首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although chronic arterial hypertension (CAH) increases the risk of stroke and the severity of the resultant lesion, it is rarely integrated in preclinical studies. Here, we analyzed the impact of CAH on the acute spatiotemporal evolution of the ischemic penumbra as defined by the perfusion-weighted imaging/diffusion-weighted imaging mismatch. Sequential 7T-MRI examinations were performed from 30 minutes up to 4 hours after permanent cerebral ischemia in genetically hypertensive rats (spontaneously hypertensive rats, SHR), renovascular-hypertensive rats (RH-WKY), and their normotensive controls (Wistar-Kyoto rats, WKY). The apparent diffusion coefficient (ADC)-defined lesion was larger in hypertensive rats than in normotensive animals as early as 30 minutes after the ischemia. The ischemic penumbra was smaller in both genetically and renovascular-hypertensive rats (at 30 minutes; SHR=66±25 mm3, RH-WKY=55±17 mm3 versus WKY=117±14 mm3; P<0.008) and there was no significant difference between the perfusion deficit and ADC lesion (mismatch definition of penumbra) as early as 90 minutes after the occlusion. Genetic hypertension and induced renovascular hypertension resulted in larger lesion and smaller penumbra that vanished rapidly. These data support the need to integrate CAH in preclinical studies relative to the treatment of stroke, as failure to do so may lead to preclinical results nonpredictive of clinical trials, which include hypertensive patients.  相似文献   

2.
Mismatches between tissue perfusion-weighted imaging (PWI; an index of blood flow deficit) and cellular diffusion-weighted imaging (DWI; an index of tissue injury) provide information on potentially salvageable penumbra tissue in focal stroke and can identify “treatable” stroke patients. The present pre-clinical studies were conducted to: a.) Determine PWI (using perfusion delay) and DWI measurements in two experimental stroke models, b.) Utilize these measurements to characterize selective ETA receptor antagonism (i.e., determine efficacy, time-to-treatment and susceptibility to treatment in the different stroke models), and c.) Determine if increasing the reduced blood flow following a stroke is a mechanism of protection. Permanent middle cerebral artery occlusion (MCAO) or sham surgeries were produced in Sprague Dawley rats (SD; proximal MCAO; hypothesized to be a model of slowly evolving brain injury with a significant penumbra) and in spontaneously hypertensive rats (SHR; distal MCAO; hypothesized to be a model of rapidly evolving brain injury with little penumbra). Infusions of vehicle or SB 234551 (3, 10, or 30 µg/kg/min) were initiated at 0, 75, and/or 180 min post-surgery and maintained for the remainder of 24 h post-surgery. Hyper-intense areas of perfusion delay (PWI) in the forebrain were measured using Gadolinium (Gd) bolus contrast. DWI hyper-intense areas were also measured, and the degree of forebrain DWI-PWI mismatch was determined. Region specific analyses (ROI) were also conducted in the core ischemic and low perfusion/penumbra areas to provide indices of perfusion and changes in the degree of tissue perfusion due to SB 234551 treatment. At 24 h post-surgery, final infarct volume was measured by DWI and by staining forebrain slices. Following SD proximal MCAO, there was a significant mismatch in the ischemic forebrain PWI compared to DWI (PWI > DWI) at 60 min which was maintained up to 150 min (all p < 0.05). By 24 h post-stroke, infarct volume was identical to the area of early perfusion deficit/PWI, suggesting a slow progression of infarct development that expanded into the significant, earlier cortical penumbra (i.e., model with salvageable tissue with potential for intervention). When SB 234551 was administered within the period of peak mismatch (i.e., at 75 min post-stroke), SB 234551 provided significant dose-related reductions in cortical (penumbral) progression to infarction (p < 0.05). Cortical protection was related to an increased/normalization of the stroke-induced decrease in tissue perfusion in cortical penumbra areas (p < 0.05). No SB 234551-induced changes in reduced tissue perfusion were observed in the striatum core ischemic area. Also, when SB-234551 was administered beyond the time of mismatch, no effect on cortical penumbra progression to infarct was observed. In comparison and strikingly different, following SHR distal MCAO there was no mismatch between PWI and DWI (PWI = DWI) as early as 60 min post-stroke, with this early change in SHR DWI being identical to the final infarct volume at 24 h, suggesting a rapidly occurring brain injury with little cortical penumbra (i.e., model with little salvageable tissue or potential for intervention). In distal MCAO, SB 234551 administered immediately at the time of stroke did not have any effect on infarct volume in SHR. These data demonstrate that selective blockade of ETA receptors is protective following proximal MCAO in SD (i.e. a model similar to “treatable” clinical patients). The protective mechanism appears to be due to enhanced collateral blood flow and salvage of penumbra. Therefore, the use of PWI-DWI mismatch signatures can identify treatable stroke models characterized by a salvageable penumbra and can define appropriate time to treatment protocols. In addition, tissue perfusion information obtained under these conditions might clarify mechanism of protection in the evaluation of protective compounds for focal stroke.  相似文献   

