首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.  相似文献   

2.
Aluminum doped zinc oxide (ZnO:Al) thin films were deposited on soda-lime glass substrates by the chemical spray technique. The atomization of the solution was carried out by ultrasonic excitation. Six different starting solutions from both unmilled and milled Zn and Al precursors, dissolved in a mix of methanol and acetic acid, were prepared. The milling process was carried out using a planetary ball mill at a speed of 300 rpm, and different milling times, namely, 15, 25, 35, 45, and 60 min. Molar concentration, [Al]/[Zn] atomic ratio, deposition temperature and time, were kept at constant values; 0.2 M, 3 at.%, 475 °C, and 10 min, respectively. Results show that, under the same deposition conditions, electrical resistivities of ZnO:Al thin films deposited from milled precursors are lower than those obtained for films deposited from unmilled precursors. X-ray diffraction analysis revealed that all films display a polycrystalline structure, fitting well with the hexagonal wurtzite structure. Changes in surface morphology were observed by scanning electron microscopy (SEM) as well, since films deposited from unmilled precursors show triangular shaped grains, in contrast to films deposited from 15 and 35 min milled precursors that display thin slices with hexagonal shapes. The use of milled precursors to prepare starting solutions for depositing ZnO:Al thin films by ultrasonic pyrolysis influences their physical properties.  相似文献   

3.
In the present work, we developed hybrid nanostructures based on ZnO films deposited on macroporous silicon substrates using the sol–gel spin coating and ultrasonic spray pyrolysis (USP) techniques. The changes in the growth of ZnO films on macroporous silicon were studied using a UV-visible spectrometer, an X-ray diffractometer (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD analysis revealed the beneficial influence of macroporous silicon on the structural properties of ZnO films. SEM micrographs showed the growth and coverage of ZnO granular and flake-like crystals inside the pores of the substrate. The root mean square roughness (RMS) measured by AFM in the ZnO grown on the macroporous silicon substrate was up to one order of magnitude higher than reference samples. These results prove that the methods used in this work are effective to cover porous and obtain nano-morphologies of ZnO. These morphologies could be useful for making highly sensitive gas sensors.  相似文献   

4.
In this study, aligned zinc oxide (ZnO) nanorods (NRs) with various lengths (1.5–5 µm) were deposited on ZnO:Al (AZO)-coated glass substrates by using a solution phase deposition method; these NRs were prepared for application as working electrodes to increase the photovoltaic conversion efficiency of solar cells. The results were observed in detail by using X-ray diffraction, field-emission scanning electron microscopy, UV-visible spectrophotometry, electrochemical impedance spectroscopy, incident photo-to-current conversion efficiency, and solar simulation. The results indicated that when the lengths of the ZnO NRs increased, the adsorption of D-719 dyes through the ZnO NRs increased along with enhancing the short-circuit photocurrent and open-circuit voltage of the cell. An optimal power conversion efficiency of 0.64% was obtained in a dye-sensitized solar cell (DSSC) containing the ZnO NR with a length of 5 µm. The objective of this study was to facilitate the development of a ZnO-based DSSC.  相似文献   

5.
In this study, we have developed a self-cleaning transparent coating on a glass substrate by dip coating a TiO2 – KH550 – PEG mixed solution with super-hydrophilicity and good antifogging properties. The fabrication of the thin-film-coated glass is a one-step solution blending method that is performed by depositing only one layer of modified TiO2 nanoparticles at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the nanoparticles and the thin-film-coated glass. The surface functional groups were investigated using Fourier-transform infrared spectroscopy (FT-IR), and the optical properties of the glass coating were measured using a UV/Vis spectrometer. The results revealed that the KH-500-modified TiO2 film coating was in an anatase crystalline form. The hydrophilicity of the coated and uncoated glass substrates was observed by measuring their water contact angle (WCA) using a contact angle instrument. The maximum transparency of the coated glass measured in the visible region (380–780 nm) was approximately 70%, and it possessed excellent super-hydrophilic properties (WCA ~0°) at an annealing temperature of 350 °C without further need of UV or plasma treatment. These results demonstrate the super-hydrophilic coated glass surface has potential for use in self-cleaning and anti-fogging applications.  相似文献   

6.
We fabricated zinc oxide (ZnO) nanorods (NRs) with Al-doped ZnO (AZO) seed layers and dye-sensitized solar cells (DSSCs) employed the ZnO NRs between a TiO2 photoelectrode and a fluorine-doped SnO2 (FTO) electrode. The growth rate of the NRs was strongly dependent on the seed layer conditions, i.e., thickness, Al dopant and annealing temperature. Attaining a large particle size with a high crystallinity of the seed layer was vital to the well-aligned growth of the NRs. However, the growth was less related to the substrate material (glass and FTO coated glass). With optimized ZnO NRs, the DSSCs exhibited remarkably enhanced photovoltaic performance, because of the increase of dye absorption and fast carrier transfer, which, in turn, led to improved efficiency. The cell with the ZnO NRs grown on an AZO seed layer annealed at 350 °C showed a short-circuit current density (JSC) of 12.56 mA/cm2, an open-circuit voltage (VOC) of 0.70 V, a fill factor (FF) of 0.59 and a power conversion efficiency (PCE, η) of 5.20% under air mass 1.5 global (AM 1.5G) illumination of 100 mW/cm2.  相似文献   

