首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
In this study, we determined the diagnostic accuracy of cerebrospinal fluid (CSF) biomarkers to predict development of Alzheimer's disease (AD) within five years in patients with mild cognitive impairment (MCI). To do so, the levels of tau, phosphorylated tau, Aβ42, Aβ40, Aβ38, sAβPPα, and sAβPPβ were analyzed in 327 CSF samples obtained at baseline from patients with AD (n = 94), MCI (n = 166), depressive disorder (n = 29), and cognitively healthy controls (n = 38). In the cohort with MCI at baseline, 33% subsequently developed AD and 16% developed other types of dementia; however, 51% were still cognitively stable after a followup of 4.7 years (range 3.0-7.2). Optimal cutoffs for each biomarker or combinations of biomarkers were defined in the AD, control, and depressive disorder groups. Several combinations resulted in sensitivity and specificity levels > 85% for differentiation of AD from controls and depressive disorder. Using the previously established cutoffs, a combination of Aβ42 and tau could predict future development of AD in MCI patients with a sensitivity of 88%, specificity 82%, positive predictive value 71%, and negative predictive value 94%. MCI patients with both low Aβ42 and high tau levels had a substantially increased risk of developing AD (OR 20; 95% CI 6-58), even after adjustment for confounding factors. Ultimately, CSF biomarkers can stratify MCI patients into those with very low or high risk for future development of AD. However, the specificities and positive predictive values are still too low to be able to diagnose AD before the patients fulfill the clinical criteria.  相似文献   

2.
Previously it was reported that Alzheimer's disease (AD) patients have reduced amyloid (Aβ 1-42) and elevated total tau (t-tau) and phosphorylated tau (p-tau 181p) in the cerebro-spinal fluid (CSF), suggesting that these same measures could be used to detect early AD pathology in healthy elderly (CN) and mild cognitive impairment (MCI). In this study, we tested the hypothesis that there would be an association among rates of regional brain atrophy, the CSF biomarkers Aβ 1-42, t-tau, and p-tau 181p and ApoE ε4 status, and that the pattern of this association would be diagnosis specific. Our findings primarily showed that lower CSF Aβ 1-42 and higher tau concentrations were associated with increased rates of regional brain tissue loss and the patterns varied across the clinical groups. Taken together, these findings demonstrate that CSF biomarker concentrations are associated with the characteristic patterns of structural brain changes in CN and MCI that resemble to a large extent the pathology seen in AD. Therefore, the finding of faster progression of brain atrophy in the presence of lower Aβ 1-42 levels and higher p-tau levels supports the hypothesis that CSF Aβ 1-42 and tau are measures of early AD pathology. Moreover, the relationship among CSF biomarkers, ApoE ε4 status, and brain atrophy rates are regionally varying, supporting the view that the genetic predisposition of the brain to amyloid and tau mediated pathology is regional and disease stage specific.  相似文献   

3.
The aim of the study was to compare clinical variables between MCI patients at different risk for Alzheimer's disease (AD) according to their biomarker profile. Fifty-four percent out of 39 MCI patients had a low Abeta42 and high tau in cerebrospinal fluid (CSF) (high-risk), 26% either a low CSF Abeta32 or high CSF tau (intermediate-risk) and 20% a normal CSF Abeta42 and tau (low-risk). Both high-and intermediate-risk subjects differed from the low-risk group in episodic memory, executive functions and the preclinical AD scale (PAS),which combines a set of clinical parameters. Subjects at high risk did not differ from subjects with an intermediate risk. Abeta42 levels correlated with the MTA and PAS scores, tau levels with episodic memory. These correlations suggest that the biomarkers are not independent when compared to the other AD markers. Longitudinal studies are necessary to interpret the correlations between biomarkers, imaging, and neuropsychological markers.  相似文献   

