首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With a yearly production of about 39 million tons, brewer’s spent grain (BSG) is the most abundant brewing industry byproduct. Because it is rich in fiber and protein, it is commonly used as cattle feed but could also be used within the human diet. Additionally, it contains many bioactive substances such as hydroxycinnamic acids that are known to be antioxidants and potent inhibitors of enzymes of glucose metabolism. Therefore, our study aim was to prepare different extracts—A1-A7 (solid-liquid extraction with 60% acetone); HE1-HE6 (alkaline hydrolysis followed by ethyl acetate extraction) and HA1-HA3 (60% acetone extraction of alkaline residue)—from various BSGs which were characterized for their total phenolic (TPC) and total flavonoid (TFC) contents, before conducting in vitro studies on their effects on the glucose metabolism enzymes α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPP IV), and glycogen phosphorylase α (GPα). Depending on the extraction procedures, TPCs ranged from 20–350 µg gallic acid equivalents/mg extract and TFCs were as high as 94 µg catechin equivalents/mg extract. Strong inhibition of glucose metabolism enzymes was also observed: the IC50 values for α-glucosidase inhibition ranged from 67.4 ± 8.1 µg/mL to 268.1 ± 29.4 µg/mL, for DPP IV inhibition they ranged from 290.6 ± 97.4 to 778.4 ± 95.5 µg/mL and for GPα enzyme inhibition from 12.6 ± 1.1 to 261 ± 6 µg/mL. However, the extracts did not strongly inhibit α-amylase. In general, the A extracts from solid-liquid extraction with 60% acetone showed stronger inhibitory potential towards a-glucosidase and GPα than other extracts whereby no correlation with TPC or TFC were observed. Additionally, DPP IV was mainly inhibited by HE extracts but the effect was not of biological relevance. Our results show that BSG is a potent source of α-glucosidase and GPα inhibitors, but further research is needed to identify these bioactive compounds within BSG extracts focusing on extracts from solid-liquid extraction with 60% acetone.  相似文献   

2.
The New Zealand pine bark extract (Enzogenol®) has previously been shown to elicit acute hypoglycaemic effects in humans. The present study investigated the underlying mechanisms of Enzogenol® in reducing postprandial glucose in humans. The potential inhibitory action of Enzogenol® against digestive enzymes: α-amylase and α-glucosidase, and dipeptidyl peptidase-4 (DPP-4) enzyme was determined. Enzogenol® demonstrated the ability to inhibit all three enzymes: α-amylase enzyme activity (IC50 3.98 ± 0.11 mg/mL), α-glucosidase enzyme activity (IC50 13.02 ± 0.28 μg/mL), and DPP-4 enzyme activity (IC50 2.51 ± 0.04 mg/mL). The present findings indicate the potential for Enzogenol® to improve postprandial glycaemia by delaying carbohydrate digestion via the inhibition of digestive enzymes (α-amylase and α-glucosidase), and enhancing the incretin effect via inhibiting the dipeptidyl-peptidase-4 enzyme. The inhibitory actions of Enzogenol® on enzymes should therefore be further validated in humans for its potential use in type 2 diabetes mellitus prevention and management.  相似文献   

3.
Diabetes mellitus is a major predisposing factor for cardiovascular disease and mortality. α-Amylase and α-glucosidase enzymes are the rate-limiting steps for carbohydrate digestion. The inhibition of these two enzymes is clinically used for the treatment of diabetes mellitus. Here, in vitro study and machine learning models were employed for the chemical screening of inhibiting the activity of 31 plant samples on α-amylase and α-glucosidase enzymes. The results showed that the ethanolic twig extract of Pinus kesiya had the highest inhibitory activity against the α-amylase enzyme. The respective ethanolic extract of Croton oblongifolius stem, Parinari anamense twig, and Polyalthia evecta leaf showed high inhibitory activity against the α-glucosidase enzyme. The classification analysis revealed that the α-glucosidase inhibitory activity of Thai indigenous plants was more predictive based on phytochemical constituents, compared with the α-amylase inhibitory activity (1.00 versus 0.97 accuracy score). The correlation loading plot revealed that flavonoids and alkaloids contributed to the α-amylase inhibitory activity, while flavonoids, tannins, and reducing sugars contributed to the α-glucosidase inhibitory activity. In conclusion, the ethanolic extracts of P. kesiya, C. oblongifolius, P. anamense, and P. evecta have the potential for further chemical characterization and the development of anti-diabetic recipes.  相似文献   

4.

