首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor microenvironment plays a significant role in colitis-associated cancer (CAC). Intestinal myofibroblasts (IMFs) are cells in the intestinal lamina propria secreting factors that are known to modulate carcinogenesis; however, the physiological role of IMFs and signaling pathways influencing CAC have remained unknown. Tumor progression locus 2 (Tpl2) is a MAPK that regulates inflammatory and oncogenic pathways. In this study we addressed the role of Tpl2 in CAC using complete and tissue-specific ablation of Tpl2 in mutant mice. Tpl2-deficient mice did not exhibit significant differences in inflammatory burdens following azoxymethane (AOM)/dextran sodium sulfate (DSS) administration compared with wild-type mice; however, the mutant mice developed significantly increased numbers and sizes of tumors, associated with enhanced epithelial proliferation and decreased apoptosis. Cell-specific ablation of Tpl2 in IMFs, but not in intestinal epithelial or myeloid cells, conferred a similar susceptibility to adenocarcinoma formation. Tpl2-deficient IMFs upregulated HGF production and became less sensitive to the negative regulation of HGF by TGF-β3. In vivo inhibition of HGF-mediated c-Met activation blocked early, enhanced colon dysplasia in Tpl2-deficient mice, indicating that Tpl2 normally suppresses the HGF/c-Met pathway. These findings establish a mesenchyme-specific role for Tpl2 in the regulation of HGF production and suppression of epithelial tumorigenesis.  相似文献   

2.
《Molecular therapy》2022,30(11):3414-3429
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

3.
Tumor suppressor p53-dependent apoptosis is critical in suppressing tumorigenesis. Previously, we reported that DNA double-strand breaks (DSBs) at the V(D)J recombination loci induced genomic instability in the developing lymphocytes of nonhomologous end-joining (NHEJ)-deficient, p53-deficient mice, which led to rapid lymphomagenesis. To test the ability of p53-dependent cell cycle arrest to suppress tumorigenesis in the absence of apoptosis in vivo, we crossbred NHEJ-deficient mice into a mutant p53R172P background; these mice have defects in apoptosis induction, but not cell cycle arrest. These double-mutant mice survived longer than NHEJ/p53 double-null mice and, remarkably, were completely tumor free. We detected accumulation of aberrant V(D)J recombination-related DSBs at the T cell receptor (TCR) locus, and high expression levels of both mutant p53 and cell cycle checkpoint protein p21, but not the apoptotic protein p53-upregulated modulator of apoptosis. In addition, a substantial number of senescent cells were observed among both thymocytes and bone marrow cells. Cytogenetic studies revealed euploidy and limited chromosomal breaks in these lymphoid cells. The results indicate that precursor lymphocytes, which normally possess a high proliferation potential, are able to withdraw from the cell cycle and undergo senescence in response to the persistence of DSBs in a p53-p21-dependent pathway; this is sufficient to inhibit oncogenic chromosomal abnormality and suppress tumorigenesis.  相似文献   

4.
The mechanisms by which deregulated nuclear factor erythroid-2–related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells.  相似文献   

5.
Dysregulation of epigenetic controls is associated with tumorigenesis in response to microenvironmental stimuli; however, the regulatory pathways involved in epigenetic dysfunction are largely unclear. We have determined that a critical epigenetic regulator, microRNA-205 (miR-205), is repressed by the ligand jagged1, which is secreted from the tumor stroma to promote a cancer-associated stem cell phenotype. Knockdown of miR-205 in mammary epithelial cells promoted epithelial-mesenchymal transition (EMT), disrupted epithelial cell polarity, and enhanced symmetric division to expand the stem cell population. Furthermore, miR-205–deficient mice spontaneously developed mammary lesions, while activation of miR-205 markedly diminished breast cancer stemness. These data provide evidence that links tumor microenvironment and microRNA-dependent regulation to disruption of epithelial polarity and aberrant mammary stem cell division, which in turn leads to an expansion of stem cell population and tumorigenesis. This study elucidates an important role for miR-205 in the regulation of mammary stem cell fate, suggesting a potential therapeutic target for limiting breast cancer genesis.  相似文献   

6.
The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator–activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity.  相似文献   

7.
摘要:目的研究泛素特 异性蛋白酶26( ubiquitin-specific protease 26, USP26)通过调控RLR信号通路影响肠道病毒71型(EV71)感染的机制和功能,深入了解EV71感染及其逃逸免疫防御关系,为临床治疗EV71 感染提供依据。方法利用RT-PCR和Western blot 分别检测EV71感染横纹肌肉瘤细胞(RD)0、2.4、8、12、24 h后的USP26 mRNA、VPI mRNA及其蛋白质的表达水平;在RD细胞中设置转染USP26-siRNA( 实验组)和转染阴性对照siRNA(对照组),再用EV71感染RD细胞,收集感染8、12和24 h时的mRNA样本,RT-PCR检测VPI mRNA的表达情况;收集感染8 h时的蛋白质样本,Western blot 检测细胞中MDAS5、p-IRF3、IRF3蛋白的表达水平并计算p-IRF3/IRF3的相对比值;利用空斑试验检测病毒滴度水平。结果Westem blot 和RT-PCR结果表明,EV71感染过程中USP26的表达上调(P<0.05);RD细胞转染后实验组EV71中VPI mRNA的表达水平明显低于同一时间的对照组(P<0.05),感染8h实验组中MDA5蛋白和p-IRF3蛋白的表达水平均显著高于对照组(P<0.05);两组RF3总蛋白的表达水平差异无统计学意义;空斑试验中实验组EV71的病毒滴度显著低于对照组(P<0.05)。结论USP26 可通过负性调控RLR信号通路参与抗病毒免疫反应,敲减USP26可抑制EV71在细胞中的复制。  相似文献   

