首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Collagen is used as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration by mimicry of the bone extracellular matrix in vivo. The biomimicry strategy can be taken further by incorporating the small leucine-rich proteoglycans (SLRPs) decorin and biglycan, which are expressed in bone. Both bind to fibrils during fibrillogenesis in vitro. In this study, the ability of collagen types I, II, and III to bind decorin and biglycan was compared. Collagen type II bound significantly more SLRPs in fibrils than collagen I and III, with more biglycan than decorin bound by all three collagen types. Therefore, type II fibrils with bound decorin or biglycan or neither were used to coat titanium surfaces. Bioavailability of SLRPs was confirmed by direct ELISA after SLRP biotinilation. The in vitro behavior of osteoblasts from rat calvaria (rOs) and human knee (hOs) cultured on different surfaces was compared. Proliferation and collagen synthesis were determined. Also, the influence of SLRPs on the formation of focal adhesions by rO was investigated. Biglycan enhanced the formation of focal adhesions after 2 and 24 h. Decorin and biglycan affected rO and hO proliferation and collagen synthesis differently. Biglycan stimulated hO proliferation significantly but had no effect on rO proliferation, and also inhibited rO collagen synthesis significantly while not affecting hO collagen synthesis. Decorin promoted hO proliferation slightly but did not influence rO proliferation. The results could be relevant when designing implant coatings or tissue engineering scaffolds.  相似文献   

2.
Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization. In order to investigate the distribution and potential functions of decorin, biglycan (BGN), and fibromodulin (3 SLRPs, potentially related to dentinogenesis), we performed light and electron immunochemistry on teeth from rats, and on wild-type and biglycan knockout mice (BGN KO). Immunohistochemical data demonstrate that chondroitin sulfate/dermatan sulfate (CS/DS) and keratan sulfate (KS) distributions displayed reverse gradients in predentin. The decrease of CS/DS labeling from the proximal to the distal predentin contrasted with the sharp decorin increase observed in the distal predentin near the predentin/dentin transition, an effect possibly attributable to the deglycosylation action of stromelysin-1. In contrast, BGN concentration was apparently constant throughout the whole predentin. Additional immunolabelings showed, for the first time, the presence of fibromodulin in predentin. Compared with the wild-type mouse, the mean diameter of collagen fibrils in the BGN KO was smaller in the proximal predentin but larger in the central and distal predentin, the metadentin was broader, and the dentin mineralization appeared altered and heterogeneous. Altogether, our data suggest an important role for BGN in dentin formation and mineralization.  相似文献   

3.
Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization. In order to investigate the distribution and potential functions of decorin, biglycan (BGN), and fibromodulin (3 SLRPs, potentially related to dentinogenesis), we performed light and electron immunochemistry on teeth from rats, and on wild-type and biglycan knockout mice (BGN KO). Immunohistochemical data demonstrate that chondroitin sulfate/dermatan sulfate (CS/DS) and keratan sulfate (KS) distributions displayed reverse gradients in predentin. The decrease of CS/DS labeling from the proximal to the distal predentin contrasted with the sharp decorin increase observed in the distal predentin near the predentin/dentin transition, an effect possibly attributable to the deglycosylation action of stromelysin-1. In contrast, BGN concentration was apparently constant throughout the whole predentin. Additional immunolabelings showed, for the first time, the presence of fibromodulin in predentin. Compared with the wild-type mouse, the mean diameter of collagen fibrils in the BGN KO was smaller in the proximal predentin but larger in the central and distal predentin, the metadentin was broader, and the dentin mineralization appeared altered and heterogeneous. Altogether, our data suggest an important role for BGN in dentin formation and mineralization.  相似文献   

