首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: The authors examined the effect of ketamine and its S(+) isomer on isolated human myocardium submitted to hypoxia-reoxygenation in vitro. METHODS: The authors studied isometric contraction of human right atrial trabeculae suspended in an oxygenated Tyrode's modified solution at 34 degrees C. Ten minutes before a 30-min hypoxic period followed by a 60-min reoxygenation, muscles were exposed for 15 min to racemic ketamine and its S(+) isomer at 10, 10, and 10 m alone or in the presence of 8.10 m 5-hydroxydecanoate, 10 m HMR 1098 (sarcolemmal adenosine triphosphate-sensitive potassium channel antagonist), 10 m phentolamine (alpha-adrenoceptor antagonist), and 10 m propranolol (beta-adrenoceptor antagonist). Force of contraction at the end of the 60-min reoxygenation period was compared between groups (mean +/- SD). RESULTS: Ketamine (10 m: 85 +/- 4%; 10 m: 95 +/- 10%; 10 m: 94 +/- 14% of baseline) and S(+)-ketamine (10-6 m: 85 +/- 4%; 10 m: 91 +/- 16%; 10 m: 93 +/- 14% of baseline) enhanced recovery of force of contraction at the end of the reoxygenation period as compared with the control group (47 +/- 10% of baseline; P < 0.001). Ketamine-induced preconditioning at 10 m was inhibited by 5-hydroxydecanoate (60 +/- 16%; P < 0.001), HMR 1098 (60 +/- 14%; P < 0.001), phentolamine (56 +/- 12%; P < 0.001), and propranolol (60 +/- 7%; P < 0.001). CONCLUSIONS: In vitro, ketamine preconditions isolated human myocardium, at least in part, via activation of adenosine triphosphate-sensitive potassium channels and stimulation of alpha- and beta-adrenergic receptors.  相似文献   

2.
3.
BACKGROUND: Recent evidence indicates that vascular adenosine triphosphate-sensitive potassium (K(ATP)) channels in vascular smooth muscle cells are critical in the regulation of vascular tonus under both physiologic and pathophysiologic conditions. Studies of the interaction of volatile anesthetics with vascular K(ATP) channels have been limited. In the current study, the authors investigated the molecular mechanism of isoflurane's action on vascular K(ATP) channels. METHODS: Electrophysiologic experiments were performed using cell-attached and inside-out patch clamp techniques to monitor native vascular K(ATP) channels, and recombinant K(ATP) channels comprised of inwardly rectifying potassium channel subunits (Kir6.1) and the sulfonylurea receptor (SUR2B). Isometric tension experiments were performed in rat thoracic aortic rings without endothelium. RESULTS: Application of isoflurane (0.5 mM) to the bath solution during cell-attached recordings induced a significant increase in K(ATP) channel activity, which was greatly reduced by pretreatment with a selective inhibitor of protein kinase A (PKA), Rp-cAMPS (100 microM). In inside-out patches, isoflurane did not activate K(ATP) channels. Isoflurane significantly activated wild-type recombinant SUR2B/Kir6.1 in cell-attached patches. Isoflurane-induced activation of wild-type channels was diminished in the PKA-insensitive mutant SUR2B-T633A/Kir6.1, SUR2B-S1465A/Kir6.1, and SUR2B/Kir6.1-S385A. In addition, the authors demonstrated that isoflurane-induced PKA activation was associated with isoflurane-induced decreases in isometric tension in the rat aorta. CONCLUSION: These results indicate that isoflurane activates K(ATP) channels via PKA activation. PKA-dependent vasodilation induced by isoflurane also was observed in isometric tension experiments. Analysis of expressed vascular-type K(ATP) channels suggested that PKA-mediated phosphorylation of both Kir6.1 and SUR2B subunits plays a pivotal role in isoflurane-induced vascular K(ATP) channel activation.  相似文献   