4.
Soluble circulating low density lipoprotein receptor-related protein-1 (sLRP) provides key plasma binding activity for Alzheimer's disease (AD) amyloid-β peptide (Aβ). sLRP normally binds 70-90% of plasma Aβ preventing free Aβ access to the brain. In AD, Aβ binding to sLRP is compromised by increased levels of oxidized sLRP which does not bind Aβ. Here, we determined plasma oxidized sLRP and Aβ40/42 sLRP-bound, other proteins-bound and free plasma fractions, cerebrospinal fluid (CSF) tau/Aβ42 ratios, and mini-mental state examination (MMSE) scores in patients with mild cognitive impairment (MCI) who progressed to AD (MCI-AD, n = 14), AD (n = 14) and neurologically healthy controls (n = 14) recruited from the G?teborg MCI study. In MCI-AD patients prior to conversion to AD and AD patients, the respective increases in oxidized sLRP and free plasma Aβ40 and Aβ42 levels were 4.9 and 3.7-fold, 1.8, and 1.7-fold and 4.3 and 3.3-fold (p < 0.05, ANOVA with Tuckey post-hoc test). In MCI-AD and AD patients increases in oxidized sLRP and free plasma Aβ40 and Aβ42 correlated with increases in CSF tau/Aβ42 ratios and reductions in MMSE scores (p < 0.05, Pearson analysis). A heterogeneous group of 'stable' MCI patients that was followed over 2-4 years (n = 24) had normal CSF tau/Aβ42 ratios but increased oxidized sLRP levels (p < 0.05, Student's t test). Data suggests that a deficient sLRP-Aβ binding might precede and correlate later in disease with an increase in the tau/Aβ42 CSF ratio and global cognitive decline in MCI individuals converting into AD, and therefore is an early biomarker for AD-type dementia.  相似文献   

5.
BACKGROUND: Disease-modifying treatment strategies for Alzheimer's disease have led to an urgent need for biomarkers to identify the disease at a very early stage. Here, we assess the association between CSF biomarkers and incipient Alzheimer's in patients with mild cognitive impairment (MCI). METHODS: From a series of 180 consecutive patients with MCI, we assessed 137 who underwent successful lumbar puncture at baseline. Patients at risk of developing dementia were followed clinically for 4-6 years. Additionally, 39 healthy individuals, cognitively stable over 3 years, served as controls. We analysed CSF concentrations of beta amyloid(1-42) (Abeta42), total tau (T-tau), and phosphorylated tau (P-tau181) using Luminex xMAP technology. FINDINGS: During follow-up, 57 (42%) patients with MCI developed Alzheimer's disease, 21 (15%) developed other forms of dementia, and 56 (41%) remained cognitively stable for 5.2 years (range 4.0-6.8). A combination of CSF T-tau and Abeta42 at baseline yielded a sensitivity of 95% and a specificity of 83% for detection of incipient AD in patients with MCI. The relative risk of progression to Alzheimer's disease was substantially increased in patients with MCI who had pathological concentrations of T-tau and Abeta42 at baseline (hazard ratio 17.7, p<0.0001). The association between pathological CSF and progression to Alzheimer's disease was much stronger than, and independent of, established risk factors including age, sex, education, APOE genotype, and plasma homocysteine. The combination of T-tau and Abeta42/P-tau181 ratio yielded closely similar results (sensitivity 95%, specificity 87%, hazard ratio 19.8). INTERPRETATION: Concentrations of T-tau, P-tau181, and Abeta42 in CSF are strongly associated with future development of Alzheimer's disease in patients with MCI.  相似文献   

6.
Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Aβ1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Aβ amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.  相似文献   

7.
Recent advances in biomarker studies compiled from the Alzheimer's Disease Neuroimaging Initiative (ADNI) are summarized here. CSF Aβ42, total tau, and phosphorylated tau181 are the most sensitive biomarkers for diagnosing Alzheimer's disease (AD) and predicting the onset of AD in cases with mild cognitive impairment (MCI) due to AD. Many perspective studies on PiB-PET, FDG-PET, MRI volumetry, and some neuropsychiatric tests have provided evidence for the usefulness of these biomarkers for diagnosing AD and MCI due to AD. Basic and clinical studies have contributed considerably to the establishment of clinical evidence that supports the usefulness of these markers. Given the progress in the diagnosis of preclinical AD, discovery of therapy that is essential for the cure of AD is expected soon.  相似文献   