4.
Fibromodulin is a keratan-sulfate small leucine-rich proteoglycan (SLRP) regulating collagen I and II fibril formation. In vivo studies suggest that, alongside decorin, fibromodulin plays an important role in the maintenance of mature tissues. To characterize fibromodulin/decorin differences in binding to type I and II collagen, we tested the collagen CNBr peptides in solid-phase assays. Only one peptide from collagen II and several peptides from collagen I interacted with fibromodulin, pointing to multiple binding sites in the collagen I molecule. By Scatchard-type analysis, the fibromodulin molecule showed only one class of binding sites for collagen I and both low and high affinity (classes of) binding sites for collagen II. Lys/Hyl residues in both collagens are essential for the interaction. Fibril formation assays showed the concomitant presence of fibromodulin and decorin in fibrils and a cumulative inhibitory effect. In solid-phase assays decorin seems to inhibit fibromodulin binding, whereas the contrary does not occur. We found fibromodulin and decorin have similarities and differences that may represent the biochemical basis of redundancy in SLRP function with compensation between different (classes of) SLRPs.  相似文献   

5.
In the pregnant mouse uterus, small leucine‐rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle‐stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Background: Small Leucine Rich Proteoglycans (SLRPs) play a role in collagen fiber formation and also function as signaling molecules. Given the importance of collagen synthesis to the cardiovascular extracellular matrix (ECM), we examined the spatiotemporal expression of SLRPs, not previously investigated in the murine heart. Results: Cardiac expression using antibodies specific for biglycan (BGN), decorin (DCN), fibromodulin (FMOD), and lumican (LUM) revealed distinct patterns among the SLRPs in mesenchymal‐derived tissues. DCN showed the most intense localization within the developing valve cusps, while LUM was evident primarily in the hinge region of postnatal cardiac valves. BGN, DCN, and FMOD were immunolocalized to regions where cardiac valves anchor into adjacent tissues. Medial (BGN) and adventitial (BGN, DCN, FMOD and LUM) layers of the pulmonary and aortic arteries also showed intense staining of SLRPs but this spatiotemporal expression varied with developmental age. Conclusions: The unique expression patterns of SLRPs suggest they have adapted to specialized roles in the cardiovascular ECM. SLRP expression patterns overlap with areas where TGFβ signaling is critical to the developing heart. Therefore, we speculate that SLRPs may not only be required to facilitate collagen fiber formation but may also regulate TGFβ signaling in the murine heart. Developmental Dynamics 243:601–611, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Defining the constituent regulatory molecules in tendon is critical to understanding the process of tendon repair and instructive to the development of novel treatment modalities. The purpose of this study is to define the structural, expressional, and mechanical changes in the tendon injury response, and elucidate the roles of two class I small leucine-rich proteoglycans (SLRPs). We utilized biglycan-null, decorin-null and wild type mice with an established patellar tendon injury model. Mechanical testing demonstrated functional changes associated with injury and the incomplete recapitulation of mechanical properties after 6 weeks. In addition, SLRP deficiency influenced the mechanical properties with a marked lack of improvement between 3 and 6 weeks in decorin-null tendons. Morphological analyses of the injury response and role of SLRPs demonstrated alterations in cell density and shape as well as collagen alignment and fibril structure resulting from injury. SLRP gene expression was studied using RT-qPCR with alterations in expression associated with the injured tendons. Our results show that in the absence of biglycan initial healing may be impaired while in the absence of decorin later healing is clearly diminished. This suggests that biglycan and decorin may have sequential roles in the tendon response to injury.  相似文献   

8.
Prion protein (PrP) is an endogenous protein involved in the pathogenesis of bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. Murine PrP has been reported to bind C1q and activate the classical pathway of complement in a copper-dependent manner. Here we show that various conformational isoforms (native, amyloid fibrils, and beta-oligomers) of recombinant human PrP (90-231 and 121-231) bind C1q and activate complement. PrP binds both the globular head and collagenous stalk domains of C1q. Native, beta-oligomeric and amyloid fibrils of PrP all activate the classical and alternative pathways of complement to different extent. However, they do not trigger the lectin pathway. Of the tested PrP conformational isoforms we find that beta-oligomers bind C1q and activate complement most strongly. Membrane attack complex formation initiated by PrP is subdued in comparison to deposition of early complement components. This is most likely attributed to the interaction between human PrP and complement inhibitors factor H and C4b-binding protein. Accordingly, PrP-triggered complement activation in the terminal pathway was increased in serum lacking C4b-binding protein. Taken together the present study indicates that complement activation may be an important factor in human prion diseases, suggesting that complement induced activities may prove relevant therapeutic targets.  相似文献   

