首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well‐vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet‐like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC‐mismatched Balb/c mice supported long‐term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750‐1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.  相似文献   

3.
Islet transplantation is a promising therapy for patients with diabetes, but its long‐term success is limited by many factors, including the formation of islet amyloid deposits. Heparin is employed in clinical islet transplantation to reduce clotting but also promotes fibrillization of amyloidogenic proteins. We hypothesized that heparin treatment of islets during pre‐transplant culture may enhance amyloid formation leading to beta cell loss and graft dysfunction. Heparin promoted the fibrillization of human islet amyloid polypeptide (IAPP) and enhanced its toxicity to INS‐1 beta cells. Heparin increased amyloid deposition in cultured human islets, but surprisingly decreased islet cell apoptosis. Treatment of human islets with heparin prior to transplantation increased the likelihood of graft failure. Removal of islet heparan sulfate glycosaminoglycans, which localize with islet amyloid deposits in type 2 diabetes, by heparinase treatment decreased amyloid deposition and protected against islet cell death. These findings raise the possibility that pretransplant treatment of human islets with heparin could potentiate IAPP aggregation and amyloid formation and may be detrimental to subsequent graft function.  相似文献   

4.
Islet cell transplantation can lead to insulin independence, reduced hypoglycemia, and amelioration of diabetes complications in patients with type 1 diabetes. The systemic delivery of anti‐inflammatory agents, while considered crucial to limit the early loss of islets associated with intrahepatic infusion, increases the burden of immunosuppression. In an effort to decrease the pharmaceutical load to the patient, we modified the pancreatic islet surface with long‐chain poly(ethylene glycol) (PEG) to mitigate detrimental host‐implant interactions. The effect of PEGylation on islet engraftment and long‐term survival was examined in a robust nonhuman primate model via three paired transplants of dosages 4300, 8300, and 10 000 islet equivalents per kg body weight. A reduced immunosuppressive regimen of anti‐thymocyte globulin induction plus tacrolimus in the first posttransplant month followed by maintenance with sirolimus monotherapy was employed. To limit transplant variability, two of the three pairs were closely MHC‐matched recipients and received MHC‐disparate PEGylated or untreated islets isolated from the same donors. Recipients of PEGylated islets exhibited significantly improved early c‐peptide levels, reduced exogenous insulin requirements, and superior glycemic control, as compared to recipients of untreated islets. These results indicate that this simple islet modification procedure may improve islet engraftment and survival in the setting of reduced immunosuppression.  相似文献   

5.
Due to a shortage of donation after brain death (DBD) organs, donation after circulatory death (DCD) is increasingly performed. In the field of islet transplantation, there is uncertainty regarding the suitability of DCD pancreas in terms of islet yield and function after islet isolation. The aim of this study was to investigate the potential use of DCD pancreas for islet transplantation. Islet isolation procedures from 126 category 3 DCD and 258 DBD pancreas were performed in a 9-year period. Islet yield after isolation was significantly lower for DCD compared to DBD pancreas (395 515 islet equivalents [IEQ] and 480 017 IEQ, respectively; p = .003). The decrease in IEQ during 2 days of culture was not different between the two groups. Warm ischemia time was not related to DCD islet yield. In vitro insulin secretion after a glucose challenge was similar between DCD and DBD islets. After islet transplantation, DCD islet graft recipients had similar graft function (AUC C-peptide) during mixed meal tolerance tests and Igls score compared to DBD graft recipients. In conclusion, DCD islets can be considered for clinical islet transplantation.  相似文献   

6.
Transplant of hydrogel‐encapsulated allogeneic islets has been explored to reduce or eliminate the need for chronic systemic immunosuppression by creating a physical barrier that prevents direct antigen presentation. Although successful in rodents, translation of alginate microencapsulation to large animals and humans has been hindered by large capsule sizes (≥500 μm diameter) that result in suboptimal nutrient diffusion in the intraperitoneal space. We developed a microfluidic encapsulation system that generates synthetic poly(ethylene glycol)‐based microgels with smaller diameters (310 ± 14 μm) that improve encapsulated islet insulin responsiveness over alginate capsules and allow transplant within vascularized tissue spaces, thereby reducing islet mass requirements and graft volumes. By delivering poly(ethylene glycol)‐encapsulated islets to an isolated, retrievable, and highly vascularized site via a vasculogenic delivery vehicle, we demonstrate that a single pancreatic donor syngeneic islet mass exhibits improved long‐term function over conventional alginate capsules and close integration with transplant site vasculature. In vivo tracking of bioluminescent allogeneic encapsulated islets in an autoimmune type 1 diabetes murine model showed enhanced cell survival over unencapsulated islets in the absence of chronic systemic immunosuppression. This method demonstrates a translatable alternative to intraperitoneal encapsulated islet transplant.  相似文献   

