首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CYP2C9 is an important member of the cytochrome P450 enzyme superfamily with some 12 CYP2C9 alleles (*1-*12) being previously reported. Recently, we identified a new CYP2C9 allele with a Leu90Pro mutation in a Chinese poor metabolizer of lornoxicam [Si D, Guo Y, Zhang Y, Yang L, Zhou H, and Zhong D (2004) Pharmacogenetics 14:465-469]. The new allele, designated CYP2C9*13, was found to occur in approximately 2% of the Chinese population. To examine enzymatic activity of the CYP2C9*13 allele, kinetic parameters for lornoxicam 5'-hydroxylation were determined in COS-7 cells transiently transfected with pcDNA3.1 plasmids carrying wild-type CYP2C9*1, variant CYP2C9*3, and CYP2C9*13 cDNA. The protein levels of cDNA-expressed CYP2C9*3 and *13 in postmitochondrial supernatant (S9) from transfected cells were lower than those from wild-type CYP2C9*1. Mean values of Km and Vmax for CYP2C9*1, *3, and *13 were 1.24, 1.61, and 2.79 microM and 0.83, 0.28, and 0.22 pmol/min/pmol, respectively. Intrinsic clearance values (Vmax/Km) for variant CYP2C9*3 and CYP2C9*13 on the basis of CYP2C9 protein levels were separately decreased to 28% and 12% compared with wild type. In a subsequent clinical study, the AUC of lornoxicam was increased by 1.9-fold and its oral clearance (CL/F) decreased by 44% in three CYP2C9*1/*13 subjects, compared with CYP2C9*1/*1 individuals. This suggests that the CYP2C9*13 allele is associated with decreased enzymatic activity both in vitro and in vivo.  相似文献   

2.
1. During the characterization of recombinant CYP2C19, it was observed that this enzyme metabolized midazolam, which is generally regarded as CYP3A4/5 substrate, and we therefore decided to pursue this observation further. 2. CYP2C19 showed a Michaelis-Menten pattern for midazolam 1'-hydroxylation and was inhibited by (+)-N-3-benzylnirvanol and S-mephenytoin, which are a standard potent inhibitor and a substrate of CYP2C19, respectively. 3. The inhibitory potency by CYP3A4/5 inhibitor on the midazolam 1'-hydroxylation in human liver microsomes (HLM) was correlated with the CYP3A4/5 specific catalytic activity, but such correlation was not observed in CYP2C19 enzyme. The in vitro intrinsic clearance value for midazolam 1'-hydroxylation was not changed by the addition of (+)-N-3-benzylnirvanol in four individual HLM preparations. 4. These results indicated that although CYP2C19 is capable of catalyzing midazolam 1'-hydroxylation, CYP3A4/5 play a more important role.  相似文献   

3.
CYP2C9 wild-type protein has been shown to exhibit atypical kinetic profiles of metabolism that may affect in vitro-in vivo predictions made during the drug development process. Previous work suggests a substrate-dependent effect of polymorphic variants of CYP2C9 on the rate of metabolism; however, it is hypothesized that these active site amino acid changes will affect the kinetic profile of a drug's metabolism as well. To this end, the kinetic profiles of three model CYP2C9 substrates (flurbiprofen, naproxen, and piroxicam) were studied using purified CYP2C9*1 (wild-type) and variants involving active site amino acid changes, including the naturally occurring variants CYP2C9*3 (Leu359) and CYP2C9*5 (Glu360) and the man-made mutant CYP2C9 F114L. CYP2C9*1 (wild-type) metabolized each of the three compounds with a distinctive profile reflective of typical hyperbolic (flurbiprofen), biphasic (naproxen), and substrate inhibition (piroxicam) kinetics. CYP2C9*3 metabolism was again hyperbolic for flurbiprofen, of a linear form for naproxen (no saturation noted), and exhibited substrate inhibition with piroxicam. CYP2C9*5-mediated metabolism was hyperbolic for flurbiprofen and piroxicam but linear with respect to naproxen turnover. The F114L mutant exhibited a hyperbolic kinetic profile for flurbiprofen metabolism, a linear profile for naproxen metabolism, and a substrate inhibition kinetic profile for piroxicam metabolism. In all cases except F114L-mediated piroxicam metabolism, turnover decreased and the K(m) generally increased for each allelic variant compared with wild-type enzyme. It seems that the kinetic profile of CYP2C9-mediated metabolism is dependent on both substrate and the CYP2C9 allelic variant, thus having potential ramifications on drug disposition predictions made during the development process.  相似文献   