9.
10.
The principal extracellular matrix (ECM) chondroitin/dermatan sulfate proteoglycans include members of two gene families--the large aggregating chondroitin sulfate proteoglycans (lecticans) and the small leucine-rich proteoglycans (SLRPs). These families of proteoglycans are widely distributed within the interstitial matrix, where they are known to bind a variety of both soluble and insoluble ligands. Extensive structural studies and data concerning the synthesis of these proteoglycans have been published over the last few years. This review focuses on the regulation of the expression of the lectican, versican, and the SLRPs--decorin and biglycan, as well--studied and widely distributed examples of these families of ECM proteoglycans. In addition, the effects of these proteoglycans on the formation of the ECM and the response of cells to growth factors and cytokines are examined as mechanisms by which versican, decorin and biglycan, both directly and indirectly influence cellular proliferation, migration, and phenotype.  相似文献   

11.
Members of the Streptococcus anginosus group (SAGs) are significant pathogens. However, their pathogenic mechanisms are incompletely understood. This study investigates the adherence of SAGs to the matrix proteoglycans decorin and biglycan of soft gingival and alveolar bone. Recombinant chondroitin 4-sulphate(C4S)-conjugated decorin and biglycan were synthesised using mammalian expression systems. C4S-conjugated decorin/biglycan and dermatan sulphate (DS) decorin/biglycan were isolated from ovine alveolar bone and gingival connective tissue, respectively. Using surface plasmon resonance, adherence of the SAGs S. anginosus, Streptococcus constellatus and Streptococcus intermedius to immobilised proteoglycan was assessed as a function of real-time biofilm formation. All isolates adhered to gingival proteoglycan, 59% percent of isolates adhered to alveolar proteoglycans, 70% to recombinant decorin and 76% to recombinant biglycan. Higher adherence was generally noted for S. constellatus and S. intermedius isolates. No differences in adherence were noted between commensal and pathogenic strains to decorin or biglycan. DS demonstrated greater adherence compared to C4S. Removal of the glycosaminoglycan chains with chondroitinase ABC resulted in no or minimal adherence for all isolates. These results suggest that SAGs bind to the extracellular matrix proteoglycans decorin and biglycan, with interaction mediated by the conjugated glycosaminoglycan chain.  相似文献   

12.
Pentraxin 3 (PTX3) is a recently characterized member of the pentraxin family of acute-phase proteins produced during inflammation. Classical short pentraxins, C-reactive protein, and serum amyloid P component can bind to C1q and thereby activate the classical complement pathway. Since PTX3 can also bind C1q, the present study was designed to define the interaction between PTX3 and C1q and to examine the functional consequences of this interaction. A dose-dependent binding of both C1q and the C1 complex to PTX3 was observed. Experiments with recombinant globular head domains of human C1q A, B, and C chains indicated that C1q interacts with PTX3 via its globular head region. Binding of C1q to immobilized PTX3 induced activation of the classical complement pathway as assessed by C4 deposition. Furthermore, PTX3 enhanced C1q binding and complement activation on apoptotic cells. However, in the fluid-phase, pre-incubation of PTX3 with C1q resulted in inhibition of complement activation by blocking the interaction of C1q with immunoglobulins. These results indicate that PTX3 can both inhibit and activate the classical complement pathway by binding C1q, depending on the way it is presented. PTX3 may therefore be involved in the regulation of the innate immune response.  相似文献   