3.
We hypothesized that pretreatment magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) lesion volumes may have influenced clinical response to thrombolysis in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET). In 98 patients randomized to intravenous (IV) tissue plasminogen activator (tPA) or placebo 3 to 6 h after stroke onset, we examined increasing acute DWI and PWI lesion volumes (Tmax—with 2-sec delay increments), and increasing PWI/DWI mismatch ratios, on the odds of both excellent (modified Rankin Scale (mRS): 0 to 1) and poor (mRS: 5 to 6) clinical outcome. Patients with very large PWI lesions (most had internal carotid artery occlusion) had increased odds ratio (OR) of poor outcome with IV-tPA (58% versus 25% placebo; OR=4.13, P=0.032 for Tmax +2-sec volume >190 mL). Excellent outcome from tPA treatment was substantially increased in patients with DWI lesions <18 mL (77% versus 18% placebo, OR=15.0, P<0.001). Benefit from tPA was also seen with DWI lesions up to 25 mL (69% versus 29% placebo, OR=5.5, P=0.03), but not for DWI lesions >25 mL. In contrast, increasing mismatch ratios did not influence the odds of excellent outcome with tPA. Clinical responsiveness to IV-tPA, and stroke outcome, depends more on baseline DWI and PWI lesion volumes than the extent of perfusion–diffusion mismatch.  相似文献   

4.
Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) can rapidly detect lesions in acute ischemic stroke patients. The PWI volume is typically substantially larger than the DWI volume shortly after onset, that is, a diffusion/ perfusion mismatch. The aims of this study were to follow the evolution of the diffusion/ perfusion mismatch in permanent and 60- minute temporary focal experimental ischemia models in Sprague-Dawley rats using the intraluminal middle cerebral artery occlusion (MCAO) method. DWI and arterial spin-labeled PWI were performed at 30, 60, 90, 120, and 180 minutes after occlusion and lesion volumes (mm(3)) calculated At 24 hours after MCAO, and infarct volume was determined using triphenyltetrazolium chloride staining. In the permanent MCAO group, the lesion volume on the ADC maps was significantly smaller than that on the cerebral blood flow maps through the first 60 minutes after MCAO; but not after 90 minutes of occlusion. With 60 minutes of transient ischemia, the diffusion/perfusion mismatch was similar, but after reperfusion, the lesion volumes on ADC and cerebral blood flow maps became much smaller. There was a significant difference in 24- hour infarct volumes between the permanent and temporary occlusion groups.  相似文献   

