首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reward sensitivity, or the tendency to engage in motivated approach behavior in the presence of rewarding stimuli, may be a contributory factor for vulnerability to disinhibitory behaviors. Although evidence exists for a reward sensitivity‐related increased response in reward brain areas (i.e. nucleus accumbens or midbrain) during the processing of reward cues, it is unknown how this trait modulates brain connectivity, specifically the crucial coupling between the nucleus accumbens, the midbrain, and other reward‐related brain areas, including the medial orbitofrontal cortex and the amygdala. Here, we analysed the relationship between effective connectivity and personality in response to anticipatory reward cues. Forty‐four males performed an adaptation of the Monetary Incentive Delay Task and completed the Sensitivity to Reward scale. The results showed the modulation of reward sensitivity on both activity and functional connectivity (psychophysiological interaction) during the processing of incentive cues. Sensitivity to reward scores related to stronger activation in the nucleus accumbens and midbrain during the processing of reward cues. Psychophysiological interaction analyses revealed that midbrain–medial orbitofrontal cortex connectivity was negatively correlated with sensitivity to reward scores for high as compared with low incentive cues. Also, nucleus accumbens–amygdala connectivity correlated negatively with sensitivity to reward scores during reward anticipation. Our results suggest that high reward sensitivity‐related activation in reward brain areas may result from associated modulatory effects of other brain regions within the reward circuitry.  相似文献   

2.

The purpose of this study was to examine the effects of after-school sedentary screen time on children’s brain activation in reward and cognitive control regions in response to pictures of high- and low-calorie foods. Thirty-two children participated in a randomized crossover study with counterbalanced treatment conditions. Conditions took place on separate days after school and included three hours of active or sedentary play. After each condition, neural activation was assessed using functional magnetic resonance imaging (fMRI) while participants completed a go/no-go task involving pictures of high- and low-calorie foods. General response inhibition was also measured using the Stroop task. Hunger was measured upon arrival to the testing facility and just prior to fMRI scans. Mixed effects models were used to evaluate main effects and interactions. Significant stimulus by condition interactions were found in the right superior parietal cortex, and left anterior cingulate cortex (Ps?≤?0.05). High-calorie pictures elicited significantly more activation bilaterally in the orbitofrontal cortex compared to low-calorie pictures (Ps?≤?0.05). Stroop task performance diminished significantly following the sedentary condition compared to the active (P?≤?0.05). Subjective feelings of hunger were not different between conditions at any point. Sedentary screen time was associated with significantly decreased response inhibition and a reversed brain activation pattern to pictures of high- and low-calorie foods compared to active play, in areas of the brain important to the modulation of food intake. Decreased attention, and impulse control following sedentary screen time may contribute to disinhibited eating that can lead to overweight and obesity.

  相似文献   

3.
Obesity is a key risk factor for the development of insulin resistance, Type 2 diabetes and associated diseases; thus, it has become a major public health concern. In this context, a detailed understanding of brain networks regulating food intake, including hormonal modulation, is crucial. At present, little is known about potential alterations of cerebral networks regulating ingestive behavior. We used "resting state" functional magnetic resonance imaging to investigate the functional connectivity integrity of resting state networks (RSNs) related to food intake in lean and obese subjects using independent component analysis. Our results showed altered functional connectivity strength in obese compared to lean subjects in the default mode network (DMN) and temporal lobe network. In the DMN, obese subjects showed in the precuneus bilaterally increased and in the right anterior cingulate decreased functional connectivity strength. Furthermore, in the temporal lobe network, obese subjects showed decreased functional connectivity strength in the left insular cortex. The functional connectivity magnitude significantly correlated with body mass index (BMI). Two further RSNs, including brain regions associated with food and reward processing, did not show BMI, but insulin associated functional connectivity strength. Here, the left orbitofrontal cortex and right putamen functional connectivity strength was positively correlated with fasting insulin levels and negatively correlated with insulin sensitivity index. Taken together, these results complement and expand previous functional neuroimaging findings by demonstrating that obesity and insulin levels influence brain function during rest in networks supporting reward and food regulation.  相似文献   

4.
Food aromas are signals associated with both food's availability and pleasure. Previous research from this laboratory has shown that food aromas under fasting conditions evoke robust activation of medial prefrontal brain regions thought to reflect reward value (Bragulat et al., Obesity (Silver Spring), 18(8): 1566?C1571, 2010). In the current study, 18 women (11 normal weight and 7 obese) underwent a 2-day imaging study (one after being fed and one while fasting). All were imaged on a 3T Siemens Trio-Tim scanner while sniffing two food (F; pasta and beef) odors, one non-food (NF; Douglas fir) odor, and an odorless control (CO). Prior to imaging, participants rated hunger and perceived odor qualities and completed the Dutch Eating Behavior Questionnaire (DEBQ) to assess "externality" (the extent to which eating is driven by external food cues). Across all participants, both food and non-food odors (compared to CO) elicited large blood oxygenation level dependent (BOLD) responses in olfactory and reward-related areas, including the medial prefrontal and anterior cingulate cortex, bilateral orbitofrontal cortex, and bilateral piriform cortex, amygdala, and hippocampus. However, food odors produced greater activation of medial prefrontal cortex, left lateral orbitofrontal cortex, and inferior insula than non-food odors. Moreover, there was a significant correlation between the (F?>?CO) BOLD response in ventromedial prefrontal cortex and ??externality?? sub-scale scores of the DEBQ, but only under the fed condition; no such correlation was present with the (NF?>?CO) response. This suggests that in those with high externality, ventromedial prefrontal cortex may inappropriately valuate external food cues in the absence of internal hunger.  相似文献   

