首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, it was found that an ancient bronze sword had special microstructures, i.e., a tin (Sn)-rich layer (Sn: 38.51 wt.%), that was around 0.1–0.3 mm in thickness in the bronze substrate (Sn: 18.57 wt.%). This sword was unearthed from the same Chu tombs of the “Sword of Gou Jian”, and dated back to the late Spring and Autumn Period (496 BC–464 BC). The experimental and theoretical analyses revealed that (1) the Sn-rich layer exhibited higher microhardness (around 650 HV) than the sword body (around 300 HV); (2) the Sn-rich layer showed a brittle fracture due to the formation of a large amount of α + δ eutectoid, while the sword body was of good toughness due to a large amount of α-Cu solid solution phase; and (3) theoretical calculations of Sn diffusion in the Cu substrate indicated that this Sn-rich layer could have been formed within several hours or several days if the temperature was above 600 °C. Therefore, this sword was proposed to be a novel kind of composite bronze sword, and the possible manufacturing technique was a surface treatment called “dip or wipe tinning” or tin amalgam, which was widely used in the Bronze Age. Technically, this process possesses more advantages than the well-known two-times casting for making the “double-colour” or bi-metallic composite bronze sword. This research showed that the materials processing level was beyond our expectations for ancient China 2500 years ago.  相似文献   

2.
The aim of the study was to investigate the effect of different repair procedures on the repair bond strength of bulk-fill and nanohybrid resin composites after different aging periods. The resin composite blocks (8 × 8 × 4 mm3) were prepared from a bulk-fill (reliaFIL Bulk) and a nanohybrid (reliaFIL LC) resin composite and grouped according to aging duration (6 months, 1 year, and 2 years). Following aging, the blocks were assigned to different surface treatments; air-abrasion with aluminum oxide powder, roughening with a diamond bur, and no treatment. After cleansing with phosphoric acid, a silane layer (Porcelain Primer) was applied on the surface of half of the specimens in each group. The specimens were subdivided into two groups (n = 5): Scotchbond Universal (3M Oral Care) and All-Bond Universal (Bisco). The blocks were repaired with the nanohybrid composite (8 × 8 × 8 mm 3). The repaired specimens were stored in distilled water (37 °C/24 h) and segmented into beams. Half of the beams were immediately subjected to microtensile μTBS testing (1 mm/min), while the other half was stored in distilled water (37 °C) for 6 months before testing. Failure modes were analyzed using stereomicroscope and SEM. Statistical analyses were performed with ANOVA and least significant difference tests (LSD) tests (p = 0.05). The extension of aging periods (6 months, 1 year, and 2 years) reduced the repair bond strength in some groups for both resin composites (p < 0.05). The air-abrasion and bur roughening improved the repair bond strength (p < 0.05). The silane application did not influence the repair bond strength and durability (p > 0.05). There was no difference among the universal adhesives in the same surface treatment groups (p > 0.05). The mechanical roughening treatments are necessary for the repair of resin composite. The universal adhesives might be used for the repair of resin composites regardless of silane content without prior silane application.  相似文献   

3.
This ex vivo study aimed to compare the microtensile bond strength of fiber-reinforced and particulate filler composite to coronal and pulp chamber floor dentin using a self-etching adhesive system. Coronal dentin of 40 human molar teeth was exposed by cutting occlusal enamel with a low-speed saw. Teeth were then randomly divided into two groups (n = 20). The first group was left as is, while in the second group, pulp chamber floor dentin was exposed by trepanation. After placement of a self-etching adhesive system (G-aenial Bond, GC, Tokyo, Japan), groups were further divided into two sub-groups (n = 10) according to the type of composite: fiber-reinforced composite (EP, everX Posterior, GC, Tokyo, Japan) and particulate filler composite (GP, G-aenial Posterior, GC, Tokyo, Japan). Then, composite blocks were built up. Sticks (1.0 × 1.0 mm2) were obtained from each specimen by sectioning, then microtensile bond strength (μTBS) test was performed. Statistical analysis included one-way ANOVA test and Student’s t-test (p < 0.05). μTBS values were 22.91 ± 14.66 and 24.44 ± 13.72 MPa on coronal dentin, 14.00 ± 5.83 and 12.10 ± 8.89 MPa on pulp chamber floor dentin for EP and GP, respectively. Coronal dentin yielded significantly higher μTBS than pulp chamber floor dentin (p < 0.05), independently from the tested composites.  相似文献   