13.
This study describes how the serum protein histidine-rich glycoprotein (HRG) affects the complement system. We show that HRG binds strongly to several complement proteins: C1q, factor H and C4b-binding protein and that it is found complexed with these proteins in human sera and synovial fluids of rheumatoid arthritis patients. HRG also binds C8 and to a lesser extent mannose-binding lectin, C4 and C3. However, HRG alone neither activates nor inhibits complement. Both HRG and C1q bind to necrotic cells and increase their phagocytosis. We found that C1q competes weakly with HRG for binding to necrotic cells whilst HRG does not compete with C1q. Furthermore, HRG enhances complement activation on necrotic cells measured as deposition of C3b. We show that HRG inhibits the formation of immune complexes of ovalbumin/anti-ovalbumin, whilst the reverse holds for C1q. Immune complexes formed in the presence of HRG show enhanced complement activation, whilst those formed in the presence of C1q show diminished complement activation. Taken together, HRG may assist in the maintenance of normal immune function by mediating the clearance of necrotic material, inhibiting the formation of insoluble immune complexes and enhancing their ability to activate complement, resulting in faster clearance.  相似文献   

14.
Transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) has been implicated in the ontogenetic transition from scarless fetal repair to adult repair with scar. Generally, TGF-beta exerts its effects through type I and II receptors; however, TGF-beta modulators such as latent TGF-beta binding protein-1 (LTBP-1), decorin, biglycan, and fibromodulin can bind and potentially inhibit TGF-beta activity. To more fully explore the role of TGF-beta ligands, receptors, and potential modulators during skin development and wound healing, we have used a rat model that transitions from scarless fetal-type repair to adult-type repair with scar between days 16 and 18 of gestation. We showed that TGF-beta ligand and receptor mRNA levels did not increase during the transition to adult-type repair in fetal skin, whereas LTBP-1 and fibromodulin expression decreased. In addition, TGF-beta1 and -beta3; type I, II, and III receptors; as well as LTBP-1, decorin, and biglycan were up-regulated during adult wound healing. In marked contrast, fibromodulin expression was initially down-regulated in adult repair. Immunostaining demonstrated significant fibromodulin induction 36 hours after injury in gestation day 16, but not day 19, fetal wounds. This inverse relationship between fibromodulin expression and scarring in both fetal and adult rat wound repair suggests that fibromodulin may be a biologically relevant modulator of TGF-beta activity during scar formation.  相似文献   

15.
Chondrocytes surrounded by extracellular matrix are responsible for the maintenance of the cartilage as a functional entity. It is well accepted that chondrocytes cultivated for tissue engineering dedifferentiate in cell culture. We characterized the expression of different collagens and collagen related proteins in differentiated (primary) and cultured nasal chondrocytes by using microarray gene expression analysis and immunohistochemical staining. The genes for collagen subunits 1alpha1 (Col1alpha1) and 1alpha2 (Col1alpha2) were activated during a cell culture period of 5 and 20 days whereas Col2alpha1 could be detected both in differentiated and dedifferentiated chondrocytes. The long-term cell culture revealed a late activation of the Col3alpha1, Col4alpha1 and Col11alpha1 genes as well as biglycan, fibromodulin and lumican. In addition, short- and long-term cell culture resulted in down-regulation of Col9alpha1, Col9alpha2, Col9alpha3, Col10alpha1, Col18alpha1, ColQ and chondroadherin. The decorin gene showed up-regulation in short-term cell culture, but down-regulation in long-term culture. Immunohistochemical staining of the different cell populations confirmed the mRNA data for collagen type 1, 2, 3, 4, 9alpha2, 9alpha3, 18 and decorin. Because of their up-regulation in cultured chrondrocytes the collagen types 1, 3, 4 and 11 as well as biglycan, fibromodulin and lumican may be markers for dedifferentiation. The collagen types 9, 18 and Q as well as decorin and chondro-adherin revealed down-regulation and, presumably, represent markers for the differentiation of chondrocytes.  相似文献   

