首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothermia combined with pharmacologic cardioplegia protects the globally ischemic adult heart, but this benefit may not extend to children; poor postischemic recovery of function and increased mortality may result when this method of myocardial protection is used in children. The relative susceptibilities to ischemia-induced injury modified by hypothermia alone and by hypothermia plus cardioplegia were assessed in isolated perfused immature (7- to 10-day-old) and mature (6- to 24-month-old) rabbit hearts. Hearts were perfused aerobically with Krebs-Henseleit buffer in the working mode for 30 minutes, and aortic flow was recorded. This was followed by 3 minutes of hypothermic (14 degrees C) coronary perfusion with either Krebs or St. Thomas' Hospital cardioplegic solution No. 2, followed by hypothermic (14 degrees C) global ischemia (mature hearts 2 and 4 hours; immature hearts 2, 4, and 6 hours). Hearts were reperfused for 15 minutes in the Langendorff mode and 30 minutes in the working mode, and recovery of postischemic function was measured. Hypothermia alone provided excellent protection of the ischemic immature rabbit heart, with recovery of aortic flow after 2 and 4 hours of ischemia at 97% +/- 3% and 93% +/- 4% (mean +/- standard deviation) of the preischemic value. Mature hearts protected with hypothermia alone recovered only minimally, with 22% +/- 16% recovery of preischemic aortic flow after 2 hours; none were able to generate flow at 4 hours. St. Thomas' Hospital solution No. 2 improved postischemic recovery of aortic flow after 2 hours of ischemia in mature hearts from 22% +/- 16% to 65% +/- 6% (p less than 0.05), but actually decreased postischemic aortic flow in immature hearts from 97% +/- 3% to 86% +/- 10% (p less than 0.05). To investigate any dose-dependency of this effect, we subjected hearts from both age groups to reperfusion with either Krebs solution or St. Thomas' Hospital solution No. 2 for 3 minutes every 30 minutes throughout a 2-hour period of ischemia. Reexposure to Krebs solution during ischemia did not affect postischemic function in either age group. Reexposure of immature hearts to St. Thomas' Hospital solution No. 2 caused a decremental loss of postischemic function in contrast to incremental protection with multidose cardioplegia in the mature heart. We conclude that immature rabbit hearts are significantly more tolerant of ischemic injury than mature rabbit hearts and that, unexpectedly, St. Thomas' Hospital solution No. 2 damages immature rabbit hearts.  相似文献   

2.
The effects of supplementing oxygenated St. Thomas' Hospital cardioplegic solution No. 2 with L-aspartate and/or D-glucose for the long-term preservation of excised rat hearts were determined with isolated working heart preparations. Left ventricular function was assessed at 37 degrees C with a crystalloid perfusate, before cardioplegic arrest and after 20 hours of low-flow perfusion (1.5 ml/min) with continuing arrest at 4 degrees C, and after this period, again at 37 degrees C with a crystalloid perfusate. Four groups (n = 8/group) of hearts were studied with four cardioplegic solutions: St. Thomas' Hospital solution alone, St. Thomas' Hospital solution with aspartate 20 mmol/L, St. Thomas' Hospital solution with glucose 20 mmol/L, and St. Thomas' Hospital solution plus both aspartate and glucose (20 mmol/L each). The addition of glucose to St. Thomas' Hospital solution made no significant difference in the recovery of aortic flow rates (17.7% +/- 8.6% and 21.6% +/- 7.8% of prearrest values), but when aspartate or aspartate and glucose were present, hearts showed significant improvements (89.8% +/- 5.2% and 85.0% +/- 6.2%, respectively). These improvements were associated with a reduction in the decline of myocardial high-energy phosphates during reperfusion, a reduction in cellular uptake of Na+ and Ca++, and a reduction in ultrastructural damage. These results indicate that low-flow perfusion with St. Thomas' Hospital solution plus aspartate can considerably extend the duration of safe storage of explanted hearts.  相似文献   

3.
Hypothermia combined with pharmacologic cardioplegia protects the globally ischemic adult heart, but this benefit may not extend to children, resulting in poor postischemic recovery of function and increased mortality. The relative susceptibilities to ischemia modified by hypothermia alone and by hypothermia plus cardioplegia were assessed in isolated perfused neonatal (3- to 4-day-old) rabbit and pig hearts. Hearts were perfused aerobically with Krebs buffer solution in the working mode for 30 minutes and aortic flow was recorded. This was followed by 3 minutes of hypothermic (14 degrees C) coronary perfusion with either Krebs or St. Thomas' Hospital cardioplegic solution No. 2 followed by hypothermic (14 degrees C) global ischemia (rabbits 2, 4, and 6 hours; pigs 2 and 4 hours). Hearts were reperfused for 15 minutes in the Langendorff mode and 30 minutes in the working mode, and recovery of postischemic aortic flow was measured. Hypothermia alone provided excellent protection of the ischemic neonatal rabbit heart, with recovery of aortic flow after 2 and 4 hours of ischemia at 91% +/- 4% and 87% +/- 5% (mean +/- standard deviation) of its preischemic value. Recovery after 6 hours of ischemia was depressed to 58% +/- 9% of its preischemic value. Ischemic neonatal pig hearts protected with hypothermia alone recovered 94% +/- 3% of preischemic aortic flow after 2 hours; none was able to generate flow after 4 hours. St. Thomas' Hospital solution No. 2 decreased postischemic aortic flow after 4 hours of ischemia in rabbit hearts from 87% +/- 5% to 70% +/- 7% (p less than 0.05, hypothermia alone versus hypothermia plus cardioplegia) but improved postischemic recovery of aortic flow in pig hearts after 4 hours of ischemia from 0 to 73% +/- 13% (p less than 0.0001, hypothermia alone versus hypothermia plus cardioplegia). This effect was dose related in both species. We conclude that the neonatal pig heart is more susceptible to ischemia modified by hypothermia alone than the neonatal rabbit and that St. Thomas' Hospital solution No. 2 improves postischemic recovery of function in the neonatal pig but decreases it in the neonatal rabbit. This species-dependent protection of the neonatal heart may be related to differences in the extent of myocardial maturity at the time of study.  相似文献   