8.
Subjects with mild cognitive impairment (MCI) are at a high risk of developing clinical Alzheimer's disease (AD). We asked to what extent the core biomarker candidates cerebro-spinal fluid (CSF) beta-amyloid(1-42) (Abeta(1-42)) and CSF tau protein concentrations predict conversion from MCI to AD. We studied 52 patients with MCI, 93 AD patients, and 10 healthy controls (HC). The MCI group was composed of 29 patients who had converted to AD during follow-up, and of 23 patients who showed no cognitive decline. CSF Abeta(1-42) and tau protein levels were assessed at baseline in all subjects, using enzyme-linked immunosorbent assays. For assessment of sensitivity and specificity, we used independently established reference values for CSF Abeta(1-42) and CSF tau. The levels of CSF tau were increased, whereas levels of Abeta(1-42) were decreased in MCI subjects. Abeta(1-42) predicted AD in converted MCI with a sensitivity of 59% and a specificity of 100% compared to HC. Tau yielded a greater sensitivity of 83% and a specificity of 90%. In a multiple Cox regression analysis within the MCI group, low baseline levels of Abeta(1-42), but not other predictor variables (tau protein, gender, age, apolipoprotein E epsilon4 carrier status, Mini Mental Status Examination score, observation time, antidementia therapy), correlated with conversion status (P<0.05). Our findings support the notion that CSF tau and Abeta(1-42) may be useful biomarkers in the early identification of AD in MCI subjects.  相似文献   

9.
Cerebrospinal fluid (CSF) measurements of amyloid-β42 (Aβ42), total-tau (T-tau), and phosphorylated tau (P-tau) may be used to predict future Alzheimer's disease (AD) dementia in patients with mild cognitive impairment (MCI). The precise temporal development of these biomarkers in relation to clinical progression is unclear. Earlier studies have been hampered by short follow-up. In an MCI cohort, we selected 15 patients who developed AD (MCI-AD) and 15 who remained cognitively stable during 4 years of follow-up. CSF was sampled at three serial occasions from each patient and analyzed for Aβ peptides, the soluble amyloid-β protein precursor protein fragments sAβPPα and sAβPPβ, T-tau, P-tau, and chromogranin B, which is a protein linked to regulated neuronal secretion. We also measured, for the first time in MCI patients, an extended panel of Aβ peptides by matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry (MS). Most biomarkers were surprisingly stable over the four years with coefficients of variation below or close to 10%. However, MCI-AD patients decreased in CSF AβX??? and chromogranin B concentrations, which may indicate a reduced number of functional neurons or synapses with disease progression. The MS Aβ peptide panel was more useful than any single Aβ peptide to identify MCI-AD patients already at baseline. Knowledge on these biomarkers and their trajectories may facilitate early diagnosis of AD and be useful in future clinical trials to track effects of disease modifying drugs.  相似文献   

10.
BackgroundIn the earliest clinical stages of Alzheimer’s disease (AD) when symptoms are mild, clinical diagnosis can be difficult. AD pathology most likely precedes symptoms. Biomarkers can serve as early diagnostic indicators or as markers of preclinical pathologic change. Candidate biomarkers derived from structural and functional neuroimaging and those measured in cerebrospinal fluid (CSF) and plasma show the greatest promise. Unbiased exploratory approaches, eg, proteomics or cortical thickness analysis, could yield novel biomarkers. The objective of this article was to review recent progress in selected imaging and neurochemical biomarkers for early diagnosis, classification, progression, and prediction of AD.MethodsWe performed a survey of recent research, focusing on core biomarker candidates in AD.ResultsA number of in vivo neurochemistry and neuroimaging techniques, which can reliably assess aspects of physiology, pathology, chemistry, and neuroanatomy, hold promise as biomarkers. These neurobiologic measures appear to relate closely to pathophysiologic, neuropathologic, and clinical data, such as hyperphosphorylation of tau, amyloid beta (Aβ) metabolism, lipid peroxidation, pattern and rate of atrophy, loss of neuronal integrity, functional and cognitive decline, as well as risk of future decline. Current advances in the neuroimaging of mediotemporal, neocortical, and subcortical areas of the brain of mild cognitive impairment (MCI) and AD subjects are presented. CSF levels of Aβ42, tau, and hyperphosphorylated tau protein (p-tau) can distinguish subjects with MCI who are likely to progress to AD. They also show preclinical alterations that predict later development of early AD symptoms. Studies on plasma Aβ are not entirely consistent, but recent findings suggest that decreased plasma Aβ42 relative to Aβ40 might increase the risk of AD. Increased production of Aβ in aging is suggested by elevation of BACE1 protein and enzyme activity in the brain and CSF of subjects with MCI. CSF tau and p-tau are increased in MCI as well and show predictive value. Other biomarkers might indicate components of a cascade initiated by Aβ, such as oxidative stress or inflammation. These merit further study in MCI and earlier.ConclusionsA number of neuroimaging candidate markers are promising, such as hippocampus and entorhinal cortex volumes, basal forebrain nuclei, cortical thickness, deformation-based and voxel-based morphometry, structural and effective connectivity by using diffusion tensor imaging, tractography, and functional magnetic resonance imaging. CSF Aβ42, BACE1, total tau, and p-tau are substantially altered in MCI and clinical AD. Other interesting novel marker candidates derived from blood are being currently proposed (phase I). Biomarker discovery through proteomic approaches requires further research. Large-scale international controlled multicenter trials (such as the U.S., European, Australian, and Japanese Alzheimer’s Disease Neuroimaging Initiative and the German Dementia Network) are engaged in phase III development of the core feasible imaging and CSF biomarker candidates in AD. Biomarkers are in the process of implementation as primary outcome variables into regulatory guideline documents regarding study design and approval for compounds claiming disease modification.  相似文献   