BACKGROUND/OBJECTIVES

We investigated total 26 ingredients of Saengshik which will be commercially produced as an anti-diabetic dietary supplement.

SUBJECTS/METHODS

Thirteen vegetables, nine cereals, three legumes and one seed were extracted with aqueous ethanol for 2 h at 60℃, and evaluated for their inhibitory effects against α-amylase and α-glucosidase and for total phenolic and flavonoid contents.

RESULTS

All ingredients inhibited α-amylase activity except cabbage. Strong inhibitory activity of α-amylase was observed in leek, black rice, angelica and barley compared with acarbose as a positive control. Stronger inhibition of α-glucosidase activity was found in small water dropwort, radish leaves, sorghum and cabbage than acarbose. All Saengshik ingredients suppressed α-glucosidase activity in the range of 0.3-60.5%. Most ingredients contained total phenols which were in the range of 1.2-229.4 mg gallic acid equivalent/g dried extract. But, total phenolic contents were not observed in carrot, pumpkin and radish. All ingredients contained flavonoid in the range of 11.6-380.7 mg catechin equivalent/g dried extract.

CONCLUSIONS

Our results demonstrate that Saengshik containing these ingredients would be an effective dietary supplement for diabetes.  相似文献   

5.
Pueraria lobata leaves contain a variety of phytoestrogens, including flavonoids, isoflavonoids, and coumestan derivatives. In this study, we aimed to identify the active ingredients of P. lobata leaves and to elucidate their function in monoamine oxidase (MAO) activation and Aβ self-aggregation using in vitro and in silico approaches. To the best of our knowledge, this is the first study to elucidate coumestrol as a selective and competitive MAO-A inhibitor. We identified that coumestrol, a coumestan-derivative, exhibited a selective inhibitory effect against MAO-A (IC50 = 1.99 ± 0.68 µM), a key target protein for depression. In a kinetics analysis with 0.5 µg MAO-A, 40–160 µM substrate, and 25 °C reaction conditions, coumestrol acts as a competitive MAO-A inhibitor with an inhibition constant of 1.32 µM. During an in silico molecular docking analysis, coumestrol formed hydrogen bonds with FAD and pi–pi bonds with hydrophobic residues at the active site of the enzyme. Moreover, based on thioflavin-T-based fluorometric assays, we elucidated that coumestrol effectively prevented self-aggregation of amyloid beta (Aβ), which induces an inflammatory response in the central nervous system (CNS) and is a major cause of Alzheimer’s disease (AD). Therefore, coumestrol could be used as a CNS drug to prevent diseases such as depression and AD by the inhibition of MAO-A and Aβ self-aggregation.  相似文献   

