrate that stx genes are naturally transferable and are expressed in strains of S. sonnei, which points to the continuous evolution of human-pathogenic Shigella by horizontal gene transfer.  相似文献   

9.
When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.  相似文献   

10.
Regardless of the communal impact of Shiga toxins, till today neither a specific treatment nor licensed vaccine is available. Lactococcus lactis (L. lactis), generally regarded as safe organism, is well known to provide a valuable approach regarding the oral delivery of vaccines. This study was undertaken to evaluate the protective efficacy of Stx2a1 expressed in nisin‐inducible L. lactis, against Shiga toxins (Stx1, Stx2) in mouse model. Oral immunization of BALB/c mice with LLStx2a1 elicited significant serum antibody titer with elevated fecal and serum IgA, along with minimized intestinal and kidney damage resulting in survival of immunized animals at 84% and 100% when challenged with 10 × LD50 of Escherichia coli O157 and Shigella dysenteriae toxins, respectively. HeLa cells incubated with immune sera and toxin mixture revealed high neutralizing capacity with 90% cell survivability against both the toxins. Mice immunized passively with both toxins and antibody mixture survived the observation period of 15 days, and the controls administered with sham sera and toxins were succumbed to death within 3 days. Our results revealed protective efficacy and toxin neutralization ability of LL‐Stx2a1, proposing it as an oral vaccine candidate against Shiga toxicity mediated by E. coli O157 and S. dysenteriae.  相似文献   

11.
Shiga toxin (Stx) is the key virulence factor in Shiga toxin producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with life-threatening complications. Stx comprises two toxin types, Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, which are variable in sequences, toxicity and host specificity. Here, we report the identification of a novel Stx2 subtype, designated Stx2k, in E. coli strains widely detected from diarrheal patients, animals, and raw meats in China over time. Stx2k exhibits varied cytotoxicity in vitro among individual strains. The Stx2k converting prophages displayed considerable heterogeneity in terms of insertion site, genetic content and structure. Whole genome analysis revealed that the stx2k-containing strains were genetically heterogeneous with diverse serotypes, sequence types, and virulence gene profiles. The nine stx2k-containing strains formed two major phylogenetic clusters closely with strains belonging to STEC, enterotoxigenic E. coli (ETEC), and STEC/ETEC hybrid. One stx2k-containing strain harbored one plasmid-encoded heat-stable enterotoxin sta gene and two identical copies of chromosome-encoded stb gene, exhibiting STEC/ETEC hybrid pathotype. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of STEC strains. Given the wide distribution of the Stx2k-producing strains in diverse sources and their pathogenic potential, Stx2k should be taken into account in epidemiological surveillance of STEC infections and clinical diagnosis.  相似文献   

12.
Interactions of Shiga toxins (Stxs) and immune cells contribute to the pathogenesis of diseases due to Stx-producing Escherichia coli (STEC) infections in humans and facilitate the persistence of infection in asymptomatically infected cattle. Our recent findings that bovine B and T lymphocytes express Gb(3)/CD77, the human Stx-receptor, prompted us to determine whether the bovine homologue also mediates binding and internalization of Stx1. In fact, Stx1 holotoxin and recombinant B subunit (rStxB1) bound to stimulated bovine peripheral blood mononuclear cells, especially to those subpopulations (B cells, BoCD8(+) T cells) that are highly sensitive to Stx1. Competition and HPTLC-binding studies confirmed that Stx1 binds to bovine Gb(3), but different receptor isoforms with varying affinities for rStxB1 were expressed during the course of lymphocyte activation. At least one of these isoforms mediated toxin uptake. An anti-StxB1 mouse monoclonal antibody, used as a model for bovine serum antibodies specific for Stx1, modulated rather than generally prevented rStxB1 binding to and internalization by the receptors. The presence of functional Stx1-receptors on bovine lymphocytes explains the immunomodulatory effect of Stx1 observed in cattle at a molecular level. Furthermore, expression of such receptors by bovine but not human T cells enlightens the background for the differential outcome of STEC infections in cattle and man, i.e., persistent infection and development of disease, respectively.  相似文献   