11.
The effects of applying clinical versus neuropathological diagnosis and the inclusion of cases with coincident neuropathological diagnoses have not been assessed specifically when studying cerebrospinal fluid (CSF) biomarker classification cutoffs for patients with neurodegenerative diseases that cause dementia. Thus, 142 neuropathologically diagnosed neurodegenerative dementia patients [71 Alzheimer's disease (AD), 29 frontotemporal lobar degeneration (FTLD), 3 amyotrophic lateral sclerosis, 7 dementia with Lewy bodies, 32 of which cases also had coincident diagnoses] were studied. 96 % had enzyme-linked immunosorbant assay (ELISA) CSF data and 77 % had Luminex CSF data, with 43 and 46 controls for comparison, respectively. Aβ(42), total, and phosphorylated tau(181) were measured. Clinical and neuropathological diagnoses showed an 81.4 % overall agreement. Both assays showed high sensitivity and specificity to classify AD subjects against FTLD subjects and controls, and moderate sensitivity and specificity for classifying FTLD subjects against controls. However, among the cases with neuropathological diagnoses of AD plus another pathology (26.8 % of the sample), 69.4 % (ELISA) and 96.4 % (Luminex) were classified as AD according to their biomarker profiles. Use of clinical diagnosis instead of neuropathological diagnosis led to a 14-17 % underestimation of the biomarker accuracy. These results show that while CSF Aβ and tau assays are useful for diagnosis of AD and neurodegenerative diseases even at MCI stages, CSF diagnostic analyte panels that establish a positive diagnosis of Lewy body disease and FTLD are also needed, and must be established based on neuropathological rather than clinical diagnoses.  相似文献   

12.
This article presents recommendations, based on the Grading of Recommendations, Assessment, Development, and Evaluation method, for the clinical application of cerebrospinal fluid (CSF) amyloid-β1–42, tau, and phosphorylated tau in the diagnostic evaluation of patients with mild cognitive impairment (MCI). The recommendations were developed by a multidisciplinary working group and based on the available evidence and consensus from focused group discussions for 1) prediction of clinical progression to Alzheimer's disease (AD) dementia, 2) cost-effectiveness, 3) interpretation of results, and 4) patient counseling. The working group recommended using CSF AD biomarkers in the diagnostic workup of MCI patients, after prebiomarker counseling, as an add-on to clinical evaluation to predict functional decline or conversion to AD dementia and to guide disease management. Because of insufficient evidence, it was uncertain whether CSF AD biomarkers outperform imaging biomarkers. Furthermore, the working group provided recommendations for interpretation of ambiguous CSF biomarker results and for pre- and post-biomarker counseling.  相似文献   

13.
The aim of the study was to compare clinical variables between MCI patients at different risk for Alzheimer’s disease (AD) according to their biomarker profile. Fifty-four percent out of 39 MCI patients had a low Aβ42 and high tau in cerebrospinal fluid (CSF) (high-risk), 26% either a low CSF Aβ42 or high CSF tau (intermediate-risk) and 20% a normal CSF Aβ42 and tau (low-risk). Both high- and intermediate-risk subjects differed from the low-risk group in episodic memory, executive functions and the preclinical AD scale (PAS), which combines a set of clinical parameters. Subjects at high risk did not differ from subjects with an intermediate risk. Aβ42 levels correlated with the MTA and PAS scores, tau levels with episodic memory. These correlations suggest that the biomarkers are not independent when compared to the other AD markers. Longitudinal studies are necessary to interpret the correlations between biomarkers, imaging, and neuropsychological markers.  相似文献   