4.
There are conflicting reports of the beneficial effects of University of Wisconsin (UW) cardioplegic solution used in heart preservation techniques. Therefore we investigated the efficacy of myocardial protection in adult rat hearts subjected to single-dose infusion (3 minutes) of nonoxygenated cardioplegic solutions (UW or St. Thomas' Hospital solution No. 2 [STH]) and stored at 4 degrees C by immersion in the same solution or in saline solution. Isolated working-heart preparations (n = 8 per group) were used to assess the prearrest (20 minutes' normothermic perfusion) and postischemic left ventricular functions. Four groups of hearts underwent 5, 8, 10, and 20 hours of cold ischemia (4 degrees C) in UW solution. Hearts stored for 8 to 20 hours showed no postischemic recovery of cardiac pump function (aortic flow, 0%), had decreased levels of myocardial high-energy phosphates, and were highly edematous (50% to 70% increased). After 5 hours of storage there was also poor recovery of aortic flow, coronary flow, and aortic pressure (55.0% +/- 19.4%, 67.1% +/- 5.1%, and 58.1% +/- 11.7%, respectively) but good recovery of adenosine triphosphate, creatine phosphate, and guanosine triphosphate (18.54 +/- 1.42, 29.99 +/- 2.05, and 1.64 +/- 0.14 mumol/gm dry weight, respectively). In contrast, hearts arrested and stored in STH solution for 5 hours rapidly established normal left ventricular functions (aortic flow, 111.5% +/- 2.5%; cardiac output, 99.1% +/- 1.2%; coronary flow, 85.0% +/- 3.4%; heart rate, 95.8% +/- 2.7%; and aortic pressure, 94.6%). A group of hearts arrested with STH solution but stored in saline solution recovered more slowly, had only partial return of function (aortic flow, 73.6% +/- 14.8%; p less than 0.01 vs STH/STH group), and had significantly greater tissue water content (8.020 +/- 0.080 vs 6.870 +/- 0.126 ml/gm dry wt; p less than 0.01). These results demonstrate the superior preservation of explanted hearts at 4 degrees C obtained by STH cardioplegic solution compared with UW solution under conditions used for transplantation.  相似文献   

5.
We have investigated the reported ability of aspartate to enhance greatly the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution after prolonged hypothermic storage. Rat hearts (n = 8 per group) were excised and subjected to immediate arrest with St. Thomas' Hospital cardioplegic solution (2 minutes at 4 degrees C) with or without addition of monosodium aspartate (20 mmol/L). The hearts were then immersed in the same solution for 8 hours (4 degrees C) before heterotopic transplantation into the abdomen of homozygous rats and reperfusion in vivo for 24 hours. The hearts were then excised and perfused in the Langendorff mode (20 minutes). Addition of aspartate to St. Thomas' Hospital cardioplegic solution gave a small but significant improvement in left ventricular developed pressure, which recovered to 82 +/- 3 mm Hg compared with 70 +/- 2 mm Hg in control hearts (p less than 0.05). However, coronary flow and high-energy phosphate content were similar in both groups. In subsequent experiments hearts (n = 8 per group) were excised, arrested (2 minutes at 4 degrees C) with St. Thomas' Hospital cardioplegic solution containing a 0, 5, 10, 20, 30, 40, or 50 mmol/L concentration of aspartate, stored for 8 hours at 4 degrees C, and then reperfused for 35 minutes. A bell-shaped dose-response curve was obtained, with maximum recovery in the 20 mmol/L aspartate group (cardiac output, 48 +/- 5 ml/min versus 32 +/- 5 ml/min in the aspartate-free control group; p less than 0.05). However, additional experiments showed that a comparable improvement could be achieved simply by increasing the sodium concentration of St. Thomas' Hospital cardioplegic solution by 20 mmol/L. Similarly, if sodium aspartate (20 mmol/L) was added and the sodium content of the St. Thomas' Hospital cardioplegic solution reduced by 20 mmol/L, no significant protection was observed when recovery was compared with that of unmodified St. Thomas' Hospital cardioplegic solution alone. In still further studies, hearts (n = 8 per group) were perfused in the working mode at either high (greater than 80 ml/min) or low (less than 50 ml/min) left atrial filling rates. Under these conditions, if functional recovery was expressed as a percentage of preischemic function, artifactually high recoveries could be obtained in the low-filling-rate group. In conclusion, assessment of the protective properties of organic additives to cardioplegic solutions requires careful consideration of (1) the consequences of coincident changes in ionic composition and (2) the characteristics of the model used for assessment.  相似文献   

