首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.  相似文献   

2.
Polytetrafluoroethylene (PTFE)/Al reactive material with different aluminum particle sizes were prepared by molding and sintering, and the effect of aluminum particle size on the impact behavior of PTFE/Al reactive material with a mass ratio of 50:50 was investigated. The results show that aluminum particle size has significant effects on the shock-reduced reaction diffusion, reaction speed, and degree of reaction of the PTFE/Al reactive material. At a moderate strain rate, the reaction delay of PTFE/Al increased, and the reaction duration and degree decreased, with the increase of aluminum particle size. Under the strong impact of explosive loading, aluminum particle size has little effect on the reaction delay, which maintains at about 1.5 μs–2.5 μs, but the reaction durability and degree of reaction of PTFE/Al decrease with increasing aluminum particle size. There is also a strain rate threshold for the shock-induced reaction of PTFE/Al reactive material, which is closely related to aluminum particle size. The shock-induced reaction occurs when the strain rate threshold is exceeded.  相似文献   

3.
Preforming pressure and the pressure holding time are important parameters of the molding process, which directly affect the mechanical properties of materials. In order to obtain the best molding parameters of Al-rich Al/PTFE/TiH2 composites, based on the quasi-static compression test, the influence of molding parameters on the mechanical properties of Al-rich Al/PTFE/TiH2 composites was analyzed, and the microstructure characteristics of Al-rich Al/PTFE/TiH2 specimens were analyzed by SEM. An X-ray diffractometer was used to analyze the phase of the residue after quasi-static compression experiment. The results show that: (1) With the increase in molding parameters (preforming pressure and the pressure holding time), the compressive strength, failure strain and toughness of Al-rich Al/PTFE/TiH2 specimens first increase and then decrease. The best molding process parameters of Al-rich Al/PTFE/TiH2 materials are preforming pressure 240 MPa and the pressure holding time 100 s. (2) For unsintering specimens, when the preforming pressure is less than 150 MPa, the porosity of the specimen increases slowly at first and then decreases. When the preforming pressure is greater than 150 MPa, the porosity of the specimen increases first and then decreases. When the pressure holding time is no more than 100 s, the porosity of the specimen decreases gradually. When the pressure holding time is more than 100 s, the porosity of the specimen increases first and then decreases. For sintered specimens, when the preforming pressure is less than 100 MPa, the porosity of the specimen decreases gradually. When the preforming pressure is greater than 100 MPa, the porosity of the specimen first increases and then decreases. With the increase in the pressure holding time, the porosity first increases and then decreases. For each preforming pressure specimen, compared with that before sintering, the porosity after sintering either decreases or increases. For each the pressure holding time specimen, the porosity increases after sintering compared with that before sintering. The microstructure of PTFE crystal inside the specimen is mainly planar PTFE crystal. The size and number of planar PTFE crystals are significantly affected by the molding parameters, which further affects the mechanical properties of Al-rich Al/PTFE/TiH2 specimens. When the preforming pressure is less than 100 MPa, the planar PTFE crystals are small and few, which results in the worst mechanical properties of the specimens. When the preforming pressure is more than 100 MPa and does not contain 240 Mpa, the planar PTFE crystals are small and there are more of them, which results in better mechanical properties of the specimens. When the preforming pressure is 240 MPa, the planar PTFE crystals are large and numerous, which results in the best mechanical properties of the specimen. When the pressure holding time is 100 s, the planar PTFE crystals are large and there are more of them, which results in the best mechanical properties of the specimen. (3) The reactivity of Al-rich Al/PTFE/TiH2 specimens with TiH2 the content of 10% under quasi-static compression is not significantly affected by the molding parameters.  相似文献   

4.
5.
Fe–Al energetic material releases a large amount of energy under impact loading; therefore, it can replace traditional materials and be used in new weapons. This paper introduces the macroscopic experiment and microscopic molecular-dynamics simulation research on the energy release characteristics of Fe–Al energetic jets under impact loading. A macroscopic dynamic energy acquisition test system was established to quantitatively obtain the composition of Fe–Al energetic jet reaction products. A momentum mirror impacting the Fe–Al particle molecular model was established and the microstructure evolution and impact thermodynamic response of Fe–Al particles under impact loading were analyzed. The mechanism of multi-scale shock-induced chemical reaction of Fe–Al energetic jets is discussed. The results show that the difference in velocity between Fe and Al atoms at the shock wave fronts is the cause of the shock-induced reaction; when the impact strength is low, the Al particles are disordered and amorphous, while the Fe particles remain in their original state and only the oxidation reaction of Al and a small amount intermetallic compound reaction occur. With the increase of impact strength, Al particles and Fe particles are completely disordered and amorphized in a high-temperature and high-pressure environment, fully mixed and penetrated. The temperature of the system rises rapidly, due to a violent thermite reaction, and the energy released by the jet shows an increasing trend; there is an impact intensity threshold, so that the jet release energy reaches the upper limit.  相似文献   