4.
OBJECTIVES: Recently, the mitochondrial adenosine triphosphate-sensitive potassium channel has been suggested to be the final common effector of myocardial preconditioning. The purpose of this study is to determine whether selective mitochondrial adenosine triphosphate-sensitive potassium channel activation alone can precondition human myocardium from an ischemia/reperfusion insult. METHODS: Isolated human right atrial trabeculae were placed in tissue baths, paced, and subjected to 30 minutes of normothermic hypoxia (ischemia) followed by 45 minutes of reoxygenation (reperfusion). Trabeculae were preconditioned with a selective mitochondrial adenosine triphosphate-sensitive potassium channel opener (diazoxide 30 micromol/L) or a nonselective purinergic agonist, adenosine (125 micromol/L), for 5 minutes (adenosine) followed by a 10-minute washout period. Developed force at end reperfusion (mean +/- standard error) was compared with baseline, and tissue creatine kinase and adenosine triphosphate levels were measured after ischemia/reperfusion. RESULTS: Trabeculae subjected to ischemia/reperfusion exhibited 30% +/- 2% of baseline developed force, whereas trabeculae subjected to selective adenosine triphosphate-sensitive potassium channel opening (diazoxide) and nonselective purinergic agonist (adenosine) recovered to 55% +/- 7% and 46% +/- 3% of baseline developed force, respectively. Tissue creatine kinase activity was preserved in both the diazoxide- and adenosine-treated trabeculae (5.4 +/- 12 and 5.4 +/- 14 micromol/L per gram wet tissue) compared with ischemia/reperfusion (1.8 +/- 0.2 U/mg wet tissue). Adenosine triphosphate levels at end reperfusion were also increased in the trabeculae treated with selective (diazoxide) and nonselective (adenosine) adenosine triphosphate-sensitive potassium channel opener (4.1 +/- 0.01 and 4. 4 +/- 0.2 micromol/L per gram wet tissue) compared with trabeculae subjected to ischemia/reperfusion (1.5 +/- 0.1 micromol/L per gram wet tissue). CONCLUSIONS: These results suggest that selective mitochondrial adenosine triphosphate-sensitive potassium channel activation preconditions human myocardium and the protection conferred is equal to that of adenosine preconditioning. Targeted openers of mitochondrial adenosine triphosphate- sensitive potassium channels promote constructive protection of myocellular energy levels, contractile function, and cellular viability in human myocardium after ischemia/reperfusion.  相似文献   

5.
Hu G  Vinten-Johansen J  Salem MR  Zhao ZQ  Crystal GJ 《Anesthesia and analgesia》2002,94(4):849-56, table of contents
Isoflurane protects myocardium during ischemia-reperfusion via a mechanism involving the adenosine triphosphate-sensitive potassium channels. We tested the hypothesis that an inhibition of the neutrophil-endothelium interactions by isoflurane contributes to this effect. Polymorphonuclear neutrophils and coronary artery segments were obtained from 35 healthy dogs. Superoxide production by neutrophils, stimulated with platelet-activating factor (PAF; 1.0 microM), was measured spectrophotometrically. Adherence of PAF-activated neutrophils to the endothelium of coronary segments was assessed by direct counting of neutrophils labeled with fluorescent dye. Coronary artery rings were exposed to PAF-activated neutrophils, and, after washing and preconstriction with U46619, they were evaluated for vasorelaxation responses to acetylcholine (endothelium dependent) and sodium nitroprusside (endothelium independent). Measurements were performed in the absence and presence of isoflurane (1 and 2 minimum alveolar anesthetic concentration) both with and without glibenclamide (10 microM). Isoflurane inhibited superoxide production and adherence by neutrophils and abolished neutrophil-induced reductions in coronary vascular relaxation responses to acetylcholine. Glibenclamide did not alter the effects of isoflurane on neutrophils or coronary artery endothelium. In conclusion, isoflurane had an inhibitory action on neutrophil-endothelium interactions and neutrophil-mediated coronary endothelial dysfunction--effects that may be involved in its cardioprotective action in vivo. These inhibitory actions of isoflurane were not mediated by adenosine triphosphate-sensitive potassium channels. IMPLICATIONS: Isoflurane inhibited neutrophil-endothelium interactions and the inflammatory response in vitro via a pathway independent of the adenosine triphosphate-sensitive potassium channels. This action could be involved in the cardioprotection by isoflurane observed in vivo.  相似文献   