4.
This study aimed to measure the effect of storage environment on the hardness, surface roughness and wear ability of CAD/CAM resin-matrix ceramics. A total of 200 rectangular-shaped specimens were obtained by sectioning 5 CAD/CAM blocks; Crystal Ultra (CU), Vita Enamic (VE), Lava Ultimate (LU), Cerasmart (CS) and Vita blocks Mark II (MII). Microhardness and surface roughness were measured at baseline and after 7 days of immersion either in saliva or cola (n = 10). The wear ability of the CAD/CAM materials against steatite-ceramics antagonist was determined using a chewing simulator. The data were statistically analyzed using factorial ANOVA followed by post hoc Bonferroni multiple comparison tests (p < 0.05). The independent factors significantly influenced the microhardness and surface roughness (p < 0.05). The highest VHN was observed in MII at baseline (586.97 ± 13.95), while CU showed the lowest VHN after 7 days of immersion in cola (68.3 ± 1.89). On the contrary, the highest Ra was observed after 120,000 chewing cycles for the VE specimens (1.09 ± 0.43 µm) immersed in cola, while LU showed the lowest Ra at baseline (0.07 ± 0.01 µm). The highest % mass loss of the antagonist was observed with MII immersed in cola (1.801%), while CS demonstrated the lowest % mass loss of 0.004% and 0.007% in AS and cola, respectively. This study confirms that the surface properties of tested CAD/CAM materials are susceptible to degradation in an acidic environment except for hardness and wear of CS material.  相似文献   

5.
The objective of this work was to compare the micro-tensile bond strength (µTBS) of CAD/CAM (Computer-Aided Design/ Computer-Aided Manufacturing) specimens cemented with different pairing of adhesives and resin-cements using two Immediate Dentin Dealing (IDS) approaches in comparison with Delay Dentin Sealing (DDS). Coronal dentin from 108 molars were divided into nine groups (n = 12) depending on the adhesive/resin-cement (A-C) assigned. Lava™ Ultimate (4 × 10 × 10 mm) was cemented according to different strategies: IDS1(cementation after dentin sealing), DDS (dentin sealing and cementation at 2-weeks), IDS2 (immediate dentin sealing and cementation at 2-weeks). Samples were sectioned and tested until failure to determine the µTBS. Failure mode was categorized as dentin/cement (DC), at Lava™ Ultimate/cement (LC) and hybrid (H). Kruskal–Wallis and Mann–Whitney U tests and influence of the type of failure on the µTBS by survival analysis with competing risk was explored. Mostly, µTBS values were equal or higher in IDS2 than DDS. In general, A-Cs that showed higher µTBS, have high percentages of LC failure. Survival analysis with competing risk between DC + H and LC values showed that some A-Cs would significantly increase the µTBS values for IDS2. A-Cs with the highest adhesion values showed a high percentage of fractures at the LC interface, suggesting that the adhesion at the adhesive/dentin interface would be higher.  相似文献   