6.
One of the possible solutions for the transition of the actual energetic model is the use of thermal energy storage technologies. Among them, thermochemical energy storage based on redox reactions involving metal oxides is very promising due to its high energy density. This paper deals with the development of the kinetic study based on data extracted from the thermogravimetric analysis of a cobalt-nickel mixed oxide (Co2.4Ni0.6O4) without and with the addition of SiO2 particles to improve the cyclability. The results show that in the reduction reaction the activation energy is not affected by the addition of SiO2 particles while in the oxidation reaction an increase in the activation energy is observed. The theoretical models fitting with the experimental data are different for each material in the reduction reaction. The mixed oxide is controlled by a nucleation and growth mechanism for conversion ratios higher than 0.5, while the added material is controlled by diffusion mechanisms. In the oxidation reaction, the two materials are controlled by a nucleation and growth mechanism for conversion ratios higher than 0.5.  相似文献   

7.
As a new kind of multifunctional energetic structural material (MESM), amorphous alloy will undergo a chemical reaction and release energy under impact load. In this paper, an analysis method for the impact-induced reaction parameters of solid materials was derived based on a three-term equation of state and Avrami–Erofeev equation. The relation between the degree of reaction, pressure, and temperature of Zr68.5Cu12Ni12Al7.5 amorphous alloy was obtained. The influence of participation of an oxidizing reaction on the material energy release efficiency was analyzed. The relation between the energy release efficiency and impact velocity was achieved by an experiment in which Zr68.5Cu12Ni12Al7.5 amorphous alloy fragments impact a steel plate. The variations of pressure and temperature during the impact process were obtained. In the end, a reaction kinetic model was modified, and the kinetic parameters for the impact-induced reaction of materials in an air environment were obtained.  相似文献   

8.
Mineral trioxide aggregates (MTA) have been developed as a dental root repair material for a range of endodontics procedures. They contain a small amount of bismuth oxide (Bi2O3) as a radiopacifier to differentiate adjacent bone tissue on radiographs for endodontic surgery. However, the addition of Bi2O3 to MTA will increase porosity and lead to the deterioration of MTA’s mechanical properties. Besides, Bi2O3 can also increase the setting time of MTA. To improve upon the undesirable effects caused by Bi2O3 additives, we used zirconium ions (Zr) to substitute the bismuth ions (Bi) in the Bi2O3 compound. Here we demonstrate a new composition of Zr-doped Bi2O3 using spray pyrolysis, a technique for producing fine solid particles. The results showed that Zr ions were doped into the Bi2O3 compound, resulting in the phase of Bi7.38Zr0.62O12.31. The results of materials analysis showed Bi2O3 with 15 mol % of Zr doping increased its radiopacity (5.16 ± 0.2 mm Al) and mechanical strength, compared to Bi2O3 and other ratios of Zr-doped Bi2O3. To our knowledge, this is the first study of fabrication and analysis of Zr-doped Bi2O3 radiopacifiers through the spray pyrolysis procedure. The study reveals that spray pyrolysis can be a new technique for preparing Zr-doped Bi2O3 radiopacifiers for future dental applications.  相似文献   

9.
Structural, optical and electrical properties of Al+MoO3 and Au+MoO3 thin films prepared by simultaneous magnetron sputtering deposition were investigated. The influence of MoO3 sputtering power on the Al and Au nanoparticle formation and spatial distribution was explored. We demonstrated the formation of spatially arranged Au nanoparticles in the MoO3 matrix, while Al incorporates in the MoO3 matrix without nanoparticle formation. The dependence of the Au nanoparticle size and arrangement on the MoO3 sputtering power was established. The Al-based films show a decrease of overall absorption with an Al content increase, while the Au-based films have the opposite trend. The transport properties of the investigated films also are completely different. The resistivity of the Al-based films increases with the Al content, while it decreases with the Au content increase. The reason is a different transport mechanism that occurs in the films due to their different structural properties. The choice of the incorporated material (Al or Au) and its volume percentage in the MoO3 matrix enables the design of materials with desirable optical and electrical characteristics for a variety of applications.  相似文献   