6.
BACKGROUND: The cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channel is activated during pathophysiological episodes such as ischemia and hypoxia and may lead to beneficial effects on cardiac function. Studies of volatile anesthetic interactions with the cardiac K(ATP) channel have been limited. The goal of this study was to investigate the ability of volatile anesthetics halothane and isoflurane to modulate the cardiac sarcolemmal K(ATP) channel. METHODS: The K(ATP) channel current (I(KATP)) was monitored using the whole cell configuration of the patch clamp technique from single ventricular cardiac myocytes enzymatically isolated from guinea pig hearts. I(KATP) was elicited by extracellular application of the potassium channel openers 2,4-dinitrophenol or pinacidil. RESULTS: Volatile anesthetics modulated I(KATP) in an anesthetic-dependent manner. Isoflurane facilitated the opening of the K(ATP) channel. Following initial activation of I(KATP) by 2,4-dinitrophenol, isoflurane at 0.5 and 1.3 mm further increased current amplitude by 40.4 +/- 11.1% and 58.4 +/- 20.6%, respectively. Similar results of isoflurane were obtained when pinacidil was used to activate I(KATP). However, isoflurane alone was unable to elicit K(ATP) channel opening. In contrast, halothane inhibited I(KATP) elicited by 2,4-dinitrophenol by 50.6 +/- 5.8% and 72.1 +/- 11.6% at 0.4 and 1.0 mm, respectively. When I(KATP) was activated by pinacidil, halothane had no significant effect on the current. CONCLUSIONS: The cardiac sarcolemmal K(ATP) channel is differentially modulated by volatile anesthetics. Isoflurane can facilitate the further opening of the K(ATP) channel following initial channel activation by 2,4-dinitrophenol or pinacidil. The effect of halothane was dependent on the method of channel activation, inhibiting I(KATP) activated by 2,4-dinitrophenol but not by pinacidil.  相似文献   

7.
BACKGROUND: Cardiac preconditioning, including that induced by halogenated anesthetics, is an innate protective mechanism against ischemia-reperfusion injury. The adenosine triphosphate-sensitive potassium (K(ATP)) channels are considered essential in preconditioning mechanism. However, it is unclear whether K(ATP) channels are triggers initiating the preconditioning signaling, and/or effectors responsible for the cardioprotective memory and activated during ischemia-reperfusion. METHODS: Adult rat cardiomyocytes were exposed to oxidative stress with 200 microM H(2)O(2) and 100 microM FeSO4. Myocyte survival was determined based on morphologic characteristics and trypan blue exclusion. To induce preconditioning, the myocytes were pretreated with isoflurane. The involvement of sarcolemmal and mitochondrial K(ATP) channels was investigated using specific inhibitors HMR-1098 and 5-hydroxydecanoic acid. Data are expressed as mean +/- SD. RESULTS: Oxidative stress induced cell death in 47 +/- 14% of myocytes. Pretreatment with isoflurane attenuated this effect to 26 +/- 8%. Blockade of the sarcolemmal K(ATP) channels abolished the protection by isoflurane pretreatment when HMR-1098 was applied throughout the experiment (50 +/- 21%) or only during oxidative stress (50 +/- 12%), but not when applied during isoflurane pretreatment (29 +/- 13%). Inhibition of the mitochondrial K(ATP) channels abolished cardioprotection irrespective of the timing of 5-hydroxydecanoic acid application. Cell death was 42 +/- 23, 45 +/- 23, and 46 +/- 22% when 5-hydroxydecanoic acid was applied throughout the experiment, only during isoflurane pretreatment, or only during oxidative stress, respectively. CONCLUSION: The authors conclude that both sarcolemmal and mitochondrial K(ATP) channels play essential and distinct roles in protection afforded by isoflurane. Sarcolemmal K(ATP) channel seems to act as an effector of preconditioning, whereas mitochondrial K(ATP) channel plays a dual role as a trigger and an effector.  相似文献   