6.
OBJECTIVE: Depolarizing potassium cardioplegia has been increasingly linked to left ventricular dysfunction, arrhythmia, and microvascular damage. We tested a new polarizing normokalemic cardioplegic solution employing adenosine and lidocaine as the arresting, protecting, and preserving cardioprotective combination. Adenosine hyperpolarizes the myocyte by A1 receptor activation, and lidocaine blocks the sodium fast channels. METHODS: Isolated perfused rat hearts were switched from the working mode to the Langendorff (nonworking) mode and arrested for 30 minutes, 2 hours, or 4 hours with 200 micromol/L adenosine and 500 micromol/L lidocaine in Krebs-Henseleit buffer (10 mmol/L glucose, pH 7.7, at 37 degrees C) or modified St Thomas' Hospital solution no. 2, both delivered at 70 mm Hg and 37 degrees C (arrest temperature 22 degrees C to 35 degrees C). RESULTS: Adenosine and lidocaine hearts achieved faster mechanical arrest in (25 +/- 2 seconds, n = 23) compared with St Thomas' Hospital solution hearts (70 +/- 5 seconds, n = 24; P=.001). After 30 minutes of arrest, both groups developed comparable aortic flow at approximately 5 minutes of reperfusion. After 2 and 4 hours of arrest (cardioplegic solution delivered every 20 minutes for 2 minutes at 37 degrees C), only 50% (4 of 8) and 14% (1 of 7) of St Thomas' Hospital solution hearts recovered aortic flow, respectively. All adenosine and lidocaine hearts arrested for 2 hours (n = 7) and 4 hours (n = 9) recovered 70% to 80% of their prearrest aortic flows. Similarly, heart rate, systolic pressures, and rate-pressure products recovered to 85% to 100% and coronary flows recovered to 70% to 80% of prearrest values. Coronary vascular resistance during delivery of cardioplegic solution was significantly lower (P <.05) after 2 and 4 hours in hearts arrested with adenosine and lidocaine cardioplegic solution compared with hearts arrested with St Thomas' Hospital solution. CONCLUSIONS: We conclude that adenosine and lidocaine polarizing cardioplegic solution confers superior cardiac protection during arrest and recovery compared with hyperkalemic depolarizing St Thomas' Hospital cardioplegic solution.  相似文献   

7.
Clinical application of hypothermic pharmacologic cardioplegia in pediatric cardiac surgery is less than satisfactory, despite its well known benefits in adults. Protection of the ischemic immature rabbit heart with hypothermia alone is better than with hypothermic St. Thomas' II cardioplegic solution. Control of cellular calcium is a critical component of cardioplegic protection. We determined whether the existing calcium content of St. Thomas' II solution (1.2 mmol/L) is responsible for suboptimal protection of the ischemic immature rabbit heart. Modified hypothermic St. Thomas' II solutions (calcium content, 0 to 2.4 mmol/L) were compared with hypothermic Krebs bicarbonate buffer in protecting ischemic immature (7- to 10-day-old) hearts. Hearts (n = 6 per group) underwent aerobic "working" perfusion with Krebs buffer, and cardiac function was measured. The hearts were then arrested with a 3-minute infusion of either cold (14 degrees C) Krebs buffer (1.8 mmol calcium/L) as hypothermia alone or cold St. Thomas' II solution before 6 hours of hypothermic (14 degrees C) global ischemia. Hearts were reperfused, and postischemic enzyme leakage and recovery of function were measured. A bell-shaped dose-response profile for calcium was observed for recovery of aortic flow but not for creatine kinase leakage, with improved protection at lower calcium concentrations. Optimal myocardial protection occurred at a calcium content of 0.3 mmol/L, which was better than with hypothermia alone and standard St. Thomas' II solution. We conclude that the existing calcium content of St. Thomas' II solution is responsible, in part, for its damaging effect on the ischemic immature rabbit heart.  相似文献   

8.
The concentration of calcium (1.2 mmol/L) in clinical St. Thomas' Hospital cardioplegic solution was chosen several years ago after dose-response studies in the normothermic isolated heart. However, recent studies with creatine phosphate in St. Thomas' Hospital solution demonstrated that additional myocardial protection during hypothermia resulted principally from its calcium-lowering effect in the solution. The isolated working rat heart model was therefore used to establish the optimal calcium concentration in St. Thomas' Hospital solution during lengthy hypothermic ischemia (20 degrees C, 300 minutes). The calcium content of standard St. Thomas' Hospital solution was varied from 0.0 to 1.5 mmol/L in eight treatment groups (n = 6 for each group). During ischemia, hearts were exposed to multidose cardioplegia (3 minutes every 30 minutes). Postischemic recovery of function was expressed as a percentage of preischemic control values. Release of creatine kinase and the time to return of sinus rhythm during the reperfusion period were also measured. These dose-response studies during hypothermic ischemia revealed a broad range of acceptable calcium concentrations (0.3 to 0.9 mmol/L), which appear optimal in St. Thomas' Hospital solution at 0.6 mmol/L. This concentration improved the postischemic recovery of aortic flow from 22.0% +/- 5.9% with control St. Thomas' Hospital solution (calcium concentration 1.2 mmol/L) to 86.0% +/- 4.0% (p less than 0.001). Other indices of functional recovery showed similar dramatic results. Creatine kinase release was reduced 84% (p less than 0.01) in the optimal calcium group. Postischemic reperfusion arrhythmias were diminished with the loser calcium concentration, with a significant decrease in the time between initial reperfusion until the return of sinus rhythm. In contrast, acalcemic St. Thomas' Hospital solution precipitated the calcium paradox with massive enzyme release and no functional recovery. Unlike prior published calcium dose-response studies at normothermia, these results demonstrate that the optimal calcium concentration during clinically relevant hypothermic ischemia is considerably lower than that of normal serum ionized calcium (1.2 mmol/L) and appears ideal at 0.6 mmol/L to realize even greater cardioprotective and antiarrhythmic effects with St. Thomas' Hospital solution.  相似文献   