13.
We already showed that injection of Shiga toxin (Stx) 2 into mice caused severe granulocytosis in the peripheral blood. In this study we further clarified changes of granulocyte function by Stx 2. The activity of medullasin, a neutral serine protease in granulocytes that injures endothelial cells in vessels, significantly increased when Stx 2 was injected into mice intraperitoneally. Since granulocyte count in the peripheral blood of mice was markedly increased after intraperitoneal injection of Stx 2, medullasin activity in the peripheral blood was remarkably elevated. In contrast to Stx 2, injection of Stx 1 into mice caused no elevation of medullasin activity in granulocytes nor increase in granulocyte count in the peripheral blood. Cathepsin G levels in granulocytes increased only slightly after Stx 2 injection. Granulocytes obtained from mice injected with Stx 2 showed reduced superoxide-producing activity compared with those from controls. Addition of Stx 2 or Stx 1 to human mature granulocytes in vitro decreased their superoxide-producing activity when stimulated with agonists. Therefore, these toxins produced from Escherichia coli augment toxic effect of the bacteria by reducing bactericidal activity of granulocytes. Tissue injury in organisms infected with Shiga toxin-producing E. coli is mainly derived from elevated neutral proteases, such as medullasin, in granulocytes rather than direct toxic effect of superoxide from granulocytes. Hemolytic uremic syndrome caused by Shiga toxin-producing E. coli infection is due, at least in part, to the elevation of medullasin levels produced by granulocytes.  相似文献   

14.
We determined the complete genome sequence of Shigella flexneri serotype 2a strain 2457T (4,599,354 bp). Shigella species cause >1 million deaths per year from dysentery and diarrhea and have a lifestyle that is markedly different from those of closely related bacteria, including Escherichia coli. The genome exhibits the backbone and island mosaic structure of E. coli pathogens, albeit with much less horizontally transferred DNA and lacking 357 genes present in E. coli. The strain is distinctive in its large complement of insertion sequences, with several genomic rearrangements mediated by insertion sequences, 12 cryptic prophages, 372 pseudogenes, and 195 S. flexneri-specific genes. The 2457T genome was also compared with that of a recently sequenced S. flexneri 2a strain, 301. Our data are consistent with Shigella being phylogenetically indistinguishable from E. coli. The S. flexneri-specific regions contain many genes that could encode proteins with roles in virulence. Analysis of these will reveal the genetic basis for aspects of this pathogenic organism's distinctive lifestyle that have yet to be explained.  相似文献   

15.
Bacillus anthracis possesses three primary virulence factors: capsule, lethal toxin (LT), and edema toxin (ET). Dendritic cells (DCs) are critical to innate and acquired immunity and represent potential targets for these factors. We examined the ability of B. anthracis spores and bacilli to stimulate human monocyte-derived DC (MDDC), primary myeloid DC (mDC), and plasmacytoid DC (pDC) cytokine secretion. Exposure of MDDCs and mDCs to spores or vegetative bacilli of the genetically complete strain UT500 induced significantly increased cytokine secretion. Spores lacking genes required for capsule biosynthesis stimulated significantly higher cytokine secretion than UT500 spores from mDCs, but not MDDCs. In contrast, bacilli lacking capsule stimulated significantly higher cytokine secretion than UT500 bacilli in both MDDCs and mDCs. Spores or bacilli lacking both LT and ET stimulated significantly higher cytokine secretion than UT500 spores or bacilli, respectively, in both mDCs and MDDCs. pDCs exposed to spores or bacilli did not produce significant amounts of cytokines even when virulence factors were absent. In conclusion, B. anthracis employs toxins as well as capsule to inhibit human MDDC and mDC cytokine secretion, whereas human pDCs respond poorly even when capsule or both toxins are absent.  相似文献   

16.
Shiga toxin-producing Escherichia coli (STEC) are a diverse group of strains that are implicated in over 270,000 cases of human illness annually in the United States alone. Shiga toxin (Stx), encoded by a resident temperate lambdoid bacteriophage, is the main STEC virulence factor. Although the population structure of E. coli O157:H7, the most common disease-causing STEC strain, is highly homogenous, the range of clinical illness caused by this strain varies by dramatically outbreak, suggesting that human virulence is evolving. However, the factors governing this variation in disease severity are poorly understood. STEC evolved from an O55:H7-like progenitor into a human pathogen. In addition to causing human disease, Stx released from STEC kill bacterivorous protist predators and enhance bacterial survival in the face of protist predation. Cattle are the primary reservoir for STEC and protists and bacteria occur together within the ruminant intestinal tract. Cattle associated STEC are not highly pathogenic to humans. These observations suggest that disease causing STEC strains evolved from cattle-associated “antipredator” STEC strains. To test this idea and to gain insight into the features that govern the evolution of STEC from a commensal strain of ruminants strain to virulent human pathogen, we compared the predation resistance of STEC strains isolated from asymptomatic infected cows and human patients. We find that STEC O157:H7 progenitor lineages and clades are more effective than human associated ones at killing the types of protist predators. In addition, our results indicate that the presence of Stx2c-containing bacteriophage is associated with more efficient amoeba killing. Also, these phage apparently also encode Q21-like version of the Q antitermination protein, the protein that controls expression of Stx.  相似文献   