8.
BACKGROUND: Preconditioning and inhibition of sodium-proton exchange attenuate myocardial ischemia-reperfusion injury by means of independent mechanisms that might act additively when used together. The hypothesis of this study is that treatment with a sodium-proton exchange inhibitor and a mitochondrial adenosine triphosphate-sensitive potassium channel opener produces superior functional recovery and a greater decrease in left ventricular infarct size compared with treatment with either drug alone in a model of severe global ischemia. METHODS: Isolated crystalloid-perfused rat hearts (n = 8 hearts per group) were administered vehicle (control, 0.04% dimethyl sulfoxide), diazoxide (100 micromol/L in 0.04% dimethyl sulfoxide), cariporide (10 micromol /L in 0.04% dimethyl sulfoxide), or diazoxide and cariporide before 40 minutes of ischemia at 35.5 degrees C to 36.5 degrees C and 30 minutes of reperfusion. RESULTS: The combination group had superior postischemic systolic function compared with that seen in the cariporide, diazoxide, and control groups (recovery of developed pressure: 91% +/- 7% vs 26% +/- 5%, 35% +/- 6%, and 16% +/- 3%, respectively; P <.05). Postischemic diastolic function in the combination group was superior compared with that seen in the other groups (change(pre-post) diastolic pressure of 67 +/- 4 mm Hg with control, 49 +/- 11 mm Hg with diazoxide, 59 +/- 10 mm Hg with cariporide, and 3 +/- 3 mm Hg with diazoxide and cariporide combination; P <.05). The left ventricular infarct area was less in the combination group compared with that in the cariporide, diazoxide, and control groups (6% +/- 2% vs 35% +/- 7%, 25% +/- 3%, and 37% +/- 9%, respectively; P <.05). CONCLUSIONS: Combining a selective mitochondrial adenosine triphosphate-sensitive potassium channel opener with a selective reversible inhibitor of sarcolemmal sodium-proton exchange improves recovery of contractile function from severe global ischemia in the isolated buffer-perfused rat heart. The putative mechanism for this benefit is superior protection of mitochondrial function.  相似文献   

9.
BACKGROUND: Ketamine inhibits adenosine triphosphate-sensitive potassium (KATP) channels, which results in the blocking of ischemic preconditioning in the heart and inhibition of vasorelaxation induced by KATP channel openers. In the current study, the authors investigated the molecular mechanisms of ketamine's actions on sarcolemmal KATP channels that are reassociated by expressed subunits, inwardly rectifying potassium channels (Kir6.1 or Kir6.2) and sulfonylurea receptors (SUR1, SUR2A, or SUR2B). METHODS: The authors used inside-out patch clamp configurations to investigate the effects of ketamine on the activities of reassociated Kir6.0/SUR channels containing wild-type, mutant, or chimeric SURs expressed in COS-7 cells. RESULTS: Ketamine racemate inhibited the activities of the reassociated KATP channels in a SUR subtype-dependent manner: SUR2A/Kir6.2 (IC50 = 83 microM), SUR2B/Kir6.1 (IC50 = 77 microM), SUR2B/Kir6.2 (IC50 = 89 microM), and SUR1/Kir6.2 (IC50 = 1487 microM). S-(+)-ketamine was significantly less potent than ketamine racemate in blocking all types of reassociated KATP channels. The ketamine racemate and S-(+)-ketamine both inhibited channel currents of the truncated isoform of Kir6.2 (Kir6.2DeltaC36) with very low affinity. Application of 100 mum magnesium adenosine diphosphate significantly enhanced the inhibitory potency of ketamine racemate. The last transmembrane domain of SUR2 was essential for the full inhibitory effect of ketamine racemate. CONCLUSIONS: These results suggest that ketamine-induced inhibition of sarcolemmal KATP channels is mediated by the SUR subunit. These inhibitory effects of ketamine exhibit specificity for cardiovascular KATP channels, at least some degree of stereoselectivity, and interaction with intracellular magnesium adenosine diphosphate.  相似文献   