9.
The intention of this study was to determine whether glucose is beneficial in a cardioplegic solution when the end products of metabolism produced during the ischemic period are intermittently removed. The experimental model used was the isolated working rat heart, with a 3-hour hypothermic 10 degrees C cardioplegic arrest period. Cardioplegic solutions tested were the St. Thomas' Hospital No. 2 and a modified Krebs-Henseleit cardioplegic solution. Glucose (11 mmol/L) was beneficial when multidose cardioplegia was administered every 30 minutes. Including glucose in Krebs-Henseleit cardioplegic solution improved postischemic recovery of aortic output from 57.0% +/- 1.8% to 65.8% +/- 2.2%; p less than 0.025. The addition of glucose to St. Thomas' Hospital No. 2 cardioplegic solution improved aortic output from 74.6% +/- 1.9% to 87.4% +/- 1.9%; p less than 0.005. Furthermore, a dose-response curve showed that a glucose concentration of 20 mmol/L gave no better recovery than 0 mmol/L, and glucose in St. Thomas Hospital No. 2 cardioplegic solution was beneficial only in the range of 7 to 11 mmol/L. In addition, we showed that multidose cardioplegia was beneficial independent of glucose. Multidose St. Thomas' Hospital No. 2 cardioplegia, as opposed to single-dose cardioplegia, improved aortic output recovery from 57.4% +/- 5.2% to 74.6% +/- 1.9%; p less than 0.025, and with St. Thomas' Hospital No. 2 cardioplegic solution plus glucose (11 mmol/L) aortic output recovery improved from 65.9% +/- 2.9% to 87.4% +/- 1.9%; p less than 0.005. Hence, at least in this screening model, the St. Thomas' Hospital cardioplegic solution should contain glucose in the range of 7 mmol/L to 11 mmol/L, provided multidose cardioplegia is given. We cautiously suggest extrapolation to the human heart, on the basis of supporting clinical arguments that appear general enough to apply to both rat and human metabolisms.  相似文献   

10.
The known benefits of hypothermic pharmacological cardioplegia in protecting the ischemic adult heart may not extend to children. Protection of the ischemic immature rabbit heart with hypothermic Krebs-Henseleit bicarbonate buffer is better than with hypothermic St. Thomas' II cardioplegic solution. We investigated whether the availability of oxygen in the preischemic perfusate is responsible for the increased tolerance to ischemia of immature (7- to 10-day-old) hearts perfused with Krebs buffer in comparison with St. Thomas' II solution immediately before ischemia. After obtaining preischemic control data in the "working" mode, we perfused hearts (n = 8 per group) for 3 minutes with hypothermic (14 degrees C) Krebs buffer or hypothermic St. Thomas' II solution saturated with 0%, 25%, or 95% oxygen. This was followed by 2 hours of global ischemia at 14 degrees C. Hearts were reperfused for 15 minutes in the Langendorff mode and 35 minutes in the working mode, and recovery of function was measured. For preischemic oxygen concentrations of 0%, 25%, and 95%, recovery of aortic flow in hearts protected by hypothermia alone during ischemia was 74% +/- 9%, 82% +/- 4%, and 99% +/- 2% of preischemic values, respectively. In hearts protected by hypothermia plus cardioplegia, the values were 69% +/- 6%, 72% +/- 3%, and 86% +/- 5%, respectively. Thus, at equal oxygen concentrations, recovery of postischemic function was better in hearts protected by hypothermia alone compared with hypothermia plus cardioplegia. We conclude that factors other than oxygen availability are responsible for the damaging effect of St. Thomas' II solution on the ischemic immature rabbit heart.  相似文献   

11.
The hypothesis tested is that shifts in pH, induced when a cardioplegic solution is oxygenated, can be detrimental. We added either 100% nitrogen, 95% nitrogen and 5% carbon dioxide, 100% oxygen, or 95% oxygen and 5% carbon dioxide to the cardioplegic solution (St. Thomas' Hospital No. 2 plus glucose 11 mmol/L), and determined postischemic recovery of isolated rat hearts after 3 hours of 10 degrees C cardioplegic protected ischemia. Hearts were arrested and reinfused every 30 minutes throughout the ischemic period with cardioplegic solution. When 5% carbon dioxide was added to nitrogen, the pH of the cardioplegic solution decreased from 9.1 (100% nitrogen) to 7.0 (95% nitrogen: 5% carbon dioxide), a change associated with improved postischemic functional recovery. Aortic output improved from 52.3% +/- 2.7% to 63.9% +/- 2.8%, p less than 0.05, and cardiac output from 60.8% +/- 3.6% to 75.4% +/- 3.3%, p less than 0.01. This improvement was associated with diminished efflux of lactate during ischemia but increased postischemic release of lactate dehydrogenase. When nitrogen was replaced with oxygen, the addition of 5% carbon dioxide resulted in a similar decrease of pH, which again was associated with improved postischemic functional recovery. Aortic output improved from 66.3% +/- 2.8% (100% oxygen) to 88.9% +/- 3.7% (95% oxygen: 5% carbon dioxide), p less than 0.005, and cardiac output from 75.3% +/- 4.1% to 88.9% +/- 2.4%, p less than 0.01. The efflux of lactate during ischemia and the postischemic release of lactate dehydrogenase were similar in both groups. Furthermore, provision of additional oxygen with perfluorocarbons in an electrolyte solution identical to the St. Thomas' Hospital plus glucose solution and oxygenated with 95% oxygen: 5% carbon dioxide conferred no extra protection. In conclusion, the St. Thomas' Hospital No. 2 plus glucose cardioplegic solution should be oxygenated but with 95% oxygen: 5% carbon dioxide and not 100% oxygen because of the additive effect of a relatively "acidotic" pH.  相似文献   