6.
Under some clinical conditions, the preparation of crowns of limited marginal thickness is inevitable. In such situations, it is questionable whether the same ideal preparation criteria can be applied equally. Since there are only a small number of studies focusing on the fracture resistance with respect to the marginal thickness, there is a need for a study evaluating whether zirconia crowns of limited marginal thickness are clinically acceptable. The purpose of this study is to evaluate the fracture resistance of monolithic zirconia crowns of limited marginal thickness in the posterior area. Methods: Abutments and CAD/CAM zirconia crowns with a marginal thickness of 1.0 mm were set as the control group, while experimental groups A, B, and C possessed reduced marginal thicknesses of 0.8 mm, 0.6 mm, and 0.4 mm, respectively (n = 10 per group). Resin-based abutment dies and monolithic zirconia crowns were fabricated using the CAD/CAM technique, and a universal testing machine was used to measure the fracture load value. Fractured specimens were examined with a scanning electron microscope. The data were analyzed using a one-way ANOVA and Bonferroni post hoc test (p < 0.05). Results: The means and standard deviations of the fracture load values of the control group and the three experimental groups were as follows: control group (1.0 mm): 3090.91 ± 527.77 N; group A (0.8 mm): 2645.39 ± 329.21 N; group B (0.6 mm): 2256.85 ± 454.15 N; group C (0.4 mm): 1957.8 ± 522.14 N. Conclusions: The crowns fabricated with a CAD/CAM zirconia block with limited marginal thicknesses of 0.6 mm and 0.4 mm showed significantly lower fracture resistance values compared to those with the recommended margin thickness of 1.0 mm.  相似文献   

7.
This study investigated the effects of microwave sintering on the microstructures and properties of copper-rGO composites. Graphene oxide was coated onto copper particles by wet ball milling, and copper-rGO composites were formed upon microwave sintering in an argon atmosphere. Scanning electron microscopy was then used to observe the mixing in the ball-milled composite powder, and the morphology of the bulk composite after microwave sintering. Raman spectra revealed how graphene oxide changed with ball milling and with microwave sintering. The microhardness, electrical conductivity, and thermal conductivity of the composite were also measured. The results showed that graphene oxide and copper particles were well combined and uniformly distributed after wet ball milling. The overall microhardness of microwave-sintered samples was 81.1 HV, which was 14.2% greater than that of pure copper (71 HV). After microwave sintering, the microhardness of the samples in areas showing copper oxide precipitates with eutectic structures was 89.5 HV, whereas the microhardness of the precipitate-free areas was 70.6 HV. The electrical conductivity of the samples was 87.10 IACS%, and their thermal conductivity was 391.62 W·m−1·K−1.  相似文献   

8.
The aim of this study was to evaluate four test methods on the adhesion of resin composite to resin composite, and resin composite to glass ceramic. Resin composite specimens (N = 180, Quadrant Universal LC) were obtained and distributed randomly to test the adhesion of resin composite material and to ceramic materials (IPS e.max CAD) using one of the four following tests: (a) Macroshear SBT: (n = 30), (b) macrotensile TBT: (n = 30), (c) microshear µSBT: (n = 30) and (d) microtensile µTBT test (n = 6, composite-composite:216 sticks, ceramic-composite:216 sticks). Bonded specimens were stored for 24 h at 23 °C. Bond strength values were measured using a universal testing machine (1 mm/min), and failure types were analysed after debonding. Data were analysed using Univariate and Tukey’s, Bonneferroni post hoc test (α = 0.05). Two-parameter Weibull modulus, scale (m), and shape (0) were calculated. Test method and substrate type significantly affected the bond strength results, as well as their interaction term (p < 0.05). Resin composite to resin composite adhesion using SBT (24.4 ± 5)a, TBT (16.1 ± 4.4)b and µSBT (20.6 ± 7.4)a,b test methods presented significantly lower mean bond values (MPa), compared to µTBT (36.7 ± 8.9)b (p < 0.05). When testing adhesion of glass ceramics to resin composite, µSBT (6.6 ± 1)B showed the lowest and µTBT (24.8 ± 7)C,D the highest test values (MPa) (SBT (14.6 ± 5)A,D and TBT (19.9 ± 5)A,B) (p < 0.05). Resin composite adhesion to ceramic vs. resin composite did show significant difference for the test methods SBT and µTBT (resin composite (24.4 ± 5; 36.7 ± 9 MPa) vs. glass ceramic (14.6 ± 5; 25 ± 7 MPa)) (p > 0.05). Among substrate–test combinations, Weibull distribution presented the highest shape values for ceramic–resin in µSBT (7.6) and resin–resin in µSBT (5.7). Cohesive failures in resin–resin bond were most frequently observed in SBT (87%), followed by TBT (50%) and µSBT (50%), while mixed failures occurred mostly in ceramic–resin bonds in the SBT (100%), TBT (90%), and µSBT (90%) test types. According to Weibull modulus, failure types, and bond strength, µTBT tests might be more reliable for testing resin-based composites adhesion to resin, while µSBT might be more suitable for adhesion testing of resin-based composites to ceramic materials.  相似文献   