8.
Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy.  相似文献   

9.
目的研究人膀胱癌EJ细胞株中CD44基因小RNA干扰后细胞侵袭功能的变化。方法小RNA干扰的方法抑制EJ细胞中CD44基因表达,细胞划痕实验和Boyden小室研究shCD44-EJ细胞的侵袭功能改变。结果流式细胞学检测显示shCD44-EJ细胞与CD44的单克隆抗体的结合性下降,Westernblot检测CD44蛋白的表达量减少,细胞划痕实验和Boyden小室研究结果显示shCD44-EJ细胞的侵袭能力降低约50%。结论特异性沉默CD44可抑制EJ细胞的侵袭能力。  相似文献   

10.
11.
12.
13.
The clinical, human and economic burden associated with sepsis is huge. Initiatives such as the Surviving Sepsis Campaign aim to effectively reduce risk of death from severe sepsis and septic shock. Nonetheless, although substantial benefits raised from the implementation of this campaign have been obtained, much work remains if we are to realise the full potential promised by this strategy. A deeper understanding of the processes leading to sepsis is necessary before we can design an effective suite of interventions. Dysregulation of the immune response to infection is acknowledged to contribute to the pathogenesis of the disease. Production of both proinflammatory and immunosuppressive cytokines is observed from the very first hours following diagnosis. In addition, hypogammaglobulinemia is often present in patients with septic shock. Moreover, levels of IgG, IgM and IgA at diagnosis correlate directly with survival. In turn, nonsurvivors have lower levels of C4 (a protein of the complement system) than the survivors. Natural killer cell counts and function also seem to have an important role in this disease. HLA-DR in the surface of monocytes and counts of CD4+CD25+ T-regulatory cells in blood could also be useful biomarkers for sepsis. At the genomic level, repression of networks corresponding to major histocompatibility complex antigen presentation is observed in septic shock. In consequence, cumulative evidence supports the potential role of immunological monitoring to guide measures to prevent or treat sepsis in a personalised and timely manner (early antibiotic administration, immunoglobulin replacement, immunomodulation). In conclusion, although diffuse and limited, current available information supports the development of large comprehensive studies aimed to urgently evaluate immunological monitoring as a tool to prevent sepsis, guide its treatment and, as a consequence, diminish the morbidity and mortality associated with this severe condition.  相似文献   

14.
King B 《Nursing times》2007,103(43):44, 47
Toe oedema is more commonly associated with lymphoedema but is frequently seen in patients with venous hypertension. In the long-term it leads to toe deformity and it is essential that the problem is managed. Brenda King outlines how to apply toe bandages and the long-term management once the problem is resolved.  相似文献   

15.
16.
Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington’s disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington’s disease.  相似文献   

17.
Although first-generation drug-eluting stents (DES) have significantly reduced the risk of in-stent restenosis, they have also increased the long-term risk of stent thrombosis. This safety concern directly triggered the development of new generation DES, with innovations in stent platforms, polymers, and anti-proliferative drugs. Stent platform materials have evolved from stainless steel to cobalt or platinum–chromium alloys with an improved strut design. Drug-carrying polymers have become biocompatible or biodegradable and even polymer-free DES were introduced. New limus-family drugs (such as everolimus, zotarolimus or biolimus) were adopted to enhance stent performances. As a result, these new DES demonstrated superior vascular healing responses on intracoronary imaging studies and lower stent thrombotic events in actual patients. Recently, fully-bioresorbable stents (scaffolds) have been introduced, and expanding their applications. In this article, the important concepts and clinical results of new generation DES and bioresorbable scaffolds are described.  相似文献   

18.
19.
Introduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with a one in four lifetime risk in adults over the age of forty. Traditionally, AF management has focused on the three pillars of rate control, rhythm control and appropriate anticoagulation to reduce stroke risk. More recently, the importance of cardiovascular risk factor management in AF has emerged as a fourth and essential pillar with improved patient outcomes.

Areas covered: Here, we aim to summarize the current available evidence for the association between various modifiable risk factors and AF, and to identify optimal treatment targets to improve outcomes.

Expert Commentary: Care for AF patients utilizing an integrated approach and aggressive lifestyle management may reduce the enormous burden of this arrhythmia.  相似文献   


20.
在临床工作中医源性疾病和医源性问题不可能完全避免 ,医务人员有责任积极进行防范和诊治。做好这一工作需要不断学习 ,勤奋工作 ,谨慎施治 ,权衡轻重 ,顾及效果 ,及时补救 ,去除浮夸 ,遵章守纪  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号