4.
CYP2C9 is a polymorphic gene for which there are four known allelic variants; CYP2C9*1, CYP2C9*2, CYP2C9*3, and CYP2C9*4. In the present study, DNA from 140 European Americans and 120 African Americans was examined by single-strand conformational polymorphism and restriction fragment length polymorphism analyses, resulting in the identification of a new CYP2C9 variant, CYP2C9*5. This variant is derived from a C1080G transversion in exon 7 of CYP2C9 that leads to an Asp360Glu substitution in the encoded protein. The CYP2C9*5 variant was found to be expressed only in African Americans, such that approximately 3% of this population carries the CYP2C9*5 allele. The variant was expressed in, and purified from, insect cells infected with a recombinant baculovirus. Comparative kinetic studies using the purified wild-type protein CYP2C9*1; the Ile359Leu variant, CYP2C9*3; and the Asp360Glu variant, CYP2C9*5 were carried out using (S)-warfarin, diclofenac, and lauric acid as substrates. The major effect of the Asp360Glu mutation was to increase the K(m) value relative to that of CYP2C9*1 for all three substrates: 12-fold higher for (S)-warfarin 7-hydroxylation, 5-fold higher for the 4'-hydroxylation of diclofenac, and 3-fold higher for the omega-1 hydroxylation of lauric acid. V(max) values differed less than K(m) values between the CYP2C9*1 and CYP2C9*5 proteins. In vitro intrinsic clearances for CYP2C9*5, calculated as the ratio of V(max)/K(m), ranged from 8 to 18% of CYP2C9*1 values. The corresponding ratio for CYP2C9*3 was 4 to 13%. Accordingly, the in vitro data suggest that carriers of the CYP2C9*5 allele would eliminate CYP2C9 substrates at slower rates relative to persons expressing the wild-type protein.  相似文献   

5.
Amiodarone is a potent Class III antiarrhythmic drug. The N-deethylation of amiodarone to desethylamiodarone is known to be catalyzed by cytochrome P450 (CYP) 2C8. In the present study, amiodarone N-deethylation by the CYP2C8s, CYP2C8*1 (wild-type), CYP2C8*3, and CYP2C8 P404A (Pro404Ala substitution in exon 8), was investigated by their transient expression in Hep G2 cells. The expression levels of CYP2C8*1 and CYP2C8*3 were similar, whereas the level of CYP2C8 P404A was 55.6% of that of CYP2C8*1. The kinetic parameters of amiodarone N-deethylation were obtained by means of Lineweaver-Burk analysis. The intrinsic clearance (Vmax/Km, per mg of microsomal protein) of amiodarone by CYP2C8 P404A but not CYP2C8*3 was significantly (48.7%) less than that of CYP2C8*1. These results suggest that CYP2C8 P404A but not CYP2C8*3 is less effective in the N-deethylation of amiodarone.  相似文献   

6.
7.
8.
Cytochrome P450 2C19 (CYP2C19) plays an important role in the metabolism of a wide range of therapeutic drugs and exhibits genetic polymorphism with interindividual differences in metabolic activity. We have previously described two CYP2C19 allelic variants, namely CYP2C19*18 and CYP2C19*19 with Arg329His/Ile331Val and Ser51Gly/Ile331Val substitutions, respectively. In order to investigate precisely the effect of amino acid substitutions on CYP2C19 function, CYP2C19 proteins of the wild-type (CYP2C19.1B having Ile331Val) and variants (CYP2C19.18 and CYP2C19.19) were heterologously expressed in yeast cells, and their S-mephenytoin 4'-hydroxylation activities were determined. The K(m) value of CYP2C19.19 for S-mephenytoin 4'-hydroxylation was significantly higher (3.0-fold) than that of CYP2C19.1B. Although no significant differences in V(max) values on the basis of microsomal and functional CYP protein levels were observed between CYP2C19.1B and CYP2C19.19, the V(max)/K(m) values of CYP2C19.19 were significantly reduced to 29-47% of CYP2C19.1B. By contrast, the K(m), V(max) or V(max)/K(m) values of CYP2C19.18 were similar to those of CYP2C19.1B. These results suggest that Ser51Gly substitution in CYP2C19.19 decreases the affinity toward S-mephenytoin of CYP2C19 enzyme, and imply that the genetic polymorphism of CYP2C19*19 also causes variations in the clinical response to drugs metabolized by CYP2C19.  相似文献   