6.
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.  相似文献   

7.
Targeting pancreatic lipase and α-amylase by digestion-derived fractions of ethanolic-aqueous (60%, v/v) extract from Cornus mas fruit (CM) in relation to the control and prevention of metabolic disorders, including diabetes, was the first purpose of the present study. Taking into consideration the significance of bio-accessibility of compounds, we attempted to identify metabolites of CM after gastrointestinal digestion in vitro, as well as their kinetic changes upon gut microbiota treatment. The digestion of extract was simulated with digestive enzymes in vitro and human gut microbiota ex vivo (1 h, 3 h, 6 h, 24 h), followed by chromatographic analysis using the UHPLC-DAD-MSn method. The effect of fractions from gastrointestinal digestion in vitro on the activity of pancreatic lipase and α-amylase was studied with fluorescence-based assays. The gastric and intestinal fractions obtained after in vitro digestion of CM inhibited pancreatic lipase and α-amylase. Loganic acid as the main constituent of the extract was digested in the experimental conditions in contrast to cornuside. It was found in most analytes such as salivary, gastric, intestinal, and even colon (fecal slurry, FS) fractions. In all fractions, kaempferol hexoside and reduced forms of kaempferol, such as aromadendrin, and benzoic acid were assigned. The signals of tannins were detected in all fractions. Cornusiin A was tentatively assigned in the gastric fraction. The metabolites originating from kinetic analytes have been classified mainly as phenolic acids, hydrolyzable tannins, and flavonoids. Phenolic acids (protocatechuic acid, gallic acid), tannins (digalloylglucose, tri-O-galloyl-β-D-glucose), and flavonoids (aromadendrin, dihydroquercetin) were detected in the late phases of digestion in fecal slurry suspension. Cornuside was found in FS analyte after 3 h incubation. It was not detected in the samples after 6 and 24 h incubation with FS. In conclusion, cornuside, aromadendrin, and phenolic acids may be potentially bio-accessible compounds of CM. The presence of plants’ secondary metabolites in the intestinal fractions allows us to indicate them as responsible for decreasing glucose and lipid absorption.  相似文献   

8.
Sumac (Rhus coriaria L.) is a spice and medicinal herb traditionally used in the Mediterranean region and the Middle East. Since we previously demonstrated Sumac biological activity in a model of tumor necrosis factor alpha (TNF-α)-induced skin inflammation, the present work is aimed at further demonstrating a potential role in inflammatory disorders, focusing on gastritis. For this purpose, different polar extracts (water-W, ethanol-water-EW, ethanol-E, ethanol macerated-Em, acetone-Ac, ethylacetate-EtA) were investigated in gastric epithelial cells (GES-1) challenged by TNF-α or H. pylori infection. The ethanolic extracts (E, EW, Em) showed the major phenolic contents, correlating with lower half maximal inhibitory concentrations (IC50s) on the release of interleukin-8 (IL-8, <15 μg/mL) and interleukin-6 (IL-6, <20 μg/mL) induced by TNF-α. Similarly, they inhibited IL-8 release (IC50s < 70 μg/mL) during Helicobacter pylori (H. pylori) infection and exhibited a direct antibacterial activity at comparable concentrations (minimum inhibitory concentration (MIC) = 100 μg/mL). The phenolic content and the bioactivity of EW were maintained after simulated gastric digestion and were associated with nuclear factor kappa B (NF-κB) impairment, considered the main putative anti-inflammatory mechanism. On the contrary, an anti-urease activity was excluded. To the best of our knowledge, this is the first demonstration of the potential role of Sumac as a nutraceutical useful in H. pylori-related gastritis.  相似文献   

9.
Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5β1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5β1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and β1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5β1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5β1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.  相似文献   

10.
Background: Human ornithine decarboxylase (ODC) is a well-known oncogene, and the discovery of ODC enzyme inhibitors is a beneficial strategy for cancer therapy and prevention. Methods: We examined the inhibitory effects of a variety of flavone and flavonol derivatives on ODC enzymatic activity, and performed in silico molecular docking of baicalein, 7,8-dihydroxyflavone and myricetin to the whole dimer of human ODC to investigate the possible binding site of these compounds on ODC. We also examined the cytotoxic effects of these compounds with cell-based studies. Results: Baicalein, 7,8-dihydroxyflavone and myricetin exhibited significant ODC suppression activity with IC50 values of 0.88 µM, 2.54 µM, and 7.3 µM, respectively, which were much lower than that of the active-site irreversible inhibitor α-DL-difluoromethylornithine (IC50, the half maximal inhibitory concentration, of approximately 100 µM). Kinetic studies and molecular docking simulations suggested that baicalein, and 7,8-dihydroxyflavone act as noncompetitive inhibitors that are hydrogen-bonded to the region near the active site pocket in the dimer interface of the enzyme. Baicalein and myricetin suppress cell growth and induce cellular apoptosis, and both of these compounds suppress the ODC-evoked anti-apoptosis of cells. Conclusions: Therefore, we suggest that the flavone or flavonol derivatives baicalein, 7,8-dihydroxyflavone, and myricetin are potent chemopreventive and chemotherapeutic agents that target ODC.  相似文献   