12.
The effect of oxygenation (100% oxygen) of the St. Thomas' Hospital cardioplegic solutions No. 1 (MacCarthy) and No.2 (Plegisol, Abbott Laboratories, North Chicago, Ill.) was examined in the isolated working rat heart subjected to long periods (3 hours for studies with solution No. 1 and 4 hours for studies with solution No. 2) of hypothermic (20 degrees C) ischemic arrest with multidose (every 30 minutes) cardioplegic infusion. At the aortic infusion point the oxygen tension of the oxygenated solutions (measured at 20 degrees C) was in the range of 320 to 560 mm Hg whereas that of the nonoxygenated solutions was less than 150 mm Hg. Twenty hearts (10 oxygenated and 10 nonoxygenated) were studied for each solution. The studies with solution No. 1 demonstrated that oxygenation led to a significant (p less than 0.05) reduction in the incidence of persistent ventricular fibrillation during postischemic reperfusion. Oxygenation of the cardioplegic solution also improved postischemic functional recovery so that the recovery of aortic flow was improved from 18.7% +/- 8.9% (of its preischemic control level) in the nonoxygenated group to 54.6% +/- 6.6% in the oxygenated group (p less than 0.025). Creatine kinase leakage was also significantly reduced from 27.5 +/- 4.8 to 9.9 +/- 0.6 IU/15 min/gm dry weight (p less than 0.005). Studies with solution No. 2 indicated that protection was better than with solution No. 1, even in the absence of oxygenation. A better degree of functional recovery was obtained after 4 hours of arrest with solution No. 2 than that obtained after only 3 hours of arrest with solution No. 1, and persistent ventricular ventricular fibrillation was never observed with solution No. 2. However, despite the superior performance with solution No. 2, further improvements could be obtained by oxygenation, with that time from the onset of reperfusion to the return of regular sinus rhythm being reduced from 55 +/- 8 to 35 +/- 2 seconds (p less than 0.01), postischemic recovery of aortic flow increasing from 59.8% +/- 7.4% to 85.7% +/- 2.5% (p less than 0.005), and creatine kinase leakage being reduced from 38.1 +/- 7.3 to 16.2 +/- 1.5 IU/15 min/gm dry weight (p less than 0.005). It is concluded that oxygenation of the St. Thomas' Hospital cardioplegic solutions improves their ability to protect the heart against long periods of ischemia and that this is manifested by improved postischemic electrical stability, functional recovery, and reduced creatine kinase leakage.  相似文献   

13.
Although few surgeons dispute the benefits of high-potassium crystalloid cardioplegia, objective comparison of the efficacy of various formulations is difficult in clinical practice. We compared four commonly used cardioplegic solutions in the isolated rat heart (N = 6 for each solution) subjected to 180 minutes of hypothermic (20 degrees C) ischemic arrest with multidose cardioplegia (3 minutes every half-hour). The clinical solutions studied were St. Thomas' Hospital solution, Tyers' solution, lactated Ringer's solution with added potassium, and a balanced saline solution with glucose and potassium. Postischemic recovery of function was expressed as a percentage of preischemic control values. Release of creatine kinase during reperfusion was measured as an additional index of protection. St. Thomas' Hospital solution provided almost complete recovery of all indexes of cardiac function following ischemia including 88.1 +/- 1.6% recovery of aortic flow, compared with poor recovery for the Tyers', lactated Ringer's, and balanced saline solutions (20.6 +/- 6.5%, 12.5 +/- 6.4%, and 9.6 +/- 4.2%, respectively) (p less than 0.001). Spontaneous defibrillation was rapid (less than 1 minute) and complete (100%) in all hearts in the St. Thomas' Hospital solution group, but much less satisfactory with the other formulations. Finally, St. Thomas' Hospital solution had a low postischemic level of creatine kinase leakage, contrasting with significantly higher enzyme release in the other solutions tested (p less than 0.001). Although differences in composition are subtle, all potassium crystalloid cardioplegic solutions are not alike in the myocardial protection they provide. Comparative studies under controlled conditions are important to define which formulation is superior for clinical application.  相似文献   