9.
Cytochrome P450 2C19 (CYP2C19) plays an important role in the metabolism of a wide range of therapeutic drugs and exhibits genetic polymorphism with interindividual differences in metabolic activity. We have previously described two CYP2C19 allelic variants, namely CYP2C19*18 and CYP2C19*19 with Arg329His/Ile331Val and Ser51Gly/Ile331Val substitutions, respectively. In order to investigate precisely the effect of amino acid substitutions on CYP2C19 function, CYP2C19 proteins of the wild-type (CYP2C19.1B having Ile331Val) and variants (CYP2C19.18 and CYP2C19.19) were heterologously expressed in yeast cells, and their S-mephenytoin 4′-hydroxylation activities were determined. The Km value of CYP2C19.19 for S-mephenytoin 4′-hydroxylation was significantly higher (3.0-fold) than that of CYP2C19.1B. Although no significant differences in Vmax values on the basis of microsomal and functional CYP protein levels were observed between CYP2C19.1B and CYP2C19.19, the Vmax/Km values of CYP2C19.19 were significantly reduced to 29–47% of CYP2C19.1B. By contrast, the Km, Vmax or Vmax/Km values of CYP2C19.18 were similar to those of CYP2C19.1B. These results suggest that Ser51Gly substitution in CYP2C19.19 decreases the affinity toward S-mephenytoin of CYP2C19 enzyme, and imply that the genetic polymorphism of CYP2C19*19 also causes variations in the clinical response to drugs metabolized by CYP2C19.  相似文献   

10.
Cytochrome P450 2C9 (CYP2C9) is a geneticly polymorphic enzyme responsible for the metabolism of some clinically important drugs. CYP2C9*13 is an allele identified in a Chinese poor metabolizer of lornoxicam which has a Leu90Pro amino acid substitution. This paper reports on a study aimed at comparing the catalytic properties of CYP2C9*13 with those of the wild-type CYP2C9*1 and mutant CYP2C9*3 (Ile359Leu) in the COS-7 expression system using various substrates. CYP2C9*3 and *13 produced far lower luminescence than CYP2C9*1 in luciferin H metabolism. CYP2C9*13 exhibited an 11-fold increase in Km but no change in Vmax with tolbutamide as the substrate, a five-fold increase in Km and an 88.8% reduction in Vmax with diclofenac. These data indicate that CYP2C9*13 exhibits reduced metabolic activity toward all studied CYP2C9 substrates. The magnitude of the CYP2C9*13-associated decrease in intrinsic clearance (Vmax/Km) is greater than that associated with CYP2C9*3.  相似文献   

11.
Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13   总被引:3,自引:0,他引:3  
Cytochrome P450 2C9 (CYP2C9) is a geneticly polymorphic enzyme responsible for the metabolism of some clinically important drugs. CYP2C9*13 is an allele identified in a Chinese poor metabolizer of lornoxicam which has a Leu90Pro amino acid substitution. This paper reports on a study aimed at comparing the catalytic properties of CYP2C9*13 with those of the wild-type CYP2C9*1 and mutant CYP2C9*3 (Ile359Leu) in the COS-7 expression system using various substrates. CYP2C9*3 and *13 produced far lower luminescence than CYP2C9*1 in luciferin H metabolism. CYP2C9*13 exhibited an 11-fold increase in Km but no change in Vmax with tolbutamide as the substrate, a five-fold increase in Km and an 88.8% reduction in Vmax with diclofenac. These data indicate that CYP2C9*13 exhibits reduced metabolic activity toward all studied CYP2C9 substrates. The magnitude of the CYP2C9*13-associated decrease in intrinsic clearance (Vmax/Km) is greater than that associated with CYP2C9*3.  相似文献   

12.
Lornoxicam is extensively metabolized by CYP2C9, and a CYP2C9*13 is one of the principal variant alleles in East Asian populations. The aim of this study was to evaluate the effects of CYP2C9*1/*13 on the pharmacokinetic parameters of lornoxicam in healthy individuals. A single oral dose of 8 mg lornoxicam was given to 22 Korean volunteers with different CYP2C9 genotypes (8, 8 and 6 carriers of CYP2C9*1/*1, *1/*3 and *1/*13 genotypes, respectively). Lornoxicam and 5'-hydroxylornoxicam levels were analysed using HPLC-UV in plasma samples collected up to 24 hr after taking the drug. In individuals with CYP2C9*1/*13, lornoxicam had a higher C(max) (p < 0.001), a longer half-life (p < 0.001), a lower oral clearance (p < 0.001) and a higher area under the plasma concentration-time curve from zero to infinity (AUC(inf) ) than in CYP2C9*1/*1 individuals (p < 0.001). The C(max) and AUC(inf) of 5'-hydroxylornoxicam were lower in CYP2C9*1/*13 individuals than in CYP2C9*1/*1 individuals, but the half-life of 5'-hydroxylornoxicam did not differ between the two groups. The half-life, oral clearance and AUC(inf) of lornoxicam were similar in individuals with CYP2C9*1/*13 and those with CYP2C9*1/*3. The C(max) , half-life and AUC(inf) of 5'-hydroxylornoxicam were also similar in both groups, although C(max) was higher in CYP2C9*1/*13 individuals (p < 0.01). A CYP2C9*1/*13 genotype markedly reduced the conversion of lornoxicam to 5'-hydroxylornoxicam, to a similar extent as that observed with the CYP2C9*1/*3 genotype.  相似文献   