9.
The aim of this study is to assess the effect of different bleaching agents on microhardness and color of CAD/CAM ceramics including IPS e.max CAD (lithium disilicate), VITA ENAMIC (polymer-infiltrated ceramic), and Celtra Duo CAD (zirconia-reinforced lithium silicate). Materials’ samples were divided into three groups (n = 10) and each received a different bleaching treatment; 20% carbamide peroxide, 35% carbamide peroxide, and 40% hydrogen peroxide. A fourth group was stored in water acting as a control. Vickers microhardness and spectrophotometric color measurements were taken at baseline and after bleaching. IPS e.max CAD showed a significant reduction (about 14%), while VITA ENAMIC showed a significant increase (about 78%) in microhardness after bleaching (p ˂ 0.001). Celtra Duo CAD did not demonstrate a significant change in microhardness (p ≥ 0.609). The color difference (ΔEab) after bleaching was 0.29 (±0.08), 2.84 (±0.64), and 1.99 (±0.37) for IPS e.max CAD, VITA ENAMIC, and Celtra Duo CAD, respectively. It could be concluded that the effect of bleaching on color and microhardness was mainly material-dependent. Bleaching significantly affected the microhardness of IPS e.max CAD and VITA ENAMIC. The color difference was within the clinically imperceptible range for IPS e.max CAD, while VITA ENAMIC and Celtra Duo CAD demonstrated perceptible color change.  相似文献   

10.
There is still a lack of consensus concerning the recommended etching concentration, application time and type of silane when bonding lithium disilicate-reinforced glass ceramics manufactured by CAD/CAM. The purpose of this study was thus to conduct an in vitro study which investigates the influence of hydrofluoric acid (HF) concentration, etching time and silane type on the microtensile bond strength (μTBS) of lithium disilicate to resin composites. Thirty-nine IPS e.max CAD blocks were randomly divided between thirteen groups (n = 3). The variables were HF concentration (9.5 or 4.9%), etching time (20 or 60 s) and silane type (Bis-Silane, Monobond Plus and ESPE Sil Silane). The blocks were cut into beams, aged for 10,000 cycles in a thermocycler and submitted to tensile stress to determine μTBS. A control group featuring the Monobond Etch & Prime (MEP) agent that combines etching/silanisation into a simultaneous process was also added. This group was discarded from the analysis due to only having pre-test failures. The data were analysed using a three-way ANOVA (α = 0.05). The HF concentration, etching time and silane type significantly influenced μTBS (p < 0.001). Significant interactions between time and silane type (p = 0.004), HF concentration and silane type (p < 0.001) and among the three factors (p < 0.001) were noted. Etching lithium disilicate with 9.5% HF (60 s), followed by the application of Bis-Silane, resulted in the highest μTBS (16.6 ± 9.0 MPa). The highest concentration and etching time under study, combined with a two-part silane, resulted in the highest bond strength, while the application of MEP showed a complete pre-test failure.  相似文献   

11.
The objective was to evaluate the effect of luting agents and the preparation design on the internal fit of zirconia restorations. Sixty dies were prepared and divided in occlusal convergence angle of 6° (OC6) and 12° (OC12). CAD/CAM zirconia copings were fabricated (Lava All-Ceramic System). A zinc phosphate cement (ZPC); a glass ionomer cement (GIC); and a resin cement (RC) were studied. Specimens were sectioned and coping/die discrepancies were evaluated through Stereoscopic Microscopy. A closer fit was observed in OC12 when compared to OC6 (p < 0.001). For OC6 no significant differences were observed in between ZPC, GIC, and RC (p > 0.05). For OC12, a significantly closer fit was recorded on the ZPC subgroup when compared to the GIC subgroup (p < 0.001). Preparations of 12 degrees demonstrated a closer internal fit when compared to 6 degrees. Preparations of 12 degrees achieved better internal fit values with ZPC (Fortex) followed by RC (RelyX Unicem), and GIC (Ketac Cem). No differences were found when comparing different luting agents over 6° degrees preparations.  相似文献   