17.
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.  相似文献   

18.
Analytical methodology to detect ricin and Shiga toxins (Stx) in food matrices is important for food safety and biosecurity. Monoclonal antibodies (mAbs) that bind each toxin were used for capture in sandwich enzyme-linked immunosorbent assay, and IgY polyclonal antibodies were prepared as detection antibodies. The ricin assay systems, using colorimetric or chemiluminescent substrates, detected native, but not heat-denatured ricin. The lower limit of detection (LOD) was 0.13?ng?mL?1 in milk and 0.8?ng?g?1 in ground beef. The Stx2 assay systems detected native Stx2, but not heat-denatured Stx2 or Stx1. The LOD was 0.13?ng?mL?1 in milk and 0.7?ng?g?1 in ground beef. Using a standard 96-well-plate format, the assays can detect less than 1?×?10?4 of an estimated lethal oral dose of either toxin in a serving of milk. The IgY detection antibodies for ricin were more heat-stable than mouse polyclonal anti-ricin at 65°C.  相似文献   

19.
The life-threatening sequela of hemorrhagic colitis induced by Shiga toxins (Stx)-producing Escherichia coli (STEC) infections in humans is hemolytic uremic syndrome (HUS), the main cause of acute renal failure in early childhood. The key step in the pathogenesis of HUS is the appearance of Stx in the blood of infected patients because these powerful virulence factors are capable of inducing severe microangiopathic lesions in the kidney. During precocious toxemia, which occurs in patients before the onset of HUS during the intestinal phase, Stx bind to several different circulating cells. An early response of these cells might include the release of proinflammatory mediators associated with the development of HUS. Here, we show that primary human monocytes stimulated with Shiga toxin 1a (Stx1a) through the glycolipid receptor globotriaosylceramide released larger amounts of proinflammatory molecules (IL-1β, TNFα, IL-6, G-CSF, CXCL8, CCL2, CCL4) than Stx1a-treated neutrophils. The mediators (except IL-1β) are among the top six proinflammatory mediators found in the sera from patients with HUS in different studies. The molecules appear to be involved in different pathogenetic steps of HUS, i.e. sensitization of renal endothelial cells to the toxin actions (IL-1β, TNFα), activation of circulating monocytes and neutrophils (CXCL8, CCL2, CCL4) and increase in neutrophil counts in patients with poor prognosis (G-CSF). Hence, a role of circulating monocytes in the very early phases of the pathogenetic process culminating with HUS can be envisaged. Impairment of the events of precocious toxemia would prevent or reduce the risk of HUS in STEC-infected children.  相似文献   

20.
Shiga toxins made by Shiga toxin-producing Escherichia coli (STEC) are associated with hemolytic uremic syndrome. Shiga toxins (Stxs) may access the host systemic circulation by absorption across the intestinal epithelium. The effects of Stxs on this cell layer are not completely understood, although animal models of STEC infection suggest that, in the gut, Stxs may participate in both immune activation and apoptosis. Stxs have one enzymatically active A subunit associated with five identical B subunits. The A subunit inactivates ribosomes by cleaving a specific adenine from the 28S rRNA. We have previously shown that Stxs can induce multiple C-X-C chemokines in intestinal epithelial cells in vitro, including interleukin-8 (IL-8), and that Stx-induced IL-8 expression is linked to induction of c-Jun mRNA and p38 mitogen-activated protein (MAP) kinase pathway activity. We now report Stx1 induction of both primary response genes c-jun and c-fos and activation of the stress-activated protein kinases, JNK/SAPK and p38, in the intestinal epithelial cell line HCT-8. By 1 h of exposure to Stx1, mRNAs for c-jun and c-fos are induced, and both JNK and p38 are activated; activation of both kinases persisted up to 24 h. Stx1 enzymatic activity was required for kinase activation; a catalytically defective mutant toxin did not activate either. Stx1 treatment of HCT-8 cells resulted in cell death that was associated with caspase 3 cleavage and internucleosomal DNA fragmentation; this cytotoxicity also required Stx1 enzymatic activity. Blocking Stx1-induced p38 and JNK activation with the inhibitor SB202190 prevented cell death and diminished Stx1-associated caspase 3 cleavage. In summary, these data link the Stx1-induced ribotoxic stress response with both chemokine expression and apoptosis in the intestinal epithelial cell line HCT-8 and suggest that blocking host cell MAP kinases may prevent these Stx-associated events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号