14.
Controversy surrounds the reported beneficial effects of crystalloid cardioplegic solutions in the immature myocardium. In the present study we have investigated the efficacy of four clinical cardioplegic solutions in the immature myocardium to determine (1) whether cardioplegic protection could be demonstrated and, if so, (2) the relative efficacy of the four solutions. Isolated, working hearts (n = 6 per group) from neonatal rabbits (aged 5 to 8 days) were perfused aerobically (37 degrees C) for 20 minutes before a 2-minute infusion of one of four cardioplegic solutions: The St. Thomas' Hospital No. 2, Tyers, Bretschneider, and Roe solutions. Hearts were then rendered globally ischemic for 50 minutes at 37 degrees C before reperfusion for 15 minutes in the Langendorff mode and 20 minutes in the working mode. The postischemic recovery of cardiac function and leakage of creatine kinase were compared with results in noncardioplegic control hearts. Good protection was observed with the St. Thomas' Hospital and Tyers solutions: The postischemic recovery of cardiac output was increased from 21.2% +/- 12.7% in the cardioplegia-free group to 79.4% +/- 6.2% and 72.9% +/- 4.4%, respectively, in the St. Thomas' Hospital and Tyers groups (p less than 0.01). In contrast, no protection was observed with either the Bretschneider or Rose solutions: Cardiac output recovered to 31.7% +/- 10.3% and 5.1% +/- 3.2%, respectively, in these groups. Postischemic creatine kinase leakage was 72.4 +/- 12.3 and 92.1 +/- 18.6 IU/15 min/gm dry weight in the St. Thomas' Hospital and Tyers groups compared with 125.6 +/- 28.6 IU/15 min/gm dry weight in control hearts (p = no significant difference). In the Bretschneider group, creatine kinase leakage increased to 836.9 +/- 176.8 IU/15 min/gm dry weight (p less than 0.01 versus noncardioplegic control hearts), and with the Roe solution the value was 269.0 +/- 93.0 IU/15 min/gm dry weight (p = no significant difference). In conclusion, cardioplegic protection can be achieved in the immature rabbit myocardium with both St. Thomas' Hospital and Tyers solutions, but acalcemic solutions such as Bretschneider and Roe solutions (which may be effective in the adult heart) increased damage in this preparation. The reported lack of cardioplegic efficacy in the immature myocardium may therefore reflect the choice of cardioplegic solution rather than a greater vulnerability to injury in the neonatal heart.  相似文献   

15.
The effect of reperfusion coronary vasodilatation on postischemic myocardial mechanical function has been investigated in the isolated working rat heart. After a working period to assess control function, all the hearts were subjected to a single infusion (10 ml) of St. Thomas' Hospital cardioplegic solution No. 1 at 4 degrees C and were kept immersed in the same solution for 4 hours at 4 degrees C. Then hearts (six in each group) were initially reperfused at 37 degrees C for 10 minutes, either with ordinary reperfusate (Krebs-Henseleit bicarbonate buffer) or with reperfusate containing additional coronary dilator. After this period, all hearts were subjected to a further 5 minutes of ordinary reperfusate before being put back into the working mode to assess functional recovery. Mean reperfusion coronary flows and the steady coronary flow measured after 10 minutes of reperfusion in ml/min +/- SEM were--Krebs (control): 17.4 +/- 0.39 and 13.4 +/- 0.40; adenosine (3.75 mumol/L): 19.9 +/- 0.6 and 16.7 +/- 0.8; papaverine (0.05 mmol/L): 21.8 +/- 2.3 and 17.3 +/- 1.8; dipyridamole (2 mmol/L): 20.7 +/- 1.7 and 17.9 +/- 1.0; nitroglycerin (15 mg/L): 20.5 +/- 0.45 and 19.9 +/- 1.4; diltiazem (0.05 mmol/L): 19.6 +/- 2.98 and 17.7 +/- 1.8; calcitonin gene-related peptide (0.03 mmol/L): 20.8 +/- 0.69 and 18.0 +/- 1.3; 5-hydroxytryptamine (0.01 mmol/L): 19.2 +/- 0.53 and 16.9 +/- 0.80. Mean postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure were expressed as percent of preischemic control +/- SEM were--Krebs: 54.1 +/- 2.8, 69.1 +/- 2.8, and 53.9 +/- 3.0; adenosine: 78.0 +/- 5.6, 89.5 +/- 2.9, and 69.1 +/- 1.9; papaverine: 81.8 +/- 3.9, 91.8 +/- 3.1, and 71.0 +/- 4.1; dipyrdamole: 67.3 +/- 3.3, 84.3 +/- 2.3, and 75.0 +/- 2.7; nitroglycerin: 83.1 +/- 4.8, 79.7 +/- 2.7, and 69.0 +/- 0.5; diltiazem: 76.5 +/- 3.7, 85.9 +/- 2.9, and 73.3 +/- 1.7; calcitonin gene-related peptide: 79.5 +/- 3.6, 90.0 +/- 4.9, and 75.4 +/- 3.9; 5-hydroxytryptamine: 71.6 +/- 3.2, 85.5 +/- 3.5, and 67.9 +/- 4.8. There was a positive correlation between mean reperfusion coronary flow, steady coronary flow, and postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure. Mean reperfusion coronary flow, steady coronary flow, and postischemic recovery of cardiac output, peak aortic pressure, and differentiation of pressure were significantly greater in groups reperfused with vasodilators (p < 0.05) compared with control values.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The potential for improving myocardial protection with the high-energy phosphates adenosine triphosphate and creatine phosphate was evaluated by adding them to the St. Thomas' Hospital cardioplegic solution in the isolated, working rat heart model of cardiopulmonary bypass and ischemic arrest. Dose-response studies with an adenosine triphosphate range of 0.05 to 10.0 mmol/L showed 0.1 mmol/L to be the optimal concentration for recovery of aortic flow and cardiac output after 40 minutes of normothermic (37 degrees C) ischemic arrest (from 24.1% +/- 4.4% and 35.9% +/- 4.1% in the unmodified cardioplegia group to 62.6% +/- 4.7% and 71.0% +/- 3.0%, respectively, p less than 0.001). Adenosine triphosphate at its optimal concentration (0.1 mmol/L) also reduced creatine kinase leakage by 39% (p less than 0.001). Postischemic arrhythmias were also significantly reduced, which obviated the need for electrical defibrillation and reduced the time to return of regular rhythm from 7.9 +/- 2.0 minutes in the control group to 3.5 +/- 0.4 minutes in the adenosine triphosphate group. Under more clinically relevant conditions of hypothermic ischemia (20 degrees C, 270 minutes) with multidose (every 30 minutes) cardioplegia, adenosine triphosphate addition improved postischemic recovery of aortic flow and cardiac output from control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 58.0% +/- 4.7% and 64.4% +/- 3.7% (p less than 0.01), respectively, and creatine kinase leakage was significantly reduced. Parallel hypothermic ischemia studies (270 minutes, 20 degrees C) using the previously demonstrated optimal creatinine phosphate concentration (10.0 mmol/L) gave nearly identical improvements in recovery and enzyme leakage. The combination of the optimal concentrations of adenosine triphosphate and creatine phosphate resulted in even greater myocardial protection; aortic flow and cardiac output improved from their control values of 26.8% +/- 8.4% and 35.4% +/- 6.3% to 79.7% +/- 1.1 and 80.7% +/- 1.0% (p less than 0.001), respectively. In conclusion, both extracellular adenosine triphosphate and creatine phosphate alone markedly improve the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution during prolonged hypothermic ischemic arrest, but together they act additively to provide even greater protection.  相似文献   