5.
BACKGROUND AND PURPOSE: More effective imaging methods are needed to overcome the limitations of CT in the investigation of treatments for acute ischemic stroke. Diffusion-weighted MRI (DWI) is sensitive in detecting infarcted brain tissue, whereas perfusion-weighted MRI (PWI) can detect brain perfusion in the same imaging session. Combining these methods may help in identifying the ischemic penumbra, which is an important concept in the hemodynamics of acute stroke. The purpose of this study was to determine whether combined DWI and PWI in acute (<24 hours) ischemic stroke can predict infarct growth and final size. METHODS: Forty-six patients with acute ischemic stroke underwent DWI and PWI on days 1, 2, and 8. No patient received thrombolysis. Twenty-three patients underwent single-photon emission CT in the acute phase. Lesion volumes were measured from DWI, SPECT, and maps of relative cerebral blood flow calculated from PWI. RESULTS: The mean volume of infarcted tissue detected by DWI increased from 46.1 to 75.6 cm(3) between days 1 and 2 (P<0.001; n=46) and to 78.5 cm(3) after 1 week (P<0.001; n=42). The perfusion-diffusion mismatch correlated with infarct growth (r=0. 699, P<0.001). The volume of hypoperfusion on the initial PWI correlated with final infarct size (r=0.827, P<0.001). The hypoperfusion volumes detected by PWI and SPECT correlated significantly (r=0.824, P<0.001). CONCLUSIONS: Combined DWI and PWI can predict infarct enlargement in acute stroke. PWI can detect hypoperfused brain tissue in good agreement with SPECT in acute stroke.  相似文献   

6.
目的 探讨表观弥散系数(apparent diffusion coefficient,ADC)对确定急性缺血性卒中缺血半暗带的潜在价值。 方法 选择发病9 h内完成多模式磁共振成像(magnetic resonance imaging,MRI)检查的前循环急性缺血性卒中患者49例。应用自制软件进行灌注加权像(perfusion-weighted imaging,PWI)和弥散加权像(diffusion-weighted imaging,DWI)异常区域的体积测量。缺血半暗带以PWI/DWI错配表示。同时采用全自动图像分析系统,以DWI图像计算得到的ADC图作为输入数据,来判断缺血半暗带的存在(以下简称为ADC方法),然后比较这两种方法在判断缺血半暗带方面的差异。 结果 入选的49例患者中,存在PWI/DWI错配者为43例,符合ADC方法判断缺血半暗带标准者有41例。这两种方法在判断是否存在缺血半暗带的结果中有41例相符,对判断缺血半暗带的差异无统计学意义(P>0.05)。ADC方法判断缺血半暗带的敏感度为88.4%、特异度为50.0%。 结论 由于不需做PWI检查,ADC方法对确定缺血半暗带具有潜在的临床实用价值,有可能成为一种简便易行的确定缺血半暗带的方法。  相似文献   

7.
Tissue sodium concentration increases in irreversibly damaged (core) tissue following ischemic stroke and can potentially help to differentiate the core from the adjacent hypoperfused but viable penumbra. To test this, multinuclear hydrogen-1/sodium-23 magnetic resonance imaging (MRI) was used to measure the changing sodium signal and hydrogen-apparent diffusion coefficient (ADC) in the ischemic core and penumbra after rat middle cerebral artery occlusion (MCAO). Penumbra and core were defined from perfusion imaging and histologically defined irreversibly damaged tissue. The sodium signal in the core increased linearly with time, whereas the ADC rapidly decreased by >30% within 20 minutes of stroke onset, with very little change thereafter (0.5–6 hours after MCAO). Previous reports suggest that the time point at which tissue sodium signal starts to rise above normal (onset of elevated tissue sodium, OETS) represents stroke onset time (SOT). However, extrapolating core data back in time resulted in a delay of 72±24 minutes in OETS compared with actual SOT. At the OETS in the core, penumbra sodium signal was significantly decreased (88±6%, P=0.0008), whereas penumbra ADC was not significantly different (92±18%, P=0.2) from contralateral tissue. In conclusion, reduced sodium-MRI signal may serve as a viability marker for penumbra detection and can complement hydrogen ADC and perfusion MRI in the time-independent assessment of tissue fate in acute stroke patients.  相似文献   