7.
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.  相似文献   

8.
Zinc oxide nanoparticles (ZnO NPs) have acquired great significance in the textile sector due to their impressive efficiency and multifold utilization, such as antimicrobials, UV protection, photo catalytic activity, and self-cleaning. The aim of this work is in-situ growth of ZnO NPs on 100% cotton fabrics with the one-step hydrothermal method for preparation of multifunctional textile with UV protecting, antibacterial, and photo catalytic properties. Sodium hydroxide (NaOH) and Zinc nitrate hexahydrate [Zn(NO3)2·6H2O] were used as reactants for the growth of zinc oxide on the 100% cotton fabrics. The loaded amount of Zn contents on the cotton fabric was determined by using induced coupled plasma atomic emission spectroscopy (ICP-AES). The surface morphological characterization of deposited ZnO NPs was examined, employing scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and, Fourier- transform infrared spectroscopy (FTIR). The characterization results showed the presence of ZnO NPs on cotton fabrics having hexagonal wurtzite crystalline structure. The synthesized ZnO NPs on fabrics exhibited promising results for antibacterial, UV protection, and photo catalytic performance.  相似文献   

9.
Superhydrophilicity performs well in anti-fog and self-cleaning applications. In this study, polycarbonate substrate was used as the modification object because of the low surface energy characteristics of plastics. Procedures that employ plasma bombardment, such as etching and high surface free energy coating, are applied to improve the hydrophilicity. An organic amino silane that contains terminal amine group is introduced as the monomer to perform plasma polymerization to ensure that hydrophilic radicals can be efficiently deposited on substrates. Different levels of hydrophilicity can be reached by modulating the parameters of plasma bombardment and polymerization, such as plasma current, voltage of the ion source, and bombardment time. The surface of a substrate that is subjected to plasma bombarding at 150 V, 4 A for 5 min remained superhydrophilic for 17 days. After 40 min of Ar/O2 plasma bombardment, which resulted in a substrate surface roughness of 51.6 nm, the plasma polymerization of organic amino silane was performed by tuning the anode voltage and operating time of the ion source, and a water contact angle < 10° and durability up to 34 days can be obtained.  相似文献   

10.
Novel glass samples with the composition 75TeO2–5Ta2O5–15Nb2O5–5x (where x = ZnO, MgO, TiO2, or Na2O) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV. The glasses’ UV–vis spectra were utilized to evaluate the optical energy gap and refractive index. Glass samples had a refractive index ranging from 2.2005 to 2.0967. The results showed that the sample doped with zinc oxide (ZnO) recorded the highest density (ρglass), molar polarizability (αm), molar refraction (Rm), refractive index (n), and third-order nonlinear optical susceptibility (χ3) and the lowest optical energy gap (Eopt) among the samples under investigation. When comparing the current glass system with various standard glass shielding materials, the prepared glass system showed superior shielding performance at energies ranging between 40 and 85 keV. These findings indicate that the prepared glass systems can be used in diagnostic X-rays, especially in dental applications.  相似文献   

11.
In this work, we present the results of defects analysis concerning ZnO and Al2O3 layers deposited by atomic layer deposition (ALD) technique. The analysis was performed by the X-band electron paramagnetic resonance (EPR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) methods. The layers were either tested as-deposited or after 30 min heating at 300 °C and 450 °C in Ar atmosphere. TEM and XPS investigations revealed amorphous nature and non-stoichiometry of aluminum oxide even after additional high-temperature treatment. EPR confirmed high number of defect states in Al2O3. For ZnO, we found the as-deposited layer shows ultrafine grains that start to grow when high temperature is applied and that their crystallinity is also improved, resulting in good agreement with XPS results which indicated lower number of defects on the layer surface.  相似文献   