12.
This in vitro study aimed to evaluate the effect of different bonding strategies on the micro-shear bond strength (μSBS) of luting agents to CAD–CAM composites. Surface scanning electron microscopy (SEM) and spectroscopy by energy-dispersive X-ray spectroscopy (EDS) were performed to analyze the surfaces of the composite before and after bonding treatment. Three CAD–CAM composites were evaluated: Lava Ultimate restorative (LU), Brava Blocks (BR), and Vita Enamic (VE). The LU and BR surfaces were sandblasted using aluminum oxide, while the VE surfaces were etched using a 5% hydrofluoric acid gel according to the manufacturers’ recommendations. All surfaces were subjected to the following bonding strategies (n = 15): adhesive with silane and MDP (ScotchBond Universal, 3M Oral Care, St Paul, MI, USA); adhesive with MDP (Ambar Universal, FGM, Joinville, Brazil); adhesive without silane or MDP (Prime&Bond Elect, Dentsply Sirona, Charlotte, NC, USA), pure silane without MDP (Angelus, Londrina, Brazil), and pure silane with MDP (Monobond N, Ivoclar Vivadent, Schaan, Liechtenstei). Afterwards, tygons were filled with RelyX Ultimate (3M Oral Care), AllCem (FGM), or Enforce (Dentsply Sirona), which were light-cured and subjected to the μSBS test. Data were analyzed using two-way ANOVA and Bonferroni’s post hoc test (α = 0.05). Additional blocks (n = 15) were subjected to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) before and after the surface treatment. The μSBS values on VE surfaces were higher than those observed on LU and BR surfaces (p < 0.001). Silane without MDP (Allcem) promoted the highest μSBS values, while silane with MDP (RelyX Ultimate) provided the highest values among all bonding strategies (p < 0.001). Enforce promoted no significant difference in μSBS values. SEM and EDS analyses detected noticeable changes to the surface morphology and composition after the surface treatment. The effectiveness of the bonding strategy may vary according not only to the CAD–CAM composite but also to resin cement/bonding agent/silane used.  相似文献   

13.
Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.  相似文献   

14.
Background: CAD/CAM systems enable the production of fixed partial dentures with small and reproducible internal and marginal gaps. Purpose: The purpose of this study was to evaluate the reproducibility of the marginal and internal adaptations of four-unit fixed partial denture frameworks produced using four CAD/CAM systems. Materials and Methods: Prepared dies of a master model that simulated the loss of the first left molar were measured. Fifteen frameworks were manufactured using four CAD/CAM systems (A–D). The internal fit was determined by the replica technique, and the marginal gap was determined by microscopy. ANOVA was carried out to detect significant differences, and the Bonferroni adjustment was performed. The global level of significance was set at 5%. Results: The mean gap size ranged from 84 to 132 µm (SD 43–71 µm). The CAD/CAM systems showed significant variance (p < 0.001), and system A (VHF) showed the smallest gaps. The smallest gaps for each system were in the molar part and in the marginal region of the frameworks (p < 0.001). Conclusions: The CAD/CAM systems showed significantly different gap sizes, particularly between premolars and molars and among the marginal, axial and occlusal regions. All of the systems are suitable for clinical application.  相似文献   