8.
BACKGROUND AND PURPOSE: Diffusion-and perfusion-weighted magnetic resonance imaging (DWI and PWI) are useful tools for the assessment of brain ischemia. Discrepancies between the extent of DWI and PWI abnormalities are thought to depend pre dominantly on time from symptom onset to magnetic resonance imaging (MRI) examination. However, underlying ischemic stroke etiology can also be important. A mismatch may indicate the presence of tissue at risk for infarction, whereas the relevance of other DWI/PWI patterns is uncertain. The authors therefore investigated the etiology of brain ischemia in patients with different DWI/PWI patterns. METHODS: Retrospective study of 130 patients with acute brain ischemia and detailed stroke workup, including MRI within a week after symptom onset (40 +/- 39 hours). Patients were divided into the following groups: mis-match (PWI > DWI), reverse mismatch (DWI > PWI), and match (<25% difference between PWI and DWI). RESULTS: Mismatch occurred in 49% of patients, whereas 22% had reverse mis-match and 29% matched lesions. Time from symptom onset to MRI examination was similar between the 3 groups. Largeartery atherosclerosis increased by almost 4-fold the odds of mismatch (odds ratio: 3.89, 95% confidence interval: 1.72-8.78; P < .001), whereas patients with reverse mismatch were likely to have cryptogenic stroke. Patients with matched lesions were similarly distributed among different stroke subtypes. CONCLUSIONS: Ischemic stroke etiology appears to influence the development of specific DWI/PWI patterns. Prospective studies are needed to confirm these observations.  相似文献   

9.
Vascular occlusion sites largely determine the pattern of cerebral tissue damage and likelihood of subsequent reperfusion after acute ischemic stroke. We aimed to elucidate relationships between flow obstruction in segments of the internal carotid artery (ICA) and middle cerebral artery (MCA), and (1) profiles of acute ischemic lesions and (2) probability of subsequent beneficial reperfusion. Embolic stroke was induced by unilateral intracarotid blood clot injection in normotensive (n=53) or spontaneously hypertensive (n=20) rats, followed within 2 hours by magnetic resonance (MR) angiography (MRA), diffusion- (DWI) and perfusion-weighted magnetic resonance imaging (MRI) (PWI). In a subset of animals (n=9), MRI was repeated after 24 and 168 hours to determine the predictive value of the occlusion pattern on benefit of reperfusion. The extent of cerebral perfusion and diffusion abnormality was related to the pattern of flow obstruction in ICA and MCA segments. Hypertensive animals displayed significantly larger cortical perfusion lesions. Acute perfusion-diffusion lesion mismatches were detected in all animals that subsequently benefitted from reperfusion. Yet, the presence of an angiography-diffusion mismatch was more specific in predicting reperfusion benefit. Combination of DWI, PWI, and MRA exclusively informs on the impact of arterial occlusion profiles after acute ischemic stroke, which may improve prognostication and subsequent treatment decisions.  相似文献   

10.
BACKGROUND: Effective therapy was not available for treatment of acute stroke until 1995, when tissue plasminogen activator (tPA) was shown to improve neurological and functional outcome in stroke patients who were treated within 3 hours of symptom onset. SUMMARY OF REVIEW: Currently, many patients do not qualify for tPA therapy because they present for evaluation beyond 3 hours after stroke onset. Attempts to expand the treatment window to 6 hours, using CT to select patients, have failed. Use of early MR imaging may provide significant advantages over CT for identification of patients who are likely to benefit from thrombolytic therapy because (1) the early perfusion-weighted imaging (PWI) lesion estimates the region of acute dysfunctional brain tissue, whereas the acute diffusion-weighted imaging (DWI) lesion appears to correspond to the core of the early infarction; (2) the mismatch between the acute PWI lesion and the smaller DWI lesion represents potentially salvageable brain tissue (an estimate of the ischemic penumbra); and (3) in patients with a PWI/DWI mismatch, early reperfusion is often associated with substantial clinical improvement and reversal or reduction of DWI lesion growth. CONCLUSIONS: Clinical trials that use new MRI techniques to screen patients may be able to identify a subset of acute stroke patients who are ideal candidates for thrombolytic therapy even beyond 3 hours after stroke onset.  相似文献   