7.
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran‐coated SPION, siloxane‐coated SPION, and heparin‐coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran‐coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet‐containing capsules. Islets labeled with 100 μg Fe/ml heparin‐coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane‐coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.  相似文献   

8.
Cold preservation sensitizes organ grafts to exacerbation of tissue injury upon reperfusion. This reperfusion injury is not fully explained by the mere re‐introduction of oxygen but rather is pertinent to the immediate rise in metabolic turnover associated with the abrupt restoration of normothermia. Here we report the first clinical case of gradual resumption of graft temperature upon ex vivo machine perfusion from hypothermia up to normothermic conditions using cell‐free buffer as a perfusate. A kidney graft from an extended criteria donor was put on the machine after 12.5 hours of cold storage. During ex vivo perfusion, perfusion pressure and temperature were gradually elevated from 30 mm Hg and 8°C to 75 mm Hg and 35°C, respectively. Perfusate consisted of diluted Steen solution, oxygenated with 100% oxygen. Final flow rates at 35°C were 850 mL/min. The kidney was transplanted without complications and showed good immediate function. Serum creatinine fell from preoperative 720 µmol/L to 506 µmol/L during the first 24 hours after transplantation. Clearance after 1 week was 43.1 mL/min. Controlled oxygenated rewarming prior to transplantation can be performed up to normothermia without blood components or artificial oxygen carriers and may represent a promising tool to mitigate cold‐induced reperfusion injury or to evaluate graft performance.  相似文献   

9.
The success rate of subcutaneous transplantation of pancreatic islets has been extremely low. Insufficient oxygen supply to the grafted islets is one possible major obstacle to the preservation of graft function. This study attempted to use basic fibroblast growth factor (bFGF) in subcutaneous transplantation to induce neovascularization and a sufficient blood flow around the space formed for grafted islets in the subcutaneous tissues. A bFGF-releasing device was designed enclosing bFGF in a polyethylene terephthalate mesh bag coated with polyvinylalcohol hydrogel. In the vascularized group (n = 5), two bFGF-releasing devices were implanted bilaterally into the subcutaneous tissue of the back of streptozotocin-induced diabetic Lewis rats. One week after implantation, isolated rat islets (5000) were syngeneically transplanted subcutaneously after the removal of the devices. In the control group (n = 5), no devices were implanted and the same number of rat islets was transplanted directly. One week after the implantation of the devices into the test animals, a thick, well-vascularized capsule was observed in the subcutaneous site. All vascularized recipient rats showed significant decreases in nonfasting blood glucose and maintained normoglycemia for more than 1 month after islet transplantation. However, in the control group, all rats failed to achieve normoglycemia after transplantation. This study provides evidence that the subcutaneous tissue is a promising site for pancreatic islet transplantation, offering convincing advantages in acceptability for diabetic recipients. Establishment of this subcutaneous islet transplantation technique will afford some new perspectives on successful clinical islet transplantation.  相似文献   

10.
Islet transplantation has become a well‐established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX‐001 (MnTnBuOE‐2‐PyP5+ [Mn(III) meso‐tetrakis‐(N‐ b ‐butoxyethylpyridinium‐2‐yl)porphyrin]) and its earlier derivative, BMX‐010 (MnTE‐2‐PyP [Mn(III) meso‐tetrakis‐(N‐methylpyridinium‐2‐yl)porphyrin]) could improve islet function and engraftment outcomes. Long‐term culture of human islets with BMX‐001, but not BMX‐010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 μmol/L BMX‐001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 μmol/L BMX‐001–supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 μmol/L BMX‐001–treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 μmol/L BMX‐001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX‐001 enhances in vitro viability and augments murine marginal islet mass engraftment.  相似文献   