11.
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Here we report the synthesis and biological evaluation of a new series of α,γ-diketo acids (DKAs) as NS5B polymerase inhibitors. We initiated structure-activity relationship (SAR) optimization around the furan moiety of compound 1a [IC50 = 21.8 μM] to achieve more active NS5B inhibitors. This yielded compound 3a [IC50 = 8.2 μM] bearing the 5-bromobenzofuran-2-yl moiety, the first promising lead compound of the series. Varying the furan moiety with thiophene, thiazole and indazole moieties resulted in compound 11a [IC50 = 7.5 μM] bearing 3-methylthiophen-2-yl moiety. Finally replacement of the thiophene ring with a bioisosteric phenyl ring further improved the inhibitory activity as seen in compounds 21a [IC50 = 5.2 μM] and 24a [IC50 = 2.4 μM]. Binding mode of compound 24a using glide docking within the active site of NS5B polymerase will form the basis for future SAR optimization.  相似文献   

12.
We have previously reported that radon inhalation activates anti-oxidative functions and inhibits carbon tetrachloride (CCl4)-induced hepatopathy. It has also been reported that antioxidant vitamins can inhibit CCl4-induced hepatopathy. In the current study, we examined the comparative efficacy of treatment with radon, ascorbic acid and α-tocopherol on CCl4-induced hepatopathy. Mice were subjected to intraperitoneal injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after intraperitoneal injection of ascorbic acid (100, 300, or 500 mg/kg bodyweight) or α-tocopherol (100, 300, or 500 mg/kg bodyweight). We estimated the inhibitory effects on CCl4-induced hepatopathy based on hepatic function-associated parameters, oxidative damage-associated parameters and histological changes. The results revealed that the therapeutic effects of radon inhalation were almost equivalent to treatment with ascorbic acid at a dose of 500 mg/kg or α-tocopherol at a dose of 300 mg/kg. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver were significantly higher in mice exposed to radon than in mice treated with CCl4 alone. These findings suggest that radon inhalation has an anti-oxidative effect against CCl4-induced hepatopathy similar to the anti-oxidative effects of ascorbic acid or α-tocopherol due to the induction of anti-oxidative functions.  相似文献   

13.
In folk medicine, Ficus tikoua (F. tikoua) has been used to treat diabetes for a long time, but there is a rare modern pharmacological investigation for its antidiabetic effect and mechanisms. Our study aimed to evaluate its hypoglycemic effect using in vitro and in vivo experimental models and then explore the possible mechanisms. In the ethanol extracts and fractions of F. tikoua, n-butanol fraction (NBF) exhibited the most potent effect on inhibiting α-glucosidase activity (IC50 = 0.89 ± 0.04 μg/mL) and promoting glucose uptake in 3T3-L1 adipocytes. Further animal experiments showed that NBF could play an antidiabetic role by ameliorating random blood glucose, fasting blood glucose, oral glucose tolerance, HbA1c level, and islets damage in diabetic mice. Then, the activities of the five subfractions of NBF (NBF1-NBF5) were further evaluated; NBF2 showed stronger α-glucosidase inhibition activities (IC50 = 0.32 ± 0.05 μg/mL) than NBF. Moreover, NBF2 also possessed the ability to promote glucose uptake, which was mediated via P13K/AKT and AMPK pathways. This study demonstrated that F. tikoua possesses antidiabetic efficacy in vitro and in vivo and provided a scientific basis for its folk medicinal use. NBF2 might be potential natural candidate drugs to treat diabetes mellitus. It is the first time the antidiabetic activity and the potential mechanisms of NBF2 were reported.  相似文献   