11.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) are relatively new MR techniques increasingly used in acute stroke. During the first hours of stroke evolution, the regions with abnormal perfusion are typically larger than the DWI lesions, and this mismatch region has been suggested to be "tissue at risk." The aim of this study was to evaluate the PWI/DWI mismatch region in acute stroke patients and find parameters indicative of both infarct progression and functional impairment. METHODS: Twenty patients with nonlacunar ischemic stroke were imaged with DWI, PWI, and conventional MRI within 24 hours of symptom onset and after 1 week; in addition, the European Stroke Scale (ESS) score was recorded. With PWI, the volumes of regions with "time-to-peak" (TTP) delays of >/=2, 4, 6, 8, and 10 seconds were measured; these volumes were compared with the acute DWI lesion volumes, final infarct size, and ESS score. RESULTS: In 80% of patients the acute DWI lesion was surrounded by regions with abnormal TTP delays (PWI>DWI lesion). A TTP delay of >/=6 s in the mismatch region was found to be associated with lesion enlargement between the initial and follow-up MRI scans. Lesions increased in 9 of 12 patients (75%) in whom the area with TTP delay >/=6 s was larger than the DWI lesion, but they increased in only 1 of 8 (12.5%) of the remaining patients, in whom the area with a TTP delay >/=6 s was smaller than the DWI lesion. The volume of the regions with TTP delays of >/=4 s correlated better with ESS (r=-0.88, P<0.001) than other PWI (or DWI) volumes, which indicated that a TTP delay of approximately 4 s might be the threshold for functional impairment of brain tissue. CONCLUSIONS: Only patients with severe perfusion deficits in the PWI/DWI mismatch (TTP delays of >/=6 s) are at high risk of lesion enlargement. Functionally, more moderate perfusion deficits (TTP delays >/=4 and <6 s) appear to also contribute to the acute clinical deficit.  相似文献   

12.
BACKGROUND: Clinical 3-tesla magnetic resonance imaging systems are becoming widespread. No studies have examined differences between 1.5-tesla and 3-tesla imaging for the assessment of hyperacute ischemic stroke (<6 h from symptom onset). Our objective was to compare 1.5-tesla and 3-tesla diffusion and perfusion imaging for hyperacute stroke using optimized protocols. METHODS: Three patients or their surrogate provided informed consent. Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) was performed sequentially at 1.5 T and 3 T. DWI, apparent diffusion coefficient (ADC) maps and relative time-to-peak (TTP) maps were registered and assessed. DWI contrast-to-noise ratio (CNR) and ADC contrast were measured and compared. The infarct lesion volume (ILV) and thresholded ischemic volume (TIV) were estimated on the ADC and TTP maps, respectively, with the penumbral volume being defined as the difference between these volumes. RESULTS: Qualitatively, the 3-tesla TTP images exhibited greater feature detail. Quantitatively, the DWI CNR and ILV were similar at both field strengths, the ADC contrast was greater at 3 T and the TIV and penumbral volumes were much smaller at 3 T. CONCLUSIONS: Overall, the 3-tesla diffusion and perfusion images were at least as good and in some ways superior to the 1.5-tesla images for assessing hyperacute stroke. The TTP maps showed greater feature detail at 3 T. The ischemic and penumbra volumes were much greater at 1.5 T, indicating a potential difference in the diagnostic utility of the PWI-DWI mismatch between field strengths.  相似文献   