11.
Ischemia-reperfusion injury (IRI) results in increased rates of delayed graft function and early graft loss. It has recently been reported that hydrogen sulfide (H2S) protects organ grafts against prolonged IRI. Here, we investigated whether the preservation of pancreas in University of Wisconsin (UW) solution supplemented with AP39, which is a mitochondrial-targeted H2S donor, protected pancreatic islets against IRI and improved islet function. Porcine pancreata were preserved in the UW solution with AP39 (UW + AP39) or the vehicle (UW) for 18 h, followed by islet isolation. The islet yields before and after purification were significantly higher in the UW + AP39 group than in the UW group. The islets isolated from the pancreas preserved in UW + AP39 exhibited significantly decreased levels of reactive oxygen species (ROS) production and a significantly increased mitochondrial membrane potential as compared to the islets isolated from the pancreas preserved in the vehicle. We found that the pancreas preserved in UW + AP39 improved the outcome of islet transplantation in streptozotocin-induced diabetic mice. These results suggest that the preservation of pancreas in UW + AP39 protects the islet grafts against IRI and could thus serve as a novel clinical strategy for improving islet transplantation outcomes.  相似文献   

12.
To describe the 10-year outcomes of islet transplantation within the Swiss-French GRAGIL Network, in patients with type 1 diabetes experiencing high glucose variability associated with severe hypoglycemia and/or with functional kidney graft. We conducted a retrospective analysis of all subjects transplanted in the GRAGIL-1c and GARGIL-2 islet transplantation trials and analyzed components of metabolic control, graft function and safety outcomes over the 10-year period of follow-up. Forty-four patients were included between September 2003 and April 2010. Thirty-one patients completed a 10-year follow-up. Ten years after islet transplantation, median HbA1c was 7.2% (6.2–8.0) (55 mmol/mol [44–64]) versus 8.0% (7.1–9.1) (64 mmol/mol [54–76]) before transplantation (< .001). Seventeen of 23 (73.9%) recipients were free of severe hypoglycemia, 1/21 patients (4.8%) was insulin-independent and median C-peptide was 0.6 ng/ml (0.2–1.2). Insulin requirements (UI/kg/day) were 0.3 (0.1–0.5) versus 0.5 (0.4–0.6) before transplantation (< .001). Median (IQR) β-score was 1 (0–4) (< .05 when comparing with pre-transplantation values) and 51.9% recipients had a functional islet graft at 10 years. With a 10-year follow-up in a multicentric network, islet transplantation provided sustained improvement of glycemic control and was efficient to prevent severe hypoglycemia in almost 75% of the recipients.  相似文献   

13.
Porcine islet transplantation is an alternative to allo-islet transplantation. Retransplantation of islets is a routine clinical practice in islet allotransplantation in immunosuppressed recipients and will most likely be required in islet xenotransplantation in immunosuppressed recipients. We examined whether a second infusion of porcine islets could restore normoglycemia and further evaluated the efficacy of a clinically available immunosuppression regimen including anti-thymocyte globulin for induction; belimumab, sirolimus, and tofacitinib for maintenance and adalimumab, anakinra, IVIg, and tocilizumab for inflammation control in a pig to nonhuman primate transplantation setting. Of note, all nonhuman primates were normoglycemic after the retransplantation of porcine islets without induction therapy. Graft survival was >100 days for all 3 recipients, and 1 of the 3 monkeys showed insulin independence for >237 days. Serious lymphodepletion was not observed, and rhesus cytomegalovirus reactivation was controlled without any serious adverse effects throughout the observation period in all recipients. These results support the clinical applicability of additional infusions of porcine islets. The maintenance immunosuppression regimen we used could protect the reinfused islets from acute rejection.  相似文献   

14.
Islet transplantation is a promising cure for diabetes. However, inflammation, allorejection, and recurrent autoimmune damage all may contribute to early graft loss. Pancreatic islets express lower levels of antioxidant genes than most other tissues of the body, and beta-cells in particular are sensitive to oxidative damage. Therefore, damage from oxidative stress may pose a major obstacle to islet replacement therapy in that both the islet isolation and transplantation processes generate oxygen radicals. To determine whether antioxidant gene overexpression in isolated pancreatic islets can prevent oxidative damage and prolong islet function after transplantation, we used the NOD mouse model to study oxidative stress encountered during both transplantation and autoimmune attack. We transferred an antioxidant gene, manganese superoxide dismutase (MnSOD), by adenoviral infection into isolated islets that were transplanted into streptozotocin-treated NODscid recipient mice. Functioning islet grafts were subsequently exposed to diabetogenic spleen cells and monitored until graft failure. The results show that islet grafts overexpressing MnSOD functioned approximately 50% longer than control grafts. This significant prolongation of graft function suggests that the antioxidant activity of MnSOD is beneficial to transplanted islet survival and may be used in combination with other strategies aimed at islet graft protection.  相似文献   