10.
BACKGROUND: The adenosine triphosphate (ATP)-sensitive potassium (KATP) channels protect myocytes during ischemia and reperfusion. This study investigated the effects of thiamylal on the activities of KATP channels in isolated rat ventricular myocytes during simulated ischemia. METHODS: Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. Membrane currents were recorded using patch-clamp techniques. In the cell-attached configuration, KATP channel currents were assessed before and during activation of these channels by 2,4-dinitrophenol and after administration of 25, 50, and 100 mg/l thiamylal. The open probability was determined from current-amplitude histograms. In the inside-out configuration, the current-voltage relation was obtained before and after the application of thiamylal (50 mg/1). RESULTS: In the cell-attached configuration, 2,4-dinitrophenol caused frequent channel opening. 2,4-Dinitrophenol-induced channel activities were reduced significantly by glibenclamide, suggesting that the channels studied were KATP channels. Open probability of KATP channels was reduced by thiamylal in a concentration-dependent manner. KATP channels could be activated in the inside-out configuration because of the absence of ATP. Thiamylal inhibited KATP channel activity without changing the single-channel conductance. CONCLUSIONS: The results obtained in this study indicate that thiamylal inhibits KATP channel activities in cell-attached and inside-out patches, suggesting a direct action of this drug on these channels.  相似文献   

11.
Lidocaine attenuates cell injury induced by ischemic-reperfusion and inflammation, although the protective mechanisms are not understood. We hypothesized that lidocaine and other amide local anesthetics protect against endothelial cell injury through activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channels. We determined the effects of amide local anesthetics (lidocaine, ropivacaine, and bupivacaine), ester local anesthetics (tetracaine and procaine), one amide analog (YWI), and two non-amide local anesthetic analogs (JDA and ICM) on viability of human microvascular endothelial cells after exposure to lipopolysaccharide (LPS) in the absence or presence of the mitoK(ATP) channel antagonist 5-hydroxydecaonate. Flavoprotein fluorescence was used to investigate the effects of local anesthetics on diazoxide-induced activation of mitoK(ATP) channels. Lidocaine, ropivacaine, bupivicaine, YWI, JDA, and ICM attenuated by 60% to 70% the decrease in cell viability caused by LPS. Amide local anesthetics and YWI protection was inhibited by 5-hydroxydecaonate, whereas the protection induced by JDA and ICM was not. Tetracaine and procaine did not protect against LPS-induced injury. The amide local anesthetics and the amide analog (YWI) enhanced diazoxide-induced flavoprotein fluorescence by 5% to 20%, whereas ester local anesthetics decreased diazoxide-induced flavoprotein fluorescence by 5% to 60% and the non-amide local anesthetic analogs had no effect. In conclusion, amide local anesthetics and the amide analog (YWI) attenuate LPS-induced cell injury, in part, through activation of mitoK(ATP) channels. In contrast, tetracaine and procaine had no protective effects and inhibited activation of mitoK(ATP) channels. The non-amide local anesthetic analogs induced protection but through mechanisms independent of mitoK(ATP) channels.  相似文献   