14.
CSF biomarkers for mild cognitive impairment and early Alzheimer's disease   总被引:10,自引:0,他引:10  
A correct clinical diagnosis, early in the course of Alzheimer's disease (AD), is of importance given the currently available symptomatic treatment with acetylcholine esterase inhibitors. The development of disease-modifying drugs like beta-sheet breakers or gamma- and beta-secretase inhibitors, emphasizes the need of improved diagnostic accuracy, especially in patients with mild cognitive impairment (MCI) that have incipient AD. Therefore, diagnostic markers in the cerebrospinal fluid (CSF) have become a rapidly growing research field. Three cerebrospinal fluid biomarkers (the 42 amino acid form of beta-amyloid (A beta), total tau, and phospho tau) have been evaluated in numerous scientific papers. These CSF markers have high sensitivity to differentiate early and incipient AD from normal aging, depression, alcohol dementia and Parkinson's disease, but lower specificity against other dementias, such as frontotemporal and Lewy body dementia. If these biomarkers are used in combination with a careful medical history, clinical examination, standard laboratory tests and imaging techniques of the brain, the diagnostic accuracy may be appropriate for the clinical evaluation of MCI cases.  相似文献   

15.
Apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for Alzheimer’s disease (AD) and it is thought to do so by modulating levels of its product, apolipoprotein E (Apo-E), and regulating amyloid-β (Aβ) clearance. However, information on clinical and biomarker correlates of Apo-E proteins is scarce. We examined the relationship of cerebrospinal fluid (CSF) and plasma Apo-E protein levels, and APOE genotype to cognition and AD biomarker changes in 311 AD neuroimaging initiative subjects with CSF Apo-E measurements and 565 subjects with plasma Apo-E measurements. At baseline, higher CSF Apo-E levels were associated with higher total and phosphorylated CSF tau levels. CSF Apo-E levels were associated with longitudinal cognitive decline, MCI conversion to dementia, and gray matter atrophy rate in total tau/Aβ1–42 ratio and APOE genotype-adjusted analyses. In analyses stratified by APOE genotype, our results were only significant in the group without the ε4 allele. Baseline CSF Apo-E levels did not predict longitudinal CSF Aβ or tau changes. Plasma Apo-E levels show a mild correlation with CSF Apo-E levels, but were not associated with longitudinal cognitive and MRI changes. Based on our analyses, we speculate that increased CSF Apo-E2 or -E3 levels might represent a protective response to injury in AD and may have neuroprotective effects by decreasing neuronal damage independent of tau and amyloid deposition in addition to its effects on amyloid clearance.  相似文献   

16.
CSF markers for incipient Alzheimer's disease   总被引:12,自引:0,他引:12  
Early diagnosis of Alzheimer's disease (AD) is needed to initiate symptomatic treatment with acetylcholinesterase inhibitors, and will be of even greater significance if drugs aimed at slowing down the degenerative process, such as vaccination regimes and beta-secretase and gamma-secretase inhibitors, prove to affect AD pathology and to have clinical effect. However, there is no clinical method to determine in which patients mild cognitive impairment (MCI) will progress to AD with dementia, and in which patients MCI is benign. Hence, there is a great clinical need for biomarkers to identify incipient AD in patients with MCI. The CSF biomarkers total tau protein, phosphorylated tau protein, and the 42 amino-acid residue form of amyloid-beta may, if put in the right clinical context, prove to have high enough diagnostic accuracy to meet this challenge.  相似文献   

17.
Recently, light has been shed on possible interrelations between the two most important pathological hallmarks of Alzheimer's disease (AD): the amyloid cascade and axonal degeneration. In this study, we investigated associations between sβAPPβ, a product of the cleavage of the amyloid-β protein precursor (AβPP) by β-secretase, amyloid-β 1-42 (Aβ42), soluble SORL1 (also called LR11 or SORLA), a receptor that is involved in AβPP processing, and the marker of axonal degeneration tau in the cerebrospinal fluid (CSF) of 76 patients with mild cognitive impairment (MCI), 61 patients with AD, and 17 patients with frontotemporal dementia, which neuropathologically is not related to the amyloid pathology. In the AD group, significant associations between sAβPPβ, tau (p < 0.001), and soluble SORL1 (p < 0.001) were detected according to linear regression models. In patients with MCI, sAβPPβ correlated significantly with tau (p < 0.001) and soluble SORL1 (p = 0.003). In the FTD group, only SORL1 (p = 0.011) was associated with sAβPPβ and not tau. Aβ42 was found to be significantly related to tau levels in CSF in the MCI group (p < 0.001) and they tended to be associated in the AD group (p = 0.05). Our results provide further evidence for a link between the two facets of AD pathology, which is likely to be mediated by the binding of Aβ oligomers to specifically targeted neurons, resulting in stimulating tau hyperphosphorylation and neurodegeneration.  相似文献   