15.
Detection of amyloid in intraportal islet implants of type 1 diabetes patients has been proposed as cause in their functional decline. The present study uses cultured adult human islets devoid of amyloid to examine conditions of its formation. After intraportal injection in patients, amyloid deposits <15 µm diameter were identified in 5%–12% of beta cell containing aggregates, 3–76 months posttransplant. Such deposits also formed in glucose-controlling islet implants in the kidney of diabetic mice but not in failing implants. Alginate-encapsulated islets formed amyloid during culture when functional, and in all intraperitoneal implants that corrected diabetes in mice, exhibiting larger sizes than in functioning nonencapsulated implants. After intraperitoneal injection in a patient, retrieved single capsules presented amyloid near living beta cells, whereas no amyloid occurred in clustered capsules with dead cells. Amyloid was also demonstrated in functional human stem cell-generated beta cell implants in subcutaneous devices of mice. Deposits up to 35 µm diameter were localized in beta cell-enriched regions and related to an elevated IAPP over insulin ratio in the newly generated beta cells. Amyloid in device-encapsulated human stem cell-generated beta cell implants marks the formation of a functional beta cell mass but also an imbalance between its activated state and its microenvironment.  相似文献   

16.
We have previously shown that pancreatic islets engineered to transiently display a modified form of FasL protein (SA‐FasL) on their surface survive indefinitely in allogeneic recipients without a need for chronic immunosuppression. Mechanisms that confer long‐term protection to allograft are yet to be elucidated. We herein demonstrated that immune protection evolves in two distinct phases; induction and maintenance. SA‐FasL‐engineered allogeneic islets survived indefinitely and conferred protection to a second set of donor‐matched, but not third‐party, unmanipulated islet grafts simultaneously transplanted under the contralateral kidney capsule. Protection at the induction phase involved a reduction in the frequency of proliferating alloreactive T cells in the graft‐draining lymph nodes, and required phagocytes and TGF‐β. At the maintenance phase, immune protection evolved into graft site‐restricted immune privilege as the destruction of long‐surviving SA‐FasL‐islet grafts by streptozotocin followed by the transplantation of a second set of unmanipulated islet grafts into the same site from the donor, but not third party, resulted in indefinite survival. The induced immune privilege required both CD4+CD25+Foxp3+ Treg cells and persistent presence of donor antigens. Engineering cell and tissue surfaces with SA‐FasL protein provides a practical, efficient, and safe means of localized immunomodulation with important implications for autoimmunity and transplantation.  相似文献   

17.
BACKGROUND: A factor of potential importance in the failure of islet grafts is poor or inadequate engraftment of the islets in the implantation organ. This study measured the oxygen tension and blood perfusion in 1-, 2-, and 9-month-old islet grafts. METHODS: The partial pressure of oxygen was measured in pancreatic islets transplanted beneath the renal capsule of diabetic and nondiabetic recipient rats with a modified Clark electrode (outer tip diameter 2-6 microm). The size of the graft (250 islets) was by purpose not large enough to cure the diabetic recipients. The oxygen tension in islets within the pancreas was also recorded. Blood perfusion was measured with the laser-Doppler technique. RESULTS: Within native pancreatic islets, the partial pressure of oxygen was approximately 40 mm Hg (n=8). In islets transplanted to nondiabetic animals, the oxygen tension was approximately 6-7 mm Hg 1, 2, and 9 months posttransplantation. No differences could be seen between the different time points after transplantation. In the diabetic recipients, an even more pronounced decrease in graft tissue oxygen tension was recorded. The mean oxygen tension in the superficial renal cortex surrounding the implanted islets was similar in all groups (approximately 15 mm Hg). Intravenous administration of glucose (0.1 gxkg(-1)x min(-1)) did not affect the oxygen tension in any of the investigated tissues. The islet graft blood flow was similar in all groups, measuring approximately 50% of the blood flow in the kidney cortex. CONCLUSION: The oxygen tension in islets implanted beneath the kidney capsule is markedly lower than in native islets up to 9 months after transplantation. Moreover, persistent hyperglycemia in the recipient causes an even further decrease in graft oxygen tension, despite similar blood perfusion. To what extent this may contribute to islet graft failure remains to be determined.  相似文献   