13.
Cytochrome P450 2C9 (CYP2C9) and CYP2C19, located in tandem on chromosome 10q23–24, are known as genetically polymorphic. CYP2C9*13 is an important CYP2C9 variant in Asian populations, and is correlated with the reduced plasma clearance of some clinically important drugs. In this research, the allele frequency of CYP2C9*13 was determined to be 0.42% (95% CI of 0.17% to 0.86%) in 839 Chinese Han, male subjects. All detected subjects with CYP2C9*13 carry the CYP2C19*2 allele, too. Sequencing results infer the CYP2C9*13 haplotype, which contains eight linked SNPs, originates from the CYP2C9*1B haplotype group. CYP2C9*1B has been reported to be linked with CYP2C19*2. These indicate a long‐range haplotype containing the CYP2C9*13 and CYP2C19*2 mutation, which means most CYP2C9*13 carriers will carry the CYP2C19*2 allele and the six SNPs of the CYP2C9*1B haplotype group, and may have more reduced intrinsic clearance of drugs such as phenytoin, tolbutamide and chlorpropamide that are metabolized by both CYP2C9 and CYP2C19. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
目的研究人体内细胞色素P450 2C9酶突变等位基因CYP2C9*3对格列本脲和氯诺昔康药代动力学的影响。方法采用PCR-RFLP方法对83名无血源关系的受试者进行CYP2C9*3等位基因的筛查,基因型为CYP2C9*1/*3(n=7)和*1/*1(n=11)的受试者分别参加了格列本脲和氯诺昔康的人体药代动力学试验。采用LC/MS/MS法分别测定受试者口服格列本脲(2.5 mg)和氯诺昔康(8 mg)后不同时刻血浆中格列本脲和氯诺昔康的浓度。结果两组受试者口服格列本脲后,CYP2C9*1/*3组AUC0-∞显著增加,为CYP2C9*1/*1组的1.5倍,CL/F降低了40%;两组受试者口服氯诺昔康后,CYP2C9*1/*3组AUC0-∞亦显著增加,为CYP2C9*1/*1组的2.2倍,CL/F降低了55%。结论CYP2C9酶的突变等位基因CYP2C9*3对格列本脲和氯诺昔康的药代动力学有显著性影响。  相似文献   

15.
Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 μM, 12.6 μM, and 1.33 μM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.  相似文献   

16.
Objective: The nature of the enzyme(s) catalysing the biotransformation of lornoxicam to one of its major metabolites, 5-hydroxy-lornoxicam, has been investigated in human liver microsomes. The reaction kinetics were characterised, the affinity of lornoxicam for three major human drug metabolising cytochrome P-450 isozymes (CYP2C9, CYP2D6 and CYP3A4) was determined, and inhibition of the reaction by known substrates (diclofenac, ibuprofen, mefenamic acid, phenytoin, tolbutamide and warfarin) and the prototype inhibitor (sulphaphenazole) of CYP2C9 was investigated. Results: Lornoxicam 5-hydroxylation displayed single enzyme Michaelis-Menten kinetics, with a KM of 3.6 mol·l-1 and a Vmax of 2.6 nmol·h-1·mg-1 microsomal protein. The apparent affinity of lornoxicam was high for CYP2C9, but negligible for CYP3A4 and CYP2D6. Inhibition of lornoxicam 5-hydroxylation by CYP2C9 substrates and sulphaphenazole was comparable in all livers preparations, values predicted from their KM or Ki for CYP2C9 determined in separate studies assuming competitive inhibition. Sulphaphenazole competitively and completely inhibited lornoxicam 5-hydroxylation (Ki=0.31 mol·l-1) as well as lornoxicam clearance (Ki=0.33 mol·l-1), partial metabolic clearance (fm)=0.95). Conclusion: 5-Hydroxylation appears to be the only cytochrome P-450 catalysed metabolic reaction of lornoxicam by human liver microsomes and this major in vivo biotransformation pathway is catalysed virtually exclusively by CYP2C9.Supported in part by Hafslund Nycomed Pharma AG (Linz, Austria) and by a grant of the Forschungsförderungsfond der Gewerblichen Wirtschaft Österreichs  相似文献   