10.
The influence of tin foil and Ni coatings on microstructures, mechanical properties, and the interfacial reaction mechanism was investigated during laser welding/brazing of Al/Cu lap joints. In the presence of a Zn-based filler, tin foil as well as Ni coating strengthened the Al/Cu joints. The tin foil only slightly influenced the joint strength. It considerably improved the spreading/wetting ability of the weld filler; however, it weakened the bonding between the seam and the Al base metal. The Ni coating considerably strengthened the Al/Cu lap joints; the highest tensile strength was 171 MPa, which was higher by 15.5% than that of a joint without any interlayer. Microstructure analysis revealed that composite layers of Ni3Zn14–(τ2 Zn–Ni–Al ternary phase)–(α-Zn solid solution)–Al3Ni formed at the fusion zone (FZ)/Cu interface. Based on the inferences about the microstructures at the interfaces, thermodynamic results were calculated to analyze the interfacial reaction mechanism. The diffusion of Cu was limited by the Ni coating and the mutual attraction between the Al and Ni atoms. The microstructure comprised Zn, Ni, and Al, and they replaced the brittle Cu–Zn intermetallic compounds, successfully strengthening the bonding of the FZ/Cu interface.  相似文献   

11.
Among the various phases of bismuth oxide, the high temperature metastable face-centered cubic δ phase attracts great attention due to its unique properties. It can be used as an ionic conductor or an endodontic radiopacifying material. However, no reports concerning tantalum and bismuth binary oxide prepared by high energy ball milling and serving as a dental radiopacifier can be found. In the present study, Ta2O5-added Bi2O3 composite powders were mechanically milled to investigate the formation of these metastable phases. The as-milled powders were examined by X-ray diffraction and scanning electron microscopy to reveal the structural evolution. The as-milled composite powders then served as the radiopacifier within mineral trioxide aggregates (i.e., MTA). Radiopacity performance, diametral tensile strength, setting times, and biocompatibility of MTA-like cements solidified by deionized water, saline, or 10% calcium chloride solution were investigated. The experimental results showed that subsequent formation of high temperature metastable β-Bi7.8Ta0.2O12.2, δ-Bi2O3, and δ-Bi3TaO7 phases can be observed after mechanical milling of (Bi2O3)95(Ta2O5)5 or (Bi2O3)80(Ta2O5)20 powder mixtures. Compared to its pristine Bi2O3 counterpart with a radiopacity of 4.42 mmAl, long setting times (60 and 120 min for initial and final setting times) and 84% MG-63 cell viability, MTA-like cement prepared from (Bi2O3)95(Ta2O5)5 powder exhibited superior performance with a radiopacity of 5.92 mmAl (the highest in the present work), accelerated setting times (the initial and final setting time can be shortened to 25 and 40 min, respectively), and biocompatibility (94% cell viability).  相似文献   

12.
In situ environmental transmission electron microscope (ETEM) could provide intuitive and solid proof for the local structure and chemical evolution of materials under practical working conditions. In particular, coupled with atmosphere and thermal field, the behavior of nano catalysts could be directly observed during the catalytic reaction. Through the change of lattice structure, it can directly correlate the relationship between the structure, size and properties of materials in the nanoscale, and further directly and accurately, which is of great guiding value for the study of catalysis mechanism and the optimization of catalysts. As an outstanding catalytic material in the application of methane reforming, molybdenum oxide (MoO3)-based materials and its deoxidation process were studied by in situ ETEM method. The corresponding microstructures and components evolution were analyzed by diffraction, high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectrum (EELS) techniques. MoO3 had a good directional deoxidation process accompanied with the process of nanoparticles crushing and regrowth in hydrogen (H2) and thermal field. However, in the absence of H2, the samples would exhibit different structural evolution.  相似文献   