12.
BACKGROUND: Carbon dioxide is an important vasodilator of cerebral blood vessels. Cerebral vasodilation mediated by adenosine triphosphate (ATP)-sensitive K+ channels has not been demonstrated in precapillary microvessel levels. Therefore, the current study was designed to examine whether ATP-sensitive K+ channels play a role in vasodilation induced by mild hypercapnia in precapillary arterioles of the rat cerebral cortex. METHODS: Brain slices from rat cerebral cortex were prepared and superfused with artificial cerebrospinal fluid, including normal (Pco2 = 40 mmHg; pH = 7.4), hypercapnic (Pco2 = 50 mmHg; pH = 7.3), and hypercapnic normal pH (Pco2 = 50 mmHg; pH = 7.4) solutions. The ID of a cerebral parenchymal arteriole (5-9.5 microm) was monitored using computerized videomicroscopy. RESULTS: During contraction to prostaglandin F2alpha (5 x 10(-7) m), hypercapnia, but not hypercapnia under normal pH, induced marked vasodilation, which was completely abolished by the selective ATP-sensitive K+ channel antagonist glibenclamide (5 x 10(-6) m). However, the selective Ca2+-dependent K+ channel antagonist iberiotoxin (10(-7) m) as well as the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (10(-4) m) did not alter vasodilation. A selective ATP-sensitive K+ channel opener, levcromakalim (3 x 10(-8) to 3 x 10(-7) m), induced vasodilation, whereas this vasodilation was abolished by glibenclamide. CONCLUSION: These results suggest that in parenchymal microvessels of the rat cerebral cortex, decreased pH corresponding with hypercapnia, but not hypercapnia itself, contributes to cerebral vasodilation produced by carbon dioxide and that ATP-sensitive K+ channels play a major role in vasodilator responses produced by mild hypercapnia.  相似文献   

13.
14.
Kinoshita H  Nakahata K  Dojo M  Kimoto Y  Hatano Y 《Anesthesia and analgesia》2004,99(3):904-9, table of contents
Vasodilator effects of adenosine triphosphate (ATP)-sensitive, as well as inward rectifier, K+ channel openers have not been well demonstrated in cerebral microvessels. Although lidocaine impairs vasorelaxation via ATP-sensitive K+ channels in the rat aorta, the effects of this compound on K+ channels in the cerebral circulation have not been shown. We designed the present study to examine whether ATP-sensitive and inward rectifier K+ channels contribute to vasodilator responses in cerebral microvessels and whether the vasodilation mediated by these channels is inhibited by lidocaine. Rat brain slices were monitored using a computer-assisted videomicroscopy. Cerebral parenchymal arterioles (diameter, 5-10 microm) were contracted with prostaglandin F(2alpha), and thereafter potassium chloride (KCl), levcromakalim, or sodium nitroprusside was added to the perfusion chamber. Levcromakalim and KCl produced vasodilation of the cerebral parenchymal arterioles, which was abolished by an ATP-sensitive K+ channel antagonist, glibenclamide, or an inward rectifier K+ channel antagonist, barium chloride, respectively. Lidocaine (10(-5) to 3 x 10(-5) M) inhibited the dilation produced by levcromakalim but not by KCl or sodium nitroprusside. In parenchymal arterioles of the cerebral cortex, lidocaine seems to reduce vasodilation mediated by ATP-sensitive K+ channels but not by inward rectifier K+ channels.  相似文献   

15.
BACKGROUND: Both propofol and thiamylal inhibit adenosine triphosphate-sensitive potassium (KATP) channels. In the current study, the authors investigated the effects of these anesthetics on the activity of recombinant sarcolemmal KATP channels encoded by inwardly rectifying potassium channel (Kir6.1 or Kir6.2) genes and sulfonylurea receptor (SUR1, SUR2A, or SUR2B) genes. METHODS: The authors used inside-out patch clamp configurations to investigate the effects of propofol and thiamylal on the activity of recombinant KATP channels using COS-7 cells transfected with various types of KATP channel subunits. RESULTS: Propofol inhibited the activities of the SUR1/Kir6.2 (EC50 = 77 microm), SUR2A/Kir6.2 (EC50 = 72 microm), and SUR2B/Kir6.2 (EC50 = 71 microm) channels but had no significant effects on the SUR2B/Kir6.1 channels. Propofol inhibited the truncated isoform of Kir6.2 (Kir6.2DeltaC36) channels (EC50 = 78 microm) that can form functional KATP channels in the absence of SUR molecules. Furthermore, the authors identified two distinct mutations R31E (arginine residue at position 31 to glutamic acid) and K185Q (lysine residue at position 185 to glutamine) of the Kir6.2DeltaC36 channel that significantly reduce the inhibition of propofol. In contrast, thiamylal inhibited the SUR1/Kir6.2 (EC50 = 541 microm), SUR2A/Kir6.2 (EC50 = 248 microm), SUR2B/Kir6.2 (EC50 = 183 microm), SUR2B/Kir6.1 (EC50 = 170 microm), and Kir6.2DeltaC36 channels (EC50 = 719 microm). None of the mutants significantly affects the sensitivity of thiamylal. CONCLUSIONS: These results suggest that the major effects of both propofol and thiamylal on KATP channel activity are mediated via the Kir6.2 subunit. Site-directed mutagenesis study suggests that propofol and thiamylal may influence Kir6.2 activity by different molecular mechanisms; in thiamylal, the SUR subunit seems to modulate anesthetic sensitivity.  相似文献   