15.
Computer aided design/computer aided manufacturing (CAD/CAM) polymers for long-term dental restorations benefit from enhanced mechanical properties. However, the quantification of their bonding properties on teeth is lacking. Therefore, the aim of this study was to determine the retention strength (RS) of differently pretreated new developed polymethylmethacrylate/urethanedimethacrylate-based CAD/CAM polymer bonded on dentin. In summary, 120 human caries-free molars were prepared, and polymeric crowns were milled and pretreated (n = 20): visio.link (VL), Scotchbond Universal (SU), Monobond Plus/Heliobond (MH), Margin Bond (MB), Margin Bond mixed with acetone (1:1) (MBA) or not pretreated (CG). Half of the specimens were cemented using Variolink II and the other half with RelyX Ultimate. Specimens were stored for 24 h in distilled water and thermal cycled (5000 ×, 5 °C/55 °C). The retention load was measured and failure types were defined. RS was calculated and analyzed using both two- and one-way ANOVA with a post-hoc Scheffé-test, unpaired t-test, Kaplan–Meier with Breslow–Gehan test and chi-squared test (p < 0.05). Crowns bonded using RelyX Ultimate showed higher RS than those bonded using Variolink II. The pretreatment showed no impact on the RS. However, survival analysis within Variolink II found an impact of pretreatment. The median RS for MH was the lowest and statistically different from MB, MBA and CG. For Variolink II MH had the poorest survival as the estimated cumulative failure function of the debonded crown increased very quickly with increasing TBS. Within the RelyX Ultimate groups, no significant differences were determined. The newly developed CAD/CAM polymer showed the highest bonding properties after cementation using RelyX Ultimate.  相似文献   

16.
Employment and the effect of eco-friendly bismuth oxide nanoparticles (BiONPs) in bio-cement were studied. The standard method was adopted to prepare BiONPs-composite. Water was adopted for dispersing BiONPs in the composite. A representative batch (2 wt. % of BiONPs) was prepared without water to study the impact of water on composite properties. For each batch, 10 samples were prepared and tested. TGA (thermogravimetric analysis) performed on composite showed 0.8 wt. % losses in samples prepared without water whereas, maximum 2 wt. % weight losses observed in the water-based composite. Presence of BiONPs resulted in a decrease in depth of curing. Three-point bending flexural strength decreased for increasing BiONPs content. Comparative study between 2 wt. % samples with and without water showed 10.40 (±0.91) MPa and 28.45 (±2.50) MPa flexural strength values, respectively, indicating a significant (p < 0.05) increase of the mechanical properties at the macroscale. Nanoindentation revealed that 2 wt. % without water composites showed significant (p < 0.05) highest nanoindentation modulus 26.4 (±1.28) GPa and hardness 0.46 (±0.013) GPa. Usage of water as dispersion media was found to be deleterious for the overall characteristics of the composite but, at the same time, the BiONPs acted as a very promising filler that can be used in this class of composites.  相似文献   

17.
This study aimed to establish the minimum radiant exposure and irradiance to trigger an adequate polymerization of a photo-polymerized resin cement. In total, 220 disc-shaped specimens (diameter of 10 mm and thickness of 0.1 mm) were fabricated using a photo-polymerized resin cement (Variolink N-transparent, Ivoclar Vivadent). To investigate the minimum radiant exposure, the specimens were polymerized with radiant exposures of 1, 2, 3, 4, 5, 6, and 18 J/cm2 (n = 20). During polymerization, the irradiance was maintained at 200 mW/cm2. To investigate the minimum irradiance, the specimens were polymerized with irradiances of 50, 100, 150, and 200 mW/cm2 (n = 20). During polymerization, the radiant exposure was maintained at the previously determined minimum radiant exposure. The Vickers microhardness (HV) and degree of conversion (DC) of the carbon double bond of the specimens were measured to determine the degree of polymerization of the specimens. The results were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test (p < 0.05). In the investigation of the minimum radiant exposure, the HV and DC of the specimens polymerized with a radiant exposure from 1 to 5 J/cm2 were significantly lower than those with 18 J/cm2 (all p < 0.05). However, no significant difference in HV and DC was found between the specimens polymerized with 6 J/cm2 and 18 J/cm2 (p > 0.05). In the investigation of the minimum irradiance, the specimens polymerized with an irradiance of 50 mW/cm2 had significantly lower HV and DC than the specimens polymerized with an irradiance of 200 mW/cm2 (p < 0.05). However, no significant difference in the HV and DC was found among the specimens cured with irradiances of 100, 150, and 200 mW/cm2 (p > 0.05). In conclusion, the minimum radiant exposure and irradiance to trigger an adequate polymerization of the light-cured resin cement were 6 J/cm2 and 100 mW/cm2, respectively.  相似文献   