18.
Longitudinal changes of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) have been studied, but there are few consistent conclusions and even less is known about their variation during the different stages of the disease. We hypothesized that changes in CSF biomarker values would correlate with the progression of the cognitive decline in AD. One hundred and thirty-one memory clinic patients [56 AD, 57 mild cognitive impairment (MCI), 10 other neurological disorders, eight unimpaired subjects] underwent a clinical follow-up with repeated Mini-Mental Status Examination (MMSE) tests and two lumbar punctures with a median interval of 3 years. Levels of CSF amyloid-β (Aβ)(42), tau, and p-tau-181 were measured using commercially available ELISA. Twenty-one of the MCI subjects progressed to AD, whereas 26 subjects remained stable and 56 subjects had AD already at the baseline. The subjects displaying the most rapid MMSE decline rate had the lowest baseline Aβ(42), highest tau, and highest p-tau-181 CSF concentrations. An annual decrease of 2.20 pg/ml/year in the CSF p-tau-181 concentration was seen in AD-AD patients (p = 0.001). The difference was significant compared to stable MCI-MCI (increase of 1.24 pg/ml/year, p = 0.001) and cognitively healthy (increase of 0.84 pg/ml/year, p = 0.013) subjects (p for group difference 0.004). The decrease rate of p-tau-181 correlated with the MMSE decrease rate in AD subjects (r = 0.579, p < 0.001). The CSF Aβ(42) level decreased in the AD-AD group (decrease 11.9 pg/ml/year, p < 0.001). Concentrations of hyperphosphorylated tau decline in the late stages of the AD process. The decrease of p-tau-181 appears to correlate with cognitive functioning and probably reflects neuronal loss. More longitudinal studies of CSF biomarker dynamics are needed, especially in patients during the preclinical stage of the disease.  相似文献   

19.
This study examines the intra-individual stability of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) over 2 years in 83 patients with mild cognitive impairment (MCI) and 17 cognitively healthy control individuals. All participants underwent clinical and neuropsychological evaluation and lumbar puncture at baseline and after 2 years at a university hospital memory clinic. CSF was analyzed for total tau (T-tau), phospho-tau(181) (P-tau(181)) and amyloid-beta(1-42) (Abeta(1-42)). During the 2-year observational time, 12 MCI patients progressed to AD and 3 progressed to vascular dementia, while 68 remained stable. Baseline T-tau and P-tau(181) levels were elevated in the MCI-AD group as compared to the stable MCI patients and the control group (p<0.01), while baseline Abeta(1-42) levels were lower (p<0.001). Stable MCI patients were biochemically indistinguishable from controls. The biomarker levels at baseline and after 2 years showed Pearson R values between 0.81 and 0.91 (p<0.001) and coefficients of variation of 7.2 to 8.7%. In conclusion, intra-individual biomarker levels are remarkably stable over 2 years. Thus, even minor biochemical changes induced by treatment against AD should be detectable using these biomarkers, which bodes well for their usefulness as surrogate markers for drug efficacy in clinical trials.  相似文献   

20.
Amyloid imaging has been used to detect amyloid deposition in the brain. We performed Pittsburgh compound B (PiB)-positron emission tomography on 63 patients with dementia having cognitive decline or memory disturbance. In addition, we measured the patients' apolipoprotein E4 (apo E4) status and cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)1-42, tau, and P-tau. Finally, the patients were diagnosed as having probable Alzheimer disease (AD) on the basis of their neuropsychological findings and because they met the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association criteria. Among the patients diagnosed with probable AD, 10 patients were PiB negative. The CSF levels of P-tau and tau in PiB-negative patients were significantly lower than those in the PiB-positive patients. In addition, the CSF levels of Aβ1-42 in the PiB-negative patients were significantly higher than those in the PiB-positive patients. None of the PiB-negative patients were apo E4 carriers. These results suggest that the PiB-negative patient group included not only AD patients but also non-AD-type dementia patients. However, our finding is based on a relatively small number of patients and therefore should be replicated in a larger cohort. In addition, it will be necessary to categorize these participants by longitudinal follow-up and postmortem pathological examinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号