13.
Relationship between severity of MR perfusion deficit and DWI lesion evolution   总被引:10,自引:0,他引:10  
OBJECTIVE: To assess whether a quantitative analysis of the severity of the early perfusion deficit on MRI in acute ischemic stroke predicts the evolution of the perfusion/diffusion mismatch and to determine thresholds of hypoperfusion that can distinguish between critical and noncritical hypoperfusion. METHODS: Patients with acute ischemic stroke were studied in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI MRI) were performed within 7 hours of symptom onset and again after 4 to 7 days. Patients with early important decreases in points on the NIH Stroke Scale were excluded. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were created. These hemodynamic parameters were correlated with the degree of recruitment of the baseline PWI lesion by the DWI lesion. RESULTS: Twelve patients had an initial PWI > DWI mismatch of >20%. A linear relationship was observed between the initial MTT and the degree of recruitment of the baseline PWI lesion by the DWI lesion at follow-up (R(2) = 0.9, p < 0.001). Higher CBV values were associated with higher degrees of recruitment (rho = 0.732, p < 0.007). The volume of MTT of >4 (R(2) = 0.86, p < 0.001) or >6 seconds (R(2) = 0.85, p < 0.001) predicted final infarct size. CONCLUSION: Among patients who have had an acute stroke with PWI > DWI, who do not have dramatic early clinical improvement, the degree of expansion of the initial DWI lesion correlates with the severity of the initial perfusion deficit as measured by the mean transit time and the cerebral blood volume.  相似文献   

14.
The concept of the ischaemic penumbra as critically hypoperfused and functionally impaired, but potentially viable brain, was introduced over 25 years ago. Recent studies have used a combination of perfusion-weighted magnetic resonance imaging (PWI) and diffusion-weighted imaging (DWI) to delineate the putative penumbra. PWI provides semiquantitative cerebral blood flow imaging and DWI is an index of the largely irreversible ischaemic core. PWI > DWI mismatch is an operational definition of the penumbra that was introduced in the late 1990s. This definition has been modified in recent years with the recognition that the PWI boundary includes a region of benign oligaemia and that a portion of the DWI core is potentially salvageable with rapid reperfusion. An MRI penumbral signature is present in the majority of patients within 6 h of stroke onset, often but not invariably associated with proximal arterial occlusion on magnetic resonance angiography, and is strictly time dependent. It has been postulated that penumbral imaging using MRI can provide a physiological 'tissue clock' and be used to predict benefit from thrombolytic therapy beyond the established 3-hour window. This has been suggested by pilot studies, but confirmation will rely on ongoing, prospective, randomized trials. The presence and extent of the penumbra may also predict the opportunity for tissue salvage with neuroprotection strategies. DWI and PWI parameters are being used in proof-of-principle stroke trials. Such trials can be performed with 100-200 patients randomized between treated and control groups and provide a biological signal of efficacy with only 10% of the sample size required for a Phase III study.  相似文献   

15.

Background

The mismatch between perfusion and diffusion lesions on magnetic resonance perfusion‐weighted imaging (PWI)/diffusion‐weighted imaging (DWI) may help identify patients for thrombolysis. Evidence underlying this hypothesis was assessed.

Methods

All papers describing magnetic resonance PWI/DWI findings in patients with acute ischaemic stroke, and their functional and/or radiological outcome at 1 month, with or without thrombolysis were systematically reviewed.

Results

11 papers fulfilled the inclusion criteria. Among these, there were 5 different mismatch definitions and at least 7 different PWI methods. Only 3 papers including 61 patients with and 18 without mismatch provided data on mismatch, outcome and influence of thrombolysis. Mismatch (v no mismatch) without thrombolysis was associated with a non‐significant twofold increase in the odds of infarct expansion (odds ratio (OR) 2.2, 95% confidence interval (CI) 0.34 to 14.1), which did not change with thrombolysis (OR 2.0, 95% CI 0.37 to 10.9). Half of the patients without mismatch also had infarct growth (with or without thrombolysis). No data were available on functional outcome.