17.
18.
Cytochrome P4502C9 (CYP2C9) is the main enzyme implicated in coumarin anticoagulant metabolism. The variant alleles CYP2C9*2 and CYP2C9*3 are associated with an increased response to warfarin. However, an effect on acenocoumarol dose requirements appears to be absent for the CYP2C9*2 allele and the consequences for the metabolism of phenprocoumon have not yet been established. We investigated CYP2C9 polymorphisms in relation to the international normalized ratio (INR) during the first 6 weeks of treatment and its effect on the maintenance dose in a cohort of 1124 patients from the Rotterdam Study who were treated with acenocoumarol or phenprocoumon. There was a statistically significant difference in first INR between patients with variant genotypes and those with the wild-type. Almost all acenocoumarol-treated patients with a variant genotype had a significantly higher mean INR and had a higher risk of an INR > or = 6.0 during the first 6 weeks of treatment. A clear genotype-dose relationship was found for acenocoumarol-treated patients. For patients on phenprocoumon, no significant differences were found between variant genotypes and the wild-type genotype. Individuals with one or more CYP2C9*2 or CYP2C9*3 allele(s) require a significantly lower dose of acenocoumarol compared to wild-type patients. Phenprocoumon appears to be a clinically useful alternative in patients carrying the CYP2C9*2 and *3 alleles.  相似文献   

19.
Objectives: Evidence exists to suggest that diclofenac is metabolised by CYP2C9. The present study was undertaken in order to evaluate the effect of the single CYP2C9*3 variant on drug metabolism using diclofenac as a probe drug. Methods: A single dose of diclofenac was administered orally to 12 healthy subjects in whom the genotype of CYP2C9 had been determined previously. The disposition kinetics of diclofenac were compared between homozygotes for the wild type (CYP2C9*1/*1, n=6) and heterozygotes for the Leu359 variant (CYP2C9*1/*3, n=6). Results: For diclofenac, the following kinetic parameters were observed in the CYP2C9*1/*1 and CYP2C9*1/*3 subjects, respectively (mean ± SD): apparent oral clearance (ml/kg/h) 355.8 ± 56.9 and 484.4 ± 155.3; area under plasma concentration–time curve (μg h/ml) 2.7 ± 0.7 and 1.9 ± 0.6. The formation clearance of 4′-hydroxydiclofenac (ml/kg/h) was 63.6 ± 19.1 in the CYP2C9*1/*1 subjects compared with 75.9 ± 27.6 in the CYP2C9*1/*3 subjects. There were no significant differences in any of the kinetic parameters for either diclofenac disposition or formation clearance of 4′-hydroxydiclofenac between the two genotype groups. Conclusion: Since the disposition kinetics of diclofenac does not change in subjects with the single CYP2C9*3 mutant allele, it is suggested that the effects of CYP2C9 polymorphisms on the drug metabolism tend to be substrate specific. Received: 4 October 1999 / Accepted in revised form: 12 January 2000  相似文献   

20.
OBJECTIVE: CYP2C9 is a polymorphic gene with at least six known allelic variants (CYP2C9*1 to *6). CYP2C9*5 has been recently described in African-Americans. The lower activity of CYP2C9*5 encoded enzyme than *1 has been reported for the S-warfarin 7-hydroxylation in vitro. The aim of the present study was to develop an assay for the analysis of this variant and to determine the frequency of this polymorphism in different ethnic populations. MATERIALS AND METHODS: A PCR-based endonuclease digestion method, using a mismatched forward primer that introduced a recognition site for AvaII in all the CYP2C9 genotypes except CYP2C9*5, is described. DNA samples from 150 Ethiopians, 183 Tanzanians, 200 Caucasians from Sweden and 150 Orientals from Korea were screened for this variant allele. RESULTS AND CONCLUSION: The CYP2C9*5 allele was analysed using a polymerase chain reaction-based endonuclease method, and it was found in three Tanzanians (allele frequency, 0.0082) but not in Ethiopians, Caucasians or Orientals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号