18.
This is a case report of a successful single‐lobe lung transplantation for pulmonary hypertension secondary to alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV). A 6‐year‐old boy underwent living‐donor single‐lobe transplantation with the right lower lobe from his 31‐year‐old mother. The pretransplantation graft size matching was acceptable: the estimated graft forced vital capacity (FVC) was 96.5% of the recipient's predicted FVC, and the graft size measured by computed tomography (CT) volumetry was 166% of the recipient's chest cavity volume. Right pneumonectomy followed by implantation was performed under cardiopulmonary bypass (CPB). The pulmonary arterial pressure was significantly decreased to 31/12 mm Hg immediately after transplantation, and the first PaO2/FiO2 in the intensive‐care unit (ICU) was 422 mm Hg. Lung perfusion scintigraphy showed 97.5% perfusion to the right implanted lung 3 months after transplantation. Chest CT showed a mass rapidly growing in the native left upper lobe 6 months after transplantation, which was diagnosed as posttransplant lymphoproliferative disorder (PTLD) by a CT‐guided biopsy. After immunosuppressant reduction and six courses of chemotherapy with rituximab, he underwent native left upper lobectomy for salvage lung resection 13 months after transplantation. Seven months after lobectomy, he has returned to normal school life without any sign of tumor recurrence.  相似文献   

19.
The subcutaneous site is ideal for clinical islet transplantation because it has the advantage of being accessible and can be biopsied when needed. Sadly, the results at subcutaneous sites were disappointing. The reason for this failure is not known, but poor vascularization may play a role. We tested the hypothesis that islet grafts would do better if more vasculature or oxygen could be supplied. Six hundred isolated C57BL/6 mouse islets were syngeneically transplanted into inbred streptozotocin-diabetic recipients at a subcutaneous site on the back with (Group A, n = 6) or without (Group B, n = 8) postoperative hyperbaric oxygen (2.4 ATA, 100% O(2)) therapy, or at a calf muscle (Group C, n = 9). During 13-week posttransplantation follow-up, recipients' blood glucose decreased and body weight increased significantly in all 3 groups (P < .05). However, there was no significant difference among the 3 groups. At 13 weeks, the insulin contents of the graft was also comparable among the 3 groups. Our data indicate the following: (1) postoperative hyperbaric oxygen therapy did not improve the outcome of islet transplantation at a subcutaneous site; and (2) a muscular site was not superior to a subcutaneous site for islet transplantation.  相似文献   

20.
BackgroundSubcutaneous pockets provide an extrahepatic transplant site for islet grafting to treat type 1 diabetes. However, a hypoxic environment may cause central necrosis to islets and lead to graft failure. Our previous studies focused on a pre-treated subcutaneous site with basic fibroblast growth factor (bFGF) for the formation of vascular bed. In addition to neovascularization, bFGF was also shown to protect islets against oxidative stress and chemical-induced damage in vitro. Accordingly, we propose that subcutaneous islet transplantation with a bFGF-slow releasing device simultaneously can improve islet survival in vivo.MethodsA bFGF-impregnated collagen sheet was implanted in the right back of a streptozotocin-induced diabetic mouse for neovascularization. After 10 days, the sheet was removed and the rat islet-embedding gel within the immune-isolation device was transplanted (2-time operation [OP]). In another group, the diabetic mice received bFGF-impregnated gel with rat islets within the immune-isolation device simultaneously (1-time OP).ResultsDiabetic mice in 2-time OP group experienced a decrease in their non-fasting blood glucose level for a period of 10 days, and the glucose levels were lower than those of untreated diabetic mice post-implantation. However, the mice in the 1-time OP group remained hyperglycemic post-operation and showed no improvements in body weight or the area under curve in intraperitoneal glucose tolerance test. Furthermore, mice in the 2-time OP had relatively higher serum insulin levels with improved renal and metabolic biomarkers.ConclusionOur findings suggest that bFGF had no beneficial effect on a 1-time operation in subcutaneous islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号