16.
The membrane potential of endothelial cells is an important determinant of endothelial functions, including regulation of vascular tone. We investigated whether adenosine triphosphate-sensitive potassium (K(ATP)) channels were involved in the response of membrane potential to hyperosmolality in cultured human aorta endothelial cells. The voltage-sensitive fluorescent dye, bis-(1,3-diethylthiobarbiturate)trimethine oxonol, was used to assess relative changes in membrane potential semiquantitatively. To investigate the effect of mannitol-, sucrose-, and NaCl-induced hyperosmolality on membrane potential, cells were continuously perfused with Earle's balanced salt solution (285 mOsm/kg H(2)O) containing 200 nM bis-(1,3-diethylthiobarbiturate)trimethine oxonol and exposed to 315 and 345 mOsm/kg H(2)O hyperosmotic medium sequentially in the presence and absence of 1 muM glibenclamide, a well-known K(ATP) channel blocker. Hyperosmotic mannitol significantly induced hyperpolarization of the endothelial cells, which was prevented by 1 microM glibenclamide (n = 6). Estimated changes of membrane potential at 315 and 345 mOsm/kg H(2)O were 13 +/- 8 and 21 +/- 8 mV, respectively. Hypertonic sucrose induced similar changes. However, although hypertonic saline also significantly induced hyperpolarization of the endothelial cells (n = 6), the hyperpolarization was not prevented by 1 muM glibenclamide. In conclusion, K(ATP) channels may participate in hyperosmotic mannitol- and sucrose-induced hyperpolarization, but not in hypertonic saline-induced hyperpolarization in cultured human aorta endothelial cells.  相似文献   

17.
BACKGROUND: Activation of adenosine triphosphate-sensitive potassium (K(ATP)) channels produces cardioprotective effects during ischemia. Because propofol is often used in patients who have coronary artery disease undergoing a wide variety of surgical procedures, it is important to evaluate the direct effects of propofol on K(ATP) channel activities in ventricular myocardium during ischemia. METHODS: The effects of propofol (0.4-60.1 microg/ml) on both sarcolemmal and mitochondrial K(ATP) channel activities were investigated in single, quiescent rat ventricular myocytes. Membrane currents were recorded using cell-attached and inside-out patch clamp configurations. Flavoprotein fluorescence was measured to evaluate mitochondrial oxidation mediated by mitochondrial K(ATP) channels. RESULTS: In the cell-attached configuration, open probability of K(ATP) channels was reduced by propofol in a concentration-dependent manner (EC(50) = 14.2 microg/ml). In the inside-out configurations, propofol inhibited K(ATP) channel activities without changing the single-channel conductance (EC(50) = 11.4 microg/ml). Propofol reduced mitochondrial oxidation in a concentration-dependent manner with an EC(50) of 14.6 microg/ml. CONCLUSIONS: Propofol had no effect on the sarcolemmal K(ATP) channel activities in patch clamp configurations and the mitochondrial flavoprotein fluorescence induced by diazoxide at clinically relevant concentrations (< 2 microm), whereas it significantly inhibited both K(ATP) channel activities at very high, nonclinical concentrations (> 5.6 microg/ml; 31 microm).  相似文献   