14.
γ-Conglutin (γ-C) is the glycoprotein from the edible seed L. albus, studied for long time for its postprandial glycaemic regulating action. It still lacks clear information on what could happen at the meeting point between the protein and the organism: the intestinal barrier. We compared an in vitro system involving Caco-2 and IPEC-J2 cells with an ex vivo system using pig ileum and jejunum segments to study γ-C transport from the apical to the basolateral compartment, and its effects on the D-glucose uptake and glucose transporters protein expression. Finally, we studied its potential in modulating glucose metabolism by assessing the possible inhibition of α-amylase and α-glucosidase. RP-HPLC analyses showed that γ-C may be transported to the basolateral side in the in vitro system but not in the pig intestines. γ-C was also able to promote a decrease in glucose uptake in both cells and jejunum independently from the expression of the SGLT1 and GLUT2 transporters.  相似文献   

15.
There is no effective therapy for milk allergy. The role of lactic acid bacteria (LAB) and probiotics in protection against allergy-related outcomes is still under investigation. The aim of the study was to evaluate the immunomodulative and therapeutic potential of yogurt drinks in cow’s milk allergy (CMA) management. We compared immunoreactivity of α-casein (α-CN), β-casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), and β-lactoglobulin (β-LG) in 27 yogurt drinks fermented with different basic yogurt cultures, or yogurt cultures enriched with Lactobacillus plantarum and/or Bifidobacterium lactis strains, by competitive ELISA assay. Drinks with the lowest antigenic potential were used as allergoids for CMA therapy. BALB/c mice were sensitized via intraperitoneal injection of α-CN + β-LG mixture with aluminum adjuvant, and gavaged with increasing doses of selected low-immunogenic drinks (YM—basic, or YM-LB—enriched with L. plantarum and B. lactis) to induce tolerance. Milk- or phosphate-buffered saline (PBS)-dosed mice served as controls. Compared to milk, the immunoreactivity of proteins in drinks increased or decreased, depending on the bacterial sets applied for fermentation. Only a few sets acted synergistically in reducing immunoreactivity. The selected low-immunogenic drinks stimulated allergic mice for profiling Th2 to Th1 response and acquire tolerance, and the effect was greater with YM-LB drink, which during long-lasting interventional feeding strongly increased the secretion of regulatory cytokines, i.e., IL-10 and TGF-β, and IgA and decreased IL-4, IgE, and anti-(α-CN + β-LG) IgG1. The studies revealed variations in the potency of yogurt bacteria to change allergenicity of milk proteins and the need for their strict selection to obtain a safe product for allergy sufferers. The YM-LB drink with reduced antigenic potential may be a source of allergoids used in the immunotherapy of IgE mediated CMA, but further clinical or volunteer studies are required.  相似文献   

16.
Stilbenes are a major grapevine class of phenolic compounds, known for their biological activities, including anti-inflammatory and antioxidant, but never studied in combination. We aimed to evaluate the effect of trans-resveratrol + ε-viniferin as an antioxidant mixture and its role in inflammatory development an in vivo model of severe acute liver failure induced with TAA. Trans-resveratrol + trans-ε-viniferin (5 mg/kg each) was administered to Wistar rats. Resveratrol + ε-viniferin significantly decreased TBARS and SOD activity and restored CAT and GST activities in the treated group. This stilbene combination reduced the expression of TNFα, iNOS, and COX-2, and inhibited MMP-9. The combination of resveratrol + ε-viniferin had a hepatoprotective effect, reducing DNA damage, exhibiting a protective role on the antioxidant pathway by altering SOD, CAT, and GST activities; by downregulating TNFα, COX-2, and iNOS; and upregulating IL-10. Our results suggested that adding viniferin to resveratrol may be more effective in hepatoprotection than resveratrol alone, opening a new perspective on using this stilbene combination in functional diets.  相似文献   