16.
Decorin, a small leucine-rich proteoglycan (SLRP), is involved in the pathophysiology of human congenital stromal corneal dystrophy (CSCD). This disease is characterized by corneal opacities and vision impairment. In reported cases, the human gene encoding decorin contains point mutations in exon 10, generating a truncated form of decorin lacking the C-terminal 33 amino acid residues. We have previously described a transgenic mouse model carrying a similar mutation in the decorin gene that leads to an ocular phenotype characterized by corneal opacities identical to CSCD in humans. We have also identified abnormal synthesis and secretion of various SLRPs in mutant mouse corneas. In the present study, we found that mutant C-terminal truncated decorin was retained in the cytoplasm of mouse keratocytes in vivo and of transfected human embryonic kidney cells. This resulted in endoplasmic reticulum stress and an unfolded protein response. Thus, we propose a novel cell-based mechanism underlying CSCD in which a truncated SLRP protein core is retained intracellularly, its accumulation triggering endoplasmic reticulum stress that results in abnormal SLRP synthesis and secretion, which ultimately affects stromal structure and corneal transparency.Decorin is a multifunctional small leucine–rich proteoglycan (SLRP) that interacts with collagen fibrils and regulates fibrillogenesis in extracellular matrix assembly. It also interacts with a variety of growth factors and receptors and is involved in pathologic and physiologic processes such as fibrosis, tumor growth, and cell adhesion.1–5 Human congenital stromal corneal dystrophy (CSCD) is the only known human disease associated with a mutated decorin gene. Three different frameshift mutations have been reported, all leading to identical truncation of the C-terminal 33 amino acids of decorin.6–8 Decorin is an important regulator of matrix assembly in many connective tissues such as the cornea, sclera, and tendon.1 However, the only clinical manifestation of autosomal dominant human CSCD is a corneal stromal phenotype,9 which indicates that truncation interferes with corneal stromal assembly in a tissue-specific manner.A transgenic mouse model (952delTDcn) faithfully recapitulates the phenotype of human CSCD.10 The mouse model exhibits opaque corneas with a similarly disrupted corneal stromal structure and abnormal keratocyte architecture, as observed in the disease in humans.6,10 In addition to the structural defects in the mouse model, altered expression of stromal extracellular matrix components, in particular, expression of SLRPs, is observed. The changes in these SLRPs are consistent with dysregulated fibrillogenesis and fibril packing, resulting in disrupted corneal stromal architecture and function. The mechanism by which C-terminal truncation of the decorin protein core alters SLRP expression is unknown.Decorin, the most studied class I SLRP, has 12 leucine-rich repeats (LRRs) in the central domain, flanked by conserved cysteine-rich domains on either side.2,11–13 Soluble decorin as a monomer in solution binds and modulates various receptors and growth factors through different domains.14 The central LRR5-6 contain key binding sites for collagen I,15 the ectodomain of epidermal growth factor receptor,16 and low-density lipoprotein receptor–related protein 1.17 LRR12 at the C-terminus can bind to connective tissue growth factor.18 However, that the corneal stromal phenotypes in both the human disease and the 952delTDcn mouse model are distinct from that in the decorin-null mouse model suggests that the effects of the C-terminal truncation are not entirely explained by a loss-of-function mutation.19 It may also function in a dominant negative manner in which the truncated decorin transcribed from the mutant allele competes with the normal decorin transcribed from the normal allele. This could result in abnormal functioning of decorin extracellularly during collagen fibril assembly and/or intracellularly during maturation of the full proteoglycan.Adjacent to the truncated 33 amino acids at the C-terminus is LRR11, the longest repeat that extends laterally from the main axis of the decorin protein core and is referred to as the ear repeat, a characteristic feature of SLRPs. The ear repeat is thought to participate in the protein folding of decorin and may also contribute to ligand recognition.20 Herein we demonstrate that absence of the C-terminal 33 amino acids from the decorin protein core leads to a misfolded and unstable/insoluble protein, indicating a pathogenic involvement of the ear repeat. Moreover, our findings implicate for the first time decorin-evoked endoplasmic reticulum (ER) stress that leads to the unfolded protein response. Thus, we propose a novel cell-based mechanism for the observed corneal opacity in which a truncated SLRP protein core is retained intracellularly, its accumulation inducing ER stress and resulting in abnormal SLRP synthesis and secretion, which ultimately affects stromal assembly and corneal transparency.  相似文献   