12.
The degradation of organic pollutants in wastewaters assisted by oxide semiconductor nanostructures has been the focus of many research groups over the last decades, along with the synthesis of these nanomaterials by simple, eco-friendly, fast, and cost-effective processes. In this work, porous zinc oxide (ZnO) nanostructures were successfully synthesized via a microwave hydrothermal process. A layered zinc hydroxide carbonate (LZHC) precursor was obtained after 15 min of synthesis and submitted to different calcination temperatures to convert it into porous ZnO nanostructures. The influence of the calcination temperature (300, 500, and 700 °C) on the morphological, structural, and optical properties of the ZnO nanostructureswas investigated. All ZnO samples were tested as photocatalysts in the degradation of rhodamine B (RhB) under UV irradiation and natural sunlight. All samples showed enhanced photocatalytic activity under both light sources, with RhB being practically degraded within 60 min in both situations. The porous ZnO obtained at 700 °C showed the greatest photocatalytic activity due to its high crystallinity, with a degradation rate of 0.091 and 0.084 min−1 for UV light and sunlight, respectively. These results are a very important step towards the use of oxide semiconductors in the degradation of water pollutants mediated by natural sunlight.  相似文献   

13.
Sputtering technique involves the use of plasma that locally heats surfaces of substrates during the deposition of atoms or molecules. This modifies the microstructure by increasing crystallinity and the adhesive properties of the substrate. In this study, the effect of sputtering on the microstructure of parylene-C was investigated in an aluminum nitride (AlN)-rich plasma environment. The sputtering process was carried out for 30, 45, 90 and 120 min on a 5 μm thick parylene-C film. Topography and morphology analyses were conducted on the parylene-C/AlN bilayers. Based on the experimental data, the results showed that the crystallinity of parylene-C/AlN bilayers was increased after 30 min of sputtering and remained saturated for 120 min. A scratch-resistance test conducted on the bilayers depicted that a higher force is required to delaminate the bilayers on top of the substrate. Thus, the adhesion properties of parylene-C/AlN bilayers were improved on glass substrate by about 17% during the variation of sputtering time.  相似文献   

14.
The film thickness plays an important role in the performance of materials applicable to different technologies including chemical sensors, catalysis and/or energy materials. The relationship between the surface and volume of the functional layers is key to high performance evaluations. Here we demonstrate the thermophoretic deposition of different thicknesses of the functional layers designed using flame combustion of tin 2-ethylhexanoate dissolved in xylene, and measurement of thickness by scanning electron microscopy and focused ion beam. The parameters such as spray fluid concentration (differing Sn2+ content), substrate-nozzle distance and time of the spray were considered to investigate the layer growth. The results showed ≈ 23, 124 and 161 μm thickness of the SnO2 layer after flame spray of 0.1, 0.5 M and 1.0 M tin 2-EHA-Xylene solutions for 1200 s. While Sn2+ concentration was 0.5 M for all the flame sprays, the substrates placed at 250, 220 and 200 mm from the flame nozzle had layer thicknesses of 113, 116 and 132 µm, respectively. Spray time dependent thickness growth showed a linear increase from 8.5 to 152.1 µm when the substrates were flame sprayed for 30 s to 1200 s using 0.5 M tin 2-EHA-Xylene solutions. Changing the dispersion oxygen flow (3–7 L/min) had almost no effect on layer thickness. Layers fabricated were compared to a model found in literature, which seems to describe the thickness well in the domain of varied parameters. It turned out that primary particle size deposited on the substrate can be tuned without altering the layer thickness and with little effect on porosity. Applications depending on porosity, such as catalysis or gas sensing, can benefit from tuning the layer thickness and primary particle size.  相似文献   

15.
The structural, optical, and electrical properties of ZnO are intimately intertwined. In the present work, the structural and transport properties of 100 nm thick polycrystalline ZnO films obtained by atomic layer deposition (ALD) at a growth temperature (Tg) of 100–300 °C were investigated. The electrical properties of the films showed a dependence on the substrate (a-Al2O3 or Si (100)) and a high sensitivity to Tg, related to the deviation of the film stoichiometry as demonstrated by the RT-Hall effect. The average crystallite size increased from 20–30 nm for as grown samples to 80–100 nm after rapid thermal annealing, which affects carrier scattering. The ZnO layers deposited on silicon showed lower strain and dislocation density than on sapphire at the same Tg. The calculated half crystallite size (D/2) was higher than the Debye length (LD) for all as grown and annealed ZnO films, except for annealed ZnO/Si films grown within the ALD window (100–200 °C), indicating different homogeneity of charge carrier distribution for annealed ZnO/Si and ZnO/a-Al2O3 layers. For as grown films the hydrogen impurity concentration detected via secondary ion mass spectrometry (SIMS) was 1021 cm−3 and was decreased by two orders of magnitude after annealing, accompanied by a decrease in Urbach energy in the ZnO/a-Al2O3 layers.  相似文献   