Conclusions

Standardised definitions of mismatch and perfusion are needed. Infarct growth may occur even in the absence of mismatch. Currently, data available on mismatch are too limited to guide thrombolysis in routine practice. More data are needed from studies including patients with and without mismatch, and randomised treatment allocation, to determine the role of mismatch.Ischaemic stroke is a global problem, for which few acute treatments are available. Thrombolysis has to be given rapidly and, when guided by plain computed tomography scan of the brain, carries a risk of intracranial haemorrhage. Imaging the mismatch between diffusion‐weighted imaging (DWI) and perfusion‐weighted imaging (PWI) on magnetic resonance imaging (MRI) (or presumed reversible ischaemia on computed tomography perfusion1) might help identify patients with tissue at risk of infarction (even beyond the current 3 h time window), thereby avoiding thrombolysis in those with little chance of benefit.2,3 These techniques are used increasingly where technology is available, and in acute‐stroke trials (http://www.strokecenter.org/trials).4The increasing use of this approach in trials and routine practice suggests that there are clear definitions of what constitutes mismatch and substantial evidence to justify its use. However, it is now known that the DWI lesion is not irreversible (initial DWI lesions may disappear spontaneously or after thrombolysis5), and that the appearance of PWI lesion depends on which of the many methods were used to calculate it. Different perfusion parameters (eg, mean transit time (MTT), regional cerebral blood flow6 and arterial input function7) give different perfusion lesion volumes in the same patient. Thus, it is unclear whether the presence (v absence) of mismatch affects prognosis. If mismatch is to be used to select patients for treatment, then the key point is to determine whether thrombolysis has a greater effect in the presence than in the absence of mismatch. This requires a randomised controlled trial in which patients with and without mismatch are randomly selected to receive thrombolysis or control treatment, an expensive and difficult undertaking given the large sample size needed.8As there is already a considerable body of literature available on the magnetic resonance mismatch concept, we undertook this systematic review to assess all current evidence on the effect of magnetic resonance PWI/DWI mismatch in patients with acute ischaemic stroke on outcome (clinical and radiological) and whether this is modified by thrombolysis. We set rigorous prespecified inclusion and exclusion criteria based on scientific principles for observational studies and randomised trials to minimise bias.  相似文献   

16.
Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients.   总被引:2,自引:0,他引:2  
Although the perfusion-weighted imaging/diffusion-weighted imaging (PWI/DWI) mismatch model has been proposed to identify acute stroke patients who benefit from reperfusion therapy, the optimal definition of a mismatch is uncertain. We evaluated the odds ratio for a favorable clinical response in mismatch patients with reperfusion compared with no reperfusion for various mismatch ratio thresholds in patients enrolled in the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. A mismatch ratio of 2.6 provided the highest sensitivity (90%) and specificity (83%) for identifying patients in whom reperfusion was associated with a favorable response. Defining mismatch with a larger PWI/DWI ratio may provide greater power for detecting beneficial effects of reperfusion.  相似文献   

17.
OBJECTIVE: We used combined diffusion-weighted (DWI) and perfusion-weighted (PWI) MRI to characterize hyperacute infarctions within 6 h of symptom onset with special reference to subcortical infarctions, and investigated the relation between perfusion-diffusion mismatch volume and functional outcome. MATERIAL AND METHODS: Twenty-two patients presenting with symptoms of acute stroke underwent DWI and PWI within 6 h of symptom onset, and follow-up MRI 30 days later. Twelve of these had a subcortical infarction on acute DWI. Lesion volumes were measured by acute DWI and PWI as well as chronic T(2)-weighted MRI (T2WI). Clinical severity was measured by the Scandinavian Stroke Scale (SSS) and the Barthel Index (BI). RESULTS: In the 12 patients with subcortical infarctions, PWI and especially DWI correlated strongly with acute and chronic neurological SSS score, as well as with final infarct volume. Furthermore, a hyperacute PWI/DWI mismatch in this subgroup predicted lesion growth. There was a weaker correlation between acute DWI/PWI and neurological score among all 22 patients, and patients with a PWI/DWI mismatch larger than 100 ml had a significantly larger lesion growth and a poorer outcome than patients with a smaller mismatch. CONCLUSIONS: Subcortical infarctions may represent a sizeable subgroup of acute stroke patients. Also subcortical infarctions may have a PWI/DWI mismatch and therefore may respond to neuroprotective/thrombolytic therapy. Hyperacute DWI may reflect the acute clinical status and predict the outcome in patients with subcortical infarction.  相似文献   