18.
The purpose of this study was to measure the strength of various bamboo fibres and their epoxy composites based on the bamboo ages and harvesting seasons. Three representative samples of 1–3-year-old bamboo plants were collected in November and February. Bamboo fibres and their epoxy composites had the highest tensile strength and Young’s modulus at 2 years old and in November. The back-calculated tensile strengths using the “rule of mixture” of Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 548 ± 40–422 ± 33 MPa, 496 ± 16–339 ± 30 MPa, and 541 ± 21–399 ± 55 MPa, whereas the back-calculated Young’s moduli using the “rule of mixture” were 48 ± 5–37 ± 3 GPa, 36 ± 4–25 ± 3 GPa, and 44 ± 2–40 ± 2 GPa, respectively. The tensile strengths of the Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 227 ± 14–171 ± 22 MPa, 255 ± 18–129 ± 15 MPa, and 206 ± 19–151 ± 11 MPa, whereas Young’s moduli were 21 ± 2.9–16 ± 4.24 GPa, 18 ± 0.8–11 ± 0.51 GPa, and 18 ± 0.85–16 ± 0.82 GPa respectively. The highest to the lowest tensile strengths and Young’s moduli of bamboo fibres and their epoxy composites were Injibara, Mekaneselam, and Kombolcha, which were the local regional area names from these fibres were extracted. The intended functional application of the current research study is the automobile industries of headliners, which substitute the conventional materials of glass fibres.  相似文献   

19.
The authors researched the physical, metallurgical, and mechanical characteristics of A354 alloy (Al-Si-Mg-Cu) reinforced with 5, 10, and 15 wt% of fly ash metal matrix composites. A baseline alloy and three composites were fabricated by a liquid metallurgy route and poured into a permanent mold to obtain cast rods of dimension Φ32 mm × 156 mm. The metallurgical characterization of the developed alloy and metal matrix composites was conducted using energy-dispersive spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray diffraction. All the developed composites showed a pore-free nature, but only A354 alloy reinforced with 5 wt% of fly ash (AF5) possessed a homogeneous distribution and perfect bonding of the fly ash with the A354 matrix. Therefore, transmission electron microscopy (TEM) analysis was performed on the sample AF5. All developed alloys and metal matrix composites were subjected to hardness and mechanical property tests. It was observed that the AF5 sample had 170 ± 5.6 HV and tensile strength of 216 ± 2.3 MPa, 18.8% and 24.8% higher than the A354 matrix, but the ductility (6.5 ± 0.43%) was reduced by 23% from the baseline alloy. Finally, the fractography analysis was conducted on all the samples using FESEM to analyze the fracture mode. The fabricated 5 wt% fly ash-based metal matrix composite showed better mechanical performance than other samples. Hence, sample AF5 is suggested for manufacturing components in automotive and structural parts.  相似文献   

20.
The prevention of root fractures of pulpless teeth is an important clinical issue to maintain healthy teeth through lifetime. The aim of this study was to examine a clinically effective treatment method for strengthening vulnerable pulpless teeth using CAD/CAM (computer-aided design/computer-aided manufacturing) fiber-reinforced post-core by conducting a fracture resistance test. A post-core made with a fiber-reinforced resin disk TRINIA (TR, SHOFU, Kyoto, Japan) was fabricated using a CAD/CAM system. The fiber-layer orientation of the CAD/CAM post-core was parallel to the axis of the restored tooth. A post-core using a conventional composite and a fiber post (CF) was also prepared. A fracture resistance test of teeth restored with the post-cores and zirconia crowns was conducted using a universal testing machine, and fracture patterns were identified by micro-CT observation. The fracture load of the roots restored with TR was 1555.9 ± 231.8 N, whereas that of CF was 1082.1 ± 226.7 N. The fracture load of TR was 43.8% that was significantly higher than that of CF (Student’s t-test, p < 0.05). The restored teeth with CAD/CAM resin post-core were found to be repairable even after fracture. These results suggest that the CAD/CAM indirect fiber post-core has the potential to strengthen the vulnerable pulpless teeth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号