16.
The dyeing process commonly deteriorates the luster of pre-mercerized cotton fabric, so post-mercerization processes are regularly applied to compensate for this. Herein, the influence of combining pre-mercerization with CS (caustic solution) or LA (liquid ammonia) and post-mercerization with CS or LA on the morphological structure, dyeing performance, tensile strength, and stiffness of woven cotton fabric was investigated. The crystallinity index values greatly decreased from 73.12 to 51.25, 58.73, 38.42, and 40.90% after the combined mercerization processes of LA–LA, CS–CS, LA–CS, and CS–LA, respectively. Additionally, the CS–LA- and LA–CS-treated samples exhibited a mixture of cellulose II and cellulose III allomorphs. The combined mercerization processing of cotton fabric resulted in slightly worse thermal stability. The LA and CS pre-mercerization processes increased the dye exhaustion, although the former decreased the dye fixation rate while the latter increased it by 4% for both dyes. The color strength of the dyed cotton fabric increased after both post-mercerization processes. Moreover, the fabric stiffness and mechanical properties showed an increasing trend due to the combined mercerization efforts.  相似文献   

17.
In this study, zinc oxide nanoparticles were synthesized through a simple co-precipitation method starting from zinc acetate dihydrate and sodium hydroxide as reactants. The as-obtained ZnO nanoparticles were morphologically and structurally characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photocatalytic activity, and by determining the antimicrobial activity against Gram-negative and Gram-positive bacteria. The XRD pattern of the zinc oxide nanoparticles showed the wurtzite hexagonal structure, and its purity highlighted that the crystallinity correlated with the presence of a single product, zinc oxide. The ZnO nanoparticles have an average crystallite size of 19 ± 11 nm, which is in accordance with the microscopic data. ZnO nanoparticles were tested against methyl orange, used as a model pollutant, and it was found that they exhibit strong photocatalytic activity against this dye. The antibacterial activity of ZnO nanoparticles was tested against Gram-negative and Gram-positive strains (Escherichia coli, Staphylococcus aureus, and Candida albicans). The strongest activity was found against Gram-positive bacteria (S. aureus).  相似文献   

18.
In our study, transparent and conductive films of NiOx were successfully deposited by sol-gel technology. NiOx films were obtained by spin coating on glass and Si substrates. The vibrational, optical, and electrical properties were studied as a function of the annealing temperatures from 200 to 500 °C. X-ray Photoelectron (XPS) spectroscopy revealed that NiO was formed at the annealing temperature of 400 °C and showed the presence of Ni+ states. The optical transparency of the films reached 90% in the visible range for 200 °C treated samples, and it was reduced to 76–78% after high-temperature annealing at 500 °C. The optical band gap of NiOx films was decreased with thermal treatments and the values were in the range of 3.92–3.68 eV. NiOx thin films have good p-type electrical conductivity with a specific resistivity of about 4.8 × 10−3 Ω·cm. This makes these layers suitable for use as wideband semiconductors and as a hole transport layer (HTL) in transparent solar cells.  相似文献   

19.
Thin films of Cd1−xMgxO (CdMgO) (0 ≤ x ≤ 1) were investigated by depositing the films on glass substrates using the co-evaporation technique. The structural, surface morphological, optical, and electrical characteristics of these films were studied as a function of Mg content after annealing at 350 °C. The XRD analysis showed that the deposited films had an amorphous nature. The grain size of the films reduced as the Mg concentration increased, as evidenced by the surface morphology, and EDAX supported the existence of Mg content. It was observed that as the films were annealed, the transmittance of the CdMgO films saw an increase of up to 85%. The blue shift of the absorption edge was observed by the increase of Mg content, which was useful for enhancing the efficiency of solar cells. The optical band gap increased from 2.45 to 6.02 eV as the Mg content increased. With increased Mg content, the refractive index reduced from 2.49 to 1.735, and electrical resistivity increased from 535 Ω cm to 1.57 × 106 Ω cm.  相似文献   

20.
This study carried out a comparison of the optical and gamma ray shielding features of TeO2 with and without ZnO modifier concentration. Incorporating ZnO into the TeO2 network reduces the indirect band gap from 3.515–3.481 eV. When ZnO is added, refractive indices, dielectric constants, and optical dielectric constants rise from 2.271–2.278, 5.156–5.191, and 4.156–4.191 accordingly. The transmission coefficient and reflection loss are in direct opposition to each other. With increasing ZnO concentration in the selected glasses, the values of molar refractivity and molar polarizability decrease from 18.767–15.018 cm3/mol and from 7.444 × 10−24–5.957 × 10−24 cm3, respectively, while the electronic polarizability rises from 8.244 × 1024–8.273 × 1024, correspondingly. As expected by the metallization values, the glass systems are non-metallic. The linear attenuation coefficients (LAC) of the studied glass samples ensue through enhancing the photon energy range 0.0395–0.3443 MeV. There is a very slow decrease in the LAC from an energy of 0.1218–0.3443 MeV, yet there is a sharp decrease from an energy of 0.0401–0.0459 MeV. According to the obtained values of numerous shielding parameters such as LAC, MAC, HVL, MFP, and Zeff sample, Zn30 has shown the best radiation shielding ability comprising other studied samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号