18.
No study has investigated red nucleus (RN) atrophy in multiple sclerosis (MS) despite cerebellum and its connections are elective sites of MS‐related pathology. In this study, we explore RN atrophy in early MS phases and its association with cerebellar damage (focal lesions and atrophy) and physical disability. Thirty‐seven relapse‐onset MS (RMS) patients having mean age of 35.6 ± 8.5 (18–56) years and mean disease duration of 1.1 ± 1.5 (0–5) years, and 36 age‐ and sex‐matched healthy controls (HC) were studied. Cerebellar and RN lesions and volumes were analyzed on 3 T‐MRI images. RMS did not differ from HC in cerebellar lobe volumes but significantly differed in both right (107.84 ± 13.95 mm3 vs. 99.37 ± 11.53 mm3, p = .019) and left (109.71 ± 14.94 mm3 vs. 100.47 ± 15.78 mm3, p = .020) RN volumes. Cerebellar white matter lesion volume (WMLV) inversely correlated with both right and left RN volumes (r = −.333, p = .004 and r = −.298, p = .010, respectively), while no correlation was detected between RN volumes and mean cortical thickness, cerebellar gray matter lesion volume, and supratentorial WMLV (right RN: r = −.147, p = .216; left RN: r = −.153, p = .196). Right, but not left, RN volume inversely correlated with midbrain WMLV (r = −.310, p = .008), while no correlation was observed between whole brainstem WMLV and either RN volumes (right RN: r = −.164, p = .164; left RN: r = −.64, p = .588). Finally, left RN volume correlated with vermis VIIb (r = .297, p = .011) and right interposed nucleus (r = .249, p = .034) volumes. We observed RN atrophy in early RMS, likely resulting from anterograde axonal degeneration starting in cerebellar and midbrain WML. RN atrophy seems a promising marker of neurodegeneration and/or cerebellar damage in RMS.  相似文献   

19.
20.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) have been used increasingly in recent years to evaluate acute stroke in the emergency setting. In the present study, we compared DWI and PWI findings in acute stroke patients with and without severe extracranial internal carotid artery (ICA) disease. METHODS: Twenty-seven patients with nonlacunar ischemic stroke were selected for this analysis. DWI, PWI, and conventional MRI were performed in all patients within 24 hours of symptom onset and after 1 week. To exclude patients with partial or complete reperfusion, we included only patients with a PWI deficit larger than the DWI lesion. Severe ICA disease (>70% stenosis) was present unilaterally in 9 and bilaterally in 2 patients. Acute DWI lesion volume, the size of the acute PWI/DWI mismatch, and final infarct size (on T2-weighted images) were determined. RESULTS: The PWI/DWI mismatch was significantly larger in patients with severe ICA disease than in patients without extracranial carotid stenosis, both when time-to-peak and mean transit time maps (P<0.01) were used to calculate the mismatch. Quantitative analysis of the time-to-peak delay in the mismatch indicated that a relatively smaller fraction of the total mismatch was critically ischemic in patients with carotid stenosis than in those without. Average lesion volume increased less in the stenosis group (P=0.14), despite the larger PWI/DWI mismatch, and final infarct size was smaller in the stenosis group (P<0.05). In the 2 patients with bilateral ICA disease, variable hemodynamic involvement of the contralateral hemisphere was found in addition to the ipsilateral PWI deficit. CONCLUSIONS: In most acute stroke patients with severe ICA stenosis, a considerably smaller fraction of the total PWI/DWI mismatch is at risk than in patients without carotid disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号