13.
A sandwich structured Bi2Te3-nanoplates/graphene-nanosheet (Bi2Te3/G) hybrid has been synthesized by a facile in situ solvothermal route and has been investigated as a potential anode material for Li-ion batteries. Bi2Te3 grows during the solvothermal process with the simultaneous reduction of graphite oxide into graphene. The in situ formation process of the hybrid has been investigated by X-ray diffraction and X-ray photoelectron spectra. The Li-storage mechanism and performance of Bi2Te3/G and bare Bi2Te3 have been studied by galvanostatic cycling and cyclic voltammetry. The Bi2Te3/G sandwich exhibits an obviously improved cycling stability compared to bare Bi2Te3. The enhancement in electrochemical performance can be attributed to the combined conducting, confining and dispersing effects of graphene for Bi2Te3 nanoplates and to the self-assembled sandwich structure.  相似文献   

14.
A silicon dioxide/polytetrafluoroethylene/polyethyleneimine/polyphenylene sulfide (SiO2/PTFE/PEI/PPS) composite filter medium with three-dimensional network structures was fabricated by using PPS nonwoven as the substrate which was widely employed as a cleanable filter medium. The PTFE/PEI bilayers were firstly coated on the surfaces of the PPS fibers through the layer-by-layer self-assembly technique ten times, followed by the deposition of SiO2 nanoparticles, yielding the SiO2/(PTFE/PEI)10/PPS composite material. The contents of the PTFE component were easily controlled by adjusting the number of self-assembled PTFE/PEI bilayers. As compared with the pure PPS nonwoven, the obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits better mechanical properties and enhanced wear, oxidation and heat resistance. When employed as a filter material, the SiO2/(PTFE/PEI)10/PPS composite filter medium exhibited excellent filtration performance for fine particulate. The PM2.5 (particulate matter less than 2.5 μm) filtration efficiency reached up to 99.55%. The superior filtration efficiency possessed by the SiO2/(PTFE/PEI)10/PPS composite filter medium was due to the uniformly modified PTFE layers, which played a dual role in fine particulate filtration. On the one hand, the PTFE layers not only increase the specific surface area and pore volume of the composite filter material but also narrow the spaces between the fibers, which were conducive to forming the dust cake quickly, resulting in intercepting the fine particles more efficiently than the pure PPS filter medium. On the other hand, the PTFE layers have low surface energy, which is in favor of the detachment of dust cake during pulse-jet cleaning, showing superior reusability. Thanks to the three-dimensional network structures of the SiO2/(PTFE/PEI)10/PPS composite filter medium, the pressure drop during filtration was low.  相似文献   

15.
P-aminophenol is a hazardous environmental pollutant that can remain in water in the natural environment for long periods due to its resistance to microbiological degradation. In order to decompose p-aminophenol in water, manganese oxide/polytetrafluoroethylene (PTFE) hollow fiber membranes were prepared. MnO2 and Mn3O4 were synthesized and stored in PTFE hollow fiber membranes by injecting MnSO4·H2O, KMnO4, NaOH, and H2O2 solutions into the pores of the PTFE hollow fiber membrane. The resultant MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG). The phenol catalytic degradation performance of the hollow fiber membranes was evaluated under various conditions, including flux, oxidant content, and pH. The results showed that a weak acid environment and a decrease in flux were beneficial to the catalytic degradation performance of manganese oxide/PTFE hollow fiber membranes. The catalytic degradation efficiencies of the MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 70% and 37% when a certain concentration of potassium monopersulfate (PMS) was added, and the catalytic degradation efficiencies of MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 50% and 35% when a certain concentration of H2O2 was added. Therefore, the manganese oxide/PTFE hollow fiber membranes represent a good solution for the decomposition of p-aminophenol.  相似文献   

16.
Two kinds of Al2O3 ceramic samples with and without Al film deposited were designed respectively. The influences of temperature and high kinetic energy sputtering particles on the wettability and interface strength of Al/Al2O3 were studied by comparing the wetting behavior of molten aluminum on two samples. The results show that molten aluminum does not wet the Al2O3 sample without Al film deposited at 700 °C, the contact angle is 165°, and the interfacial shear strength is 28 MPa. With the increase of temperature, the contact angle decreases continuously, and the interface shear strength gradually increases. The fracture of the brazed joint is transferred from the interface to the brazing seam. In comparison, the sample deposited with Al film is wetted by molten aluminum at 700 °C, and the contact angle is only 12°. The interface shear strength is about 120 MPa and is less affected by temperature. The shear fracture of the joint occurs in the brazed seam of Al metal. Therefore, the high energy generated by either the temperature increase or the particle sputtering enable the Al atoms to overcome the energy barrier to form Al–O bonds with the O atoms on the Al2O3 ceramic surface, thereby improving the wettability of Al/Al2O3.  相似文献   