17.
The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well‐known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT.  相似文献   

18.
Proteoglycans are important constituents of blood vessels and accumulate in various forms of vascular disease. Little is known concerning the proteoglycan composition of restenotic lesions formed after angioplasty and whether the proteoglycan composition of these lesions differs from that of primary atherosclerosis. Accordingly, we sought to characterize the distribution of two proteoglycans, biglycan and decorin, in primary atherosclerotic and restenotic lesions of human coronary arteries. Restenosis (n = 37) and primary (n = 11) lesions obtained from 48 patients by directional atherectomy of human coronary arteries were stained with antibodies against biglycan and decorin. To further characterize the extracellular matrix of restenotic tissues, we studied the co-distribution of these proteoglycans with collagen types I, III, and IV. The loose fibroproliferative tissue seen predominantly in restenosis lesions consistently stained positively for biglycan in patterns of deposition ranging from disseminated to homogeneous. The density and intensity of biglycan staining was correlated with the density of collagen type I and III fiber networks, both of which were observed to interweave among the loose fibroproliferative tissue. The compact connective tissue of primary atherosclerotic plaque was characterized by strong biglycan staining which co-localized with intense collagen type I and III staining. Only basement membrane-like structures rich in collagen type IV demonstrated negative biglycan staining. In contrast, loose fibroproliferative tissue exhibited no significant staining for decorin. Strong immunostaining for decorin, however, was found in primary atherosclerotic plaque. There are thus regional differences in the distribution of extracellular matrix proteoglycans of restenotic and primary human atherosclerotic lesions; these observations suggest that differences established for the biological roles of biglycan and decorin in other organ systems may extend as well to pathologically altered human coronary arteries.  相似文献   

19.
C1q binds to many non-self and altered-self-materials. These include microorganisms, immune complexes, apoptotic and necrotic cells and their breakdown products, and amyloids. C1q binding to amyloid fibrils found as extracellular deposits in tissues, and subsequent complement activation are involved in the pathology of several amyloid diseases, such as Alzheimer's disease. Prion diseases, such as scrapie also involve formation of amyloid by polymerization of the host prion protein (PrP). Complement activation is likely to contribute to neuronal damage in the end stages of prion diseases, but is also thought to participate in the initial infection, dissemination and replication stages. Infectious prion particles are likely to bind C1q and activate the complement system. Bound complement proteins may then influence the uptake and transport of prion particles by dendritic cells (DCs) and their subsequent proliferation at sites such as follicular DCs.  相似文献   

20.
Several studies have investigated the interactions between C-reactive protein (CRP) and various complement proteins but none of them took into consideration the different structural forms of CRP. The aim of our study was to investigate whether the different antigenic forms of CRP are able to bind C1q, to trigger activation of the C1 complex and to study the ability of the various CRP forms to bind complement factor H (FH) and C4b-binding protein (C4BP). Interactions between various CRP forms and complement proteins were analysed in enzyme-linked immunosorbent assay and surface plasmon resonance tests and activation of the C1 complex was followed in a reconstituted system using purified C1q, C1r and C1s in the presence of C1-INH. Native, ligand-unbound CRP activated the classical pathway weakly. After binding to phosphocholine, native CRP bound C1q and significantly activated C1. Native CRP complexed to phosphocholine did not bind the complement regulatory proteins FH and C4BP. After disruption of the pentameric structure of CRP, as achieved by urea-treatment or by site-directed mutagenesis, C1q binding and C1 activation further increased and the ability of CRP to bind complement regulatory proteins was revealed. C1q binds to CRP through its globular head domain. The binding sites on CRP for FH and C4BP seemed to be different from that of C1q. In conclusion, in parallel with the increase in the C1-activating ability of different CRP structural variants, the affinity for complement regulatory proteins also increased, providing the biological basis for limitation of excess complement activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号