17.
Impaired coronary flow during postischemic reperfusion may limit functional recovery. In the present studies we used the heterotopically transplanted rat heart and the isolated working rat heart to assess whether adenosine, given during reperfusion, could improve either the rate or the extent of postischemic recovery. Hearts were arrested (2 minutes at 4 degrees C) with the St. Thomas' Hospital cardioplegic solution and stored by immersion in the same solution for 8 hours at 4 degrees C. Hearts were then transplanted into the abdomen of homozygous recipients. Immediately before reperfusion, adenosine (0.5 ml of a 1 mumol/L solution, equivalent to 0.13 micrograms) was injected into the left ventricle (control rats received an equivalent amount of saline). Hearts were reperfused in vivo for 30 minutes or 24 hours, after which they were excised and perfused (Langendorff) for 20 minutes for the assessment of function. They were then freeze clamped and taken for metabolic analysis. After 50 minutes of reperfusion, left ventricular developed pressure was 75 +/- 5 mm Hg (4 mm Hg end-diastolic pressure) in the adenosine group versus 61 +/- 4 mm Hg in the control group (p less than 0.05); however, after 24 hours function was identical in the two groups (52 +/- 4 versus 52 +/- 3 mm Hg). After 50 minutes of reperfusion coronary flow was greater in the adenosine group (11.0 +/- 0.4 versus 9.7 +/- 0.4 ml/min in control rats; p less than 0.05), a difference that was sustained for 24 hours (12.8 +/- 0.3 versus 11.4 +/- 0.4 ml/min in control rats; p less than 0.05). Adenosine triphosphate and creatine phosphate contents recovered to similar extents in control and adenosine groups after both 50 minutes and 24 hours of reperfusion. In further studies with an identical storage protocol (8 hours at 4 degrees C), hearts were not transplanted but were reperfused with crystalloid medium in the Langendorff mode for 15 minutes (creatine kinase leakage measured) and in the working mode for 180 minutes. In an attempt to mimic the heterotopic transplant protocol, adenosine (1 mumol/L) was included in the perfusion fluid for the first 2 minutes of reperfusion. Similar results to those of the transplant studies were obtained, with coronary flow being consistently improved in the adenosine group; however, this benefit was lost after only 2 hours of reperfusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The components of the University of Wisconsin solution have the potential to enhance and extend heart preservation. We have evaluated University of Wisconsin solution by comparing it with St. Thomas' Hospital cardioplegic solution in the isolated pig heart subjected to 8 hours of ischemia at 4 degrees C (n = 6 in each). The hearts were perfused ex vivo with enriched autologous blood for the control and the postpreservation assessments. Morphologic, metabolic, and functional evaluations were performed. Left and right ventricular function as assessed by the slope values of systolic and diastolic pressure-volume relationships of isovolumically contracting isolated heart was better preserved by University of Wisconsin solution (percent reduction: left ventricular systolic, 52.4% +/- 5.5% versus 17.7% +/- 6.7% [p less than 0.001]; right ventricular systolic, 125.6% +/- 46.4% versus 65.5% +/- 31.4% [p less than 0.05]; right ventricular diastolic, 112.3% +/- 48.7% versus 40.2% +/- 31.3% [p less than 0.02] after St. Thomas' Hospital and University of Wisconsin preservation, respectively). Postischemic recovery of left ventricular rate of rise of pressure and myocardial oxygen consumption were significantly improved after University of Wisconsin preservation (percent reduction, rate of rise of pressure: St. Thomas' Hospital 39.3% +/- 8.1%; University of Wisconsin 18.1% +/- 4.6%; percent reduction, myocardial oxygen consumption St. Thomas' Hospital 55.1% +/- 6.9%, University of Wisconsin 24.8% +/- 6.7%; p less than 0.001). Microvascular functional integrity as assessed by coronary vascular resistance was well maintained throughout the postischemic period and was similar to the preischemic control value in the University of Wisconsin group. By contrast, a significant increase was found at the beginning of postpreservation reperfusion, with a progressive rise thereafter in the St. Thomas' Hospital group (p less than 0.001). Preservation of myocardial adenosine triphosphate was improved and energy charge was unchanged after 8 hours of ischemia and reperfusion in the University of Wisconsin-preserved hearts compared with the St. Thomas' Hospital-preserved hearts (p less than 0.01). Electron microscopic examination revealed substantially better preservation of the contractile apparatus after preservation with University of Wisconsin solution. Myocytes from hearts receiving University of Wisconsin solution, unlike those given St. Thomas' Hospital solution, showed relaxed myofibrils with prominent I-bands. We conclude that University of Wisconsin solution has the potential to improve the preservation of the heart and possibly prolong the ischemic period in clinical cardiac transplantation.  相似文献   