17.
Strain-induced internal electric fields present a significant path to boosting the separation of photoinduced electrons and holes. In addition, piezo-induced positive/negative pairs could be released smoothly, taking advantage of the excellent electroconductibility of some conductors. Herein, the hybrid piezo-photocatalysis is constructed by combining debut piezoelectric nanosheets (Bi4O5I2) and typical conductor multiwalled carbon nanotubes (CNT). The photocatalytic degradation efficiency that the hybrid CNT/Bi4O5I2 exhibits was remarkably increased by more than 2.3 times under ultrasonic vibration, due to the piezo-generated internal electric field. In addition, the transient photocurrent spectroscopy and electrochemical impedance measurement reveal that the CNT coating on Bi4O5I2 enhances the piezo-induced positive/negative migration. Therefore, the piezocatalytic activity of CNT/Bi4O5I2 could be improved by three times, compared with pure Bi4O5I2 nanosheets. Our results may offer promising approaches to sketching efficient piezo-photocatalysis for the full utilization of solar energy or mechanical vibration.  相似文献   

18.
This study proposes front colored glass for building integrated photovoltaic (BIPV) systems based on multi-layered derivatives of glass/MoO3/Al2O3 with a process technology developed to realize it. Molybdenum oxide (MoO3) and aluminum oxide (Al2O3) layers are selected as suitable candidates to achieve thin multi-layer color films, owing to the large difference in their refractive indices. We first investigated from a simulation based on wave optics that the glass/MoO3/Al2O3 multi-layer type offers more color design freedom and a cheaper fabrication process when compared to the glass/Al2O3/MoO3 multi-layer type. Based on the simulation, bright blue and green were primarily fabricated on glass. It is further demonstrated that brighter colors, such as yellow and pink, can be achieved secondarily with glass/MoO3/Al2O3/MoO3 due to enhanced multi-interfacial reflections. The fabricated color glasses showed the desired optical properties with a maximum transmittance exceeding 80%. This technology exhibits promising potential in commercial BIPV system applications.  相似文献   

19.
The noble, metal-free materials capable of efficiently catalyzing water splitting reactions currently hold a great deal of promise. In this study, we reported the structure and electrochemical performance of new MoS2-based material synthesized with L-cysteine. For this, a facile one-pot hydrothermal process was developed and an array of densely packed nanoplatelet-shaped hybrid species directly on a conductive substrate were obtained. The crucial role of L-cysteine was determined by numerous methods on the structure and composition of the synthesized material and its activity and stability for hydrogen evolution reaction (HER) from the acidic water. A low Tafel slope of 32.6 mV dec−1, close to a Pt cathode, was registered for the first time. The unique HER performance at the surface of this hybrid material in comparison with recently reported MoS2-based electrocatalysts was attributed to the formation of more defective 1T, 2H-MoS2/MoOx, C nanostructures with the dominant 1T-MoS2 phase and thermally degraded cysteine residues entrapped. Numerous stacks of metallic (1T-MoS2 and MoO2) and semiconducting (2H-MoS2 and MoO3) fragments relayed the formation of highly active layered nanosheets possessing a low hydrogen adsorption free energy and much greater durability, whereas intercalated cysteine fragments had a low Tafel slope of the HER reaction. X-ray photoelectron spectroscopy, scanning electron microscopy, thermography with mass spectrometry, high-resolution transmission electron microscopy, Raman spectroscopy techniques, and linear sweep voltammetry were applied to verify our findings.  相似文献   

20.
Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants, Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si–, Mo5Si3− and MoSi2–MgAl2O4 composites with a broad compositional range. Reduction of MoO3 by Mg and Al is highly exothermic and produces MgO and Al2O3 as precursors of MgAl2O4. Molybdenum silicides are synthesized from the reactions of Si with both reduced and elemental Mo. Experimental evidence indicated that the reaction proceeded as self-propagating high-temperature synthesis (SHS) and the increase in silicide content weakened the exothermicity of the overall reaction, and therefore, lowered combustion front temperature and velocity. The XRD analysis indicated that Mo3Si–, Mo5Si3– and MoSi2–MgAl2O4 composites were well produced with only trivial amounts of secondary silicides. Based on SEM and EDS examinations, the morphology of synthesized composites exhibited dense and connecting MgAl2O4 crystals and micro-sized silicide particles, which were distributed over or embedded in the large MgAl2O4 crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号