18.
目的 观察含钾通道开放剂的供心保存液对心功能以及能量代谢、线粒体呼吸酶活性及超微结构的影响.方法 将SD大鼠分为HTK组、Pi组、5HD组、1098组和5HD+1098组.切取SD大鼠心脏,建立Langendorff灌注模型,平衡10 min,然后按分组进行如下处理:HTK组心脏以Histidine-Tryptophan-Ketoglutarate液(HTK液)停搏;Pi组心脏以含0.5 mmol/L吡那地尔(Pi)的HTK液停搏;1098组心脏以含0.5 mmol/L Pi和100 μmol/L HMR1098的HTK液停搏;5HD组心脏以含0.5 mmol/L Pi和100 μmol/L五羟葵酸(5HD)的HTK液停搏;5HD+1098组心脏以含0.5 μmol/L Pi、100 μmol/L 5HD和100μmol/L HMR1098的HTK液停搏.停搏后,将心脏置于各组相应的液体(4℃)中保存8 h,然后用含氧的37℃克-亨液(K-H液)再灌注60 min.观察各组平衡末、保存末、再灌注末时的心功能、线粒体呼吸酶活性、心肌ATP含量及心肌细胞线粒体超微结构的改变.结果 Pi组保存末、再灌注末的心功能(心率、左心室舒张末压、左心室发展压和冠状动脉流量)、心肌线粒体呼吸酶(NADH氧化酶、琥珀酸氧化酶、细胞色素C氧化酶)活性及ATP含量均优于其他各组(P<0.01或P<0.05),同时线粒体的结构改变也最轻.结论 含Pi的HTK液能改善大鼠心脏保存效果;Pi对能量状态的维持以及对线粒体结构与功能的保护可能是其心肌保护的重要机制.  相似文献   

19.
BACKGROUND: Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. METHODS: The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. RESULTS: Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. CONCLUSIONS: Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.  相似文献   

20.
BACKGROUND: The aim of this study was to investigate the effects of two imidazoline-derived intravenous anesthetics, etomidate and midazolam, on vascular adenosine triphosphate-sensitive potassium (KATP) channel activity. METHODS: In isolated rat aorta, isometric tension was recorded to examine the anesthetic effects on vasodilator response to levcromakalim, a selective KATP channel opener. Using the patch clamp method, the anesthetic effects were also examined on the currents through (1) native vascular KATP channels, (2) recombinant KATP channels with different combinations of various types of inwardly rectifying potassium channel (Kir6.0 family: Kir6.1, 6.2) and sulfonylurea receptor (SUR1, 2A, 2B) subunits, (3) SUR-deficient channels derived from a truncated isoform of Kir6.2 subunit (Kir6.2DeltaC36 channels), and (4) mutant Kir6.2DeltaC36 channels with reduced sensitivity to adenosine triphosphate (Kir6.2DeltaC36-K185Q channels). RESULTS: Etomidate (> or = 10 m), but not midazolam (up to 10 m), inhibited the levcromakalim-induced vasodilation, which was sensitive to glibenclamide (IC50: 7.21 x 10 m; maximum inhibitory concentration: 1.22 x 10 m). Etomidate (> or = 3 x 10 m), but not midazolam (up to 10 m), inhibited the native KATP channel activity in both cell-attached and inside-out configurations with IC50 values of 1.68 x 10 m and 1.52 x 10 m, respectively. Etomidate (10 m) also inhibited the activity of various types of recombinant SUR/Kir6.0KATP channels, Kir6.2DeltaC36 channels, and Kir6.2DeltaC36-K185Q channels with equivalent potency. CONCLUSIONS: Clinical concentrations of etomidate, but not midazolam, inhibit the KATP channel activity in vascular smooth muscle cells. The inhibition is presumably through its effects on the Kir6.0 subunit, but not on the SUR subunit, with the binding site different from adenosine triphosphate at the amino acid level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号