17.
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD.  相似文献   

18.
The antidiabetic effect of a hot water extract of stems of Salacia chinensis (SCE) was evaluated in vivo in KK-Ay mice, a typical type 2 diabetes mellitus mice model. Administration of CE-2 dietary feed containing 0.25 and/or 0.50% of SCE for three weeks to KK-Ay mice significantly suppressed the elevation of both blood glucose and HbA1c levels without significant changes in body weight or food intake. Glucose tolerance was improved by administration to KK-Ay mice for 27 days of AIN93M purified dietary feed containing 0.12% of SCE. No suppressive effect with respect to HbA1c level was observed when AIN93M/Glc dietary feed in which all digestible glucides were replaced with glucose was administered with SCE. Thus, α-glucosidase inhibitory activity approved as the mechanism of action of the antidiabetic effect of SCE by in vitro investigation was reconfirmed also in in vivo studies. Evaluation of the α-glucosidase inhibitory activity of the active constituents, salacinol (1), kotalanol (3), and neokotalanol (4), by employing human α-glucosidases revealed that these compounds inhibited them as potently (IC50 = 3.9–4.9 μM for maltase) as they inhibited rat small intestinal α-glucosidase. The principal sulfonium constituents (1–4) were highly stable in an artificial gastric juice. In addition, 1–4 were hardly absorbed from the intestine in an experiment using the in situ rat ligated intestinal loop model. The results indicate that these sulfoniums are promising leads for a new type of anti-diabetic agents.  相似文献   

19.
This research aims to investigate the influence of elicitation and drying methods (natural, convection, microwave, and freeze-drying), with jasmonic acid (JA) and yeast extract (YE) on the biological activity of extracts and hydrolysates from lovage (Levisticum officinale Koch) leaves. The results indicate that the highest TPC was determined for hydrolysates obtained from JA-elicited microwave-dried lovage (24.96 mg/gDW). The highest ACE and lipase inhibitory activity was noted for PBS extract obtained from JA-elicited lovage after microwave drying (EC50 = 0.16 and 0.12 mg/mL, respectively). Ethanolic extract from JA-elicited lovage after freeze-drying was characterized by the highest α-amylase inhibitory activity (EC50 = 3.92 mg/mL) and the highest α-glucosidase inhibitory activity (EC50 = 1.43 mg/mL) was noted for hydrolysates from control plants subjected to freeze-drying. The highest antimicrobial activity towards C. albicans yeasts was observed for microwave ethanolic extracts with minimal inhibition (MIC) and lethal (MLC) concentrations of 0.625 and 1.25 mg/mL, respectively.  相似文献   

20.
Naturally occurring retinoids (retinol, retinal, retinoic acid, retinyl esters) are a subclass of β-apocarotenoids, defined by the length of the polyene side chain. Provitamin A carotenoids are metabolically converted to retinal (β-apo-15-carotenal) by the enzyme β-carotene-15,15′-dioxygenase (BCO1) that catalyzes the oxidative cleavage of the central C=C double bond. A second enzyme β-carotene-9′-10′-dioxygenase cleaves the 9′,10′ bond to yield β-apo-10′-carotenal and β-ionone. Chemical oxidation of the other double bonds leads to the generation of other β-apocarotenals. Like retinal, some of these β-apocarotenals are metabolically oxidized to the corresponding β-apocarotenoic acids or reduced to the β-apocarotenols, which in turn are esterified to β-apocarotenyl esters. Other metabolic fates such as 5,6-epoxidation also occur as for retinoids. Whether the same enzymes are involved remains to be understood. β-Apocarotenoids occur naturally in plant-derived foods and, therefore, are present in the diet of animals and humans. However, the levels of apocarotenoids are relatively low, compared with those of the parent carotenoids. Moreover, human studies show that there is little intestinal absorption of intact β-apocarotenoids. It is possible that they are generated in vivo under conditions of oxidative stress. The β-apocarotenoids are structural analogs of the naturally occurring retinoids. As such, they may modulate retinoid metabolism and signaling. In deed, those closest in size to the C-20 retinoids—namely, β-apo-14′-carotenoids (C-22) and β-apo-13-carotenone (C-18) bind with high affinity to purified retinoid receptors and function as retinoic acid antagonists in transactivation assays and in retinoic acid induction of target genes. The possible pathophysiologic relevance in human health remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号