19.
The primary objective of this study was to compare the protective effects of single-dose and multi-dose St. Thomas' Hospital cardioplegic solution number 1 in the ischemic and reperfused neonatal rabbit heart. In addition, the effect of including bicarbonate (a component of St. Thomas' Hospital cardioplegic solution number 2) was also studied. Hearts (n=8 per group) were excised from rabbits (7–10 days old) and aerobically perfused in the working mode with crystalloid media for 20 min (37°C). After assessing cardiac function, the hearts were arrested by an infusion of cold cardioplegic solution (2 min at 15°C with or without the addition of bicarbonate (10 mmol). The hearts were then subjected to 6 h of hypothermic ischemia (15°C and, during this period, some hearts received multiple infusions (2 min/h at 15°C) of cardioplegic solution. All hearts were reperfused for 35 min (15 min Langendorff plus 20 min working), cardiac function was then re-assessed and expressed as a percent of the preischemic value. The coronary effluent, collected during the first 15 min of reperfusion, was assayed for creatine kinase activity. At the end of the reperfusion period, the hearts were freeze clamped and taken for metabolic analysis. With multi-dose cardioplegia (without bicarbonate) the postischemic recovery of cardiac output was 67.0±6.5% and with single-dose the value was 39.3±10.0% (NS). The same pattern of postischemic recovery (that varied between 30% and 60%) for aortic flow, stroke volume and stroke work was observed with both multi-dose and single-dose infusion. The inclusion of bicarbonate in the cardioplegic solution did not significantly alter the recovery of cardiac output with single-dose (51.7±8.9% vs 39.3±10.0%) or multi-dose infusion (60.6±7.6% vs 67.0±6.5%). Creatine kinase leakage was similar in all groups, as was the myocardial high energy phosphate content. In conclusion, in the neonatal rabbit heart, multi-dose St. Thomas' Hospital cardioplegia affords similar protection to single-dose administration and this was not modified by the addition of bicarbonate.  相似文献   

20.
Oxygen-derived free radicals and intracellular calcium overload have been implicated as mediators of myocardial ischemia/reperfusion injury. We hypothesized that free radical scavengers or calcium channel blockers could enhance the protection afforded the isolated, working rat heart by crystalloid cardioplegia against this type of injury at 37 degrees C. Hearts from 42 male rats in seven groups (n = 6) were studied in an isolated, working heart preparation measuring aortic flow (ml/min/gm dry wt), peak systolic pressure (mm Hg), coronary artery flow (ml/min/gm dry wt), and calculated coronary vascular resistance (dyne.sec.cm-5/gm dry wt). Creatine kinase and lactate dehydrogenase release were measured before ischemia and at various times during the postischemic reperfusion period. Time-matched control hearts (group 1) were perfused for 2 hours. After finding that 30 minutes of ischemia and 10 minutes of reperfusion (group 2) produced significant (p less than 0.01) functional impairment that was completely protected (group 3) by a preischemic bolus of St. Thomas' Hospital cardioplegic solution, we again found significant (p less than 0.01) functional impairment after 40 minutes of ischemia and 10 minutes (group 4) or 20 minutes (group 5) of reperfusion despite a preischemic bolus of St. Thomas' Hospital cardioplegic solution. Diltiazem (10 mg/L) plus St. Thomas' Hospital cardioplegic solution (group 6) did not significantly (p less than 0.01) enhance functional recovery. Addition of superoxide dismutase plus catalase (200 microns/ml) (group 7) produced marked improvement in functional recovery that did not differ significantly (p less than 0.01) from control results (group 1). The creatine kinase and lactate dehydrogenase data strongly supported the preceding functional data. Coronary flow and vascular resistance were not significantly (p less than 0.01) changed from control values in any group. We conclude that the addition of superoxide dismutase and catalase but not diltiazem to St. Thomas' Hospital cardioplegic solution can significantly enhance myocardial protection against normothermic ischemia/reperfusion injury. This implicates oxygen-derived free radicals as mediators of this type of injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号