5.
Neuronal activity related to brain-stimulation reward and to feeding was analyzed in rhesus monkeys and squirrel monkeys as follows. First, self-stimulation of the lateral hypothalamus, orbitofrontal cortex, amygdala and nucleus accumbens was found. Second, a population of single neurones in the lateral hypothalamus was found to be trans-synaptically activated from one or several self-stimulation sites. It was also found that populations of neurones in the orbitofrontal cortex and amygdala were activated from at least some of the self-stimulation sites. Thus, in the monkey, there is evidence for an interconnected set of self-stimulation sites, stimulation in any one of which may activate neurones in the other regions. These sites include the lateral hypothalamus, amygdala, and orbitofrontal cortex. Third, in one sample of 764 neurones in the lateral hypothalamis and substantia innominata which were activated from brain-stimulation reward sites, 13.6% were also activated during feeding, by the sight and/or taste of food. The responses of the neurones with activity associated with taste occurred only while some substances (e.g. sweet substances such as glucose) were in the mouth, depended on the concentration of the substances being tasted, and were independent of mouth movements made by the monkeys. Fourth, the responses of these neutrones occurre to food when the monkeys were hungry, but not when they were satiated. Fifth, self-stimulation occurred in the region of these neurones in the lateral hypothalamus and substantia innominata, and was attenuated by satiety. These results suggest that self-stimulation of some brain sites occurs because of activation of neurones in the lateral hypothalamus and substantia innominata activated by the sight and/or taste of food in the hungry animal, and that these neurones are involved in responses to food reward.  相似文献   

6.
The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting‐state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal‐weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal‐weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. Hum Brain Mapp 35:6088–6096, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Advantageous inequality (AI) aversion, or paying at a personal cost to achieve equal reward distribution, represents a unique feature of human behavior. Here, we show that individuals have strong preferences for fairness in both disadvantageous (DI) and advantageous inequality (AI) situations, such that they alter others' payoff at a personal financial cost. At the neural level, we found that both types of inequality activated the putamen, orbitofrontal cortex, and insula, regions implicated in motivation. Individual difference analyses found that those who spent more money to increase others' payoff had stronger activity in putamen when they encountered AI and less functional connectivity between putamen and both orbitofrontal cortex and anterior insula. Conversely, those who spent more money to reduce others' payoff had stronger activity in amygdala in response to DI and less functional connectivity between amygdala and ventral anterior cingulate cortex. These dissociations suggest that both types of inequality are processed by similar brain areas, yet modulated by different neural pathways. Hum Brain Mapp 35:3290–3301, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

8.
Little is known about the relationship between weight status and reward-related brain activity in normal weight humans. We correlated orbitofrontal and anterior cingulate cortex activity as measured by functional magnetic resonance imaging with body mass index in 13 healthy, normal-weight adult women as they viewed images of high-calorie and low-calorie foods, and dining-related utensils. Body mass index correlated negatively with both cingulate and orbitofrontal activity during high-calorie viewing, negatively with orbitofrontal activity during low-calorie viewing, and positively with orbitofrontal activity during presentations of nonedible utensils. With greater body mass, activity was reduced in brain regions important for evaluating and modifying learned stimulus-reward associations, suggesting a relationship between weight status and responsiveness of the orbitofrontal cortex to rewarding food images.  相似文献   

9.
Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward‐driven behavior. Although reward‐driven behavior is supported by subcortical‐medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting‐state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three‐wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self‐reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age‐related strengthening of subcortico‐subcortical and cortico‐cortical connectivity. Subcortical–cortical connectivity, such as, between the nucleus accumbens—frontal medial cortex, and the caudate—dorsal anterior cingulate cortex, however, weakened across age. Model‐based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical–cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.  相似文献   

10.
This review considers the theoretical problems facing agents that must learn and choose on the basis of reward or reinforcement that is uncertain or delayed, in implicit or procedural (stimulus-response) representational systems and in explicit or declarative (action-outcome-value) representational systems. Individual differences in sensitivity to delays and uncertainty may contribute to impulsivity and risk taking. Learning and choice with delayed and uncertain reinforcement are related but in some cases dissociable processes. The contributions to delay and uncertainty discounting of neuromodulators including serotonin, dopamine, and noradrenaline, and of specific neural structures including the nucleus accumbens core, nucleus accumbens shell, orbitofrontal cortex, basolateral amygdala, anterior cingulate cortex, medial prefrontal (prelimbic/infralimbic) cortex, insula, subthalamic nucleus, and hippocampus are examined.  相似文献   

11.
Autism spectrum disorders (ASDs) and social anxiety disorder (SAD) are both characterized by social dysfunction, but no study to date has compared neural responses to social rewards in ASDs and SAD. Neural responses during social and non-social reward anticipation and outcomes were examined in individuals with ASD (n = 16), SAD (n = 15) and a control group (n = 19) via functional magnetic resonance imaging. Analyses modeling all three groups revealed increased nucleus accumbens (NAc) activation in SAD relative to ASD during monetary reward anticipation, whereas both the SAD and ASD group demonstrated decreased bilateral NAc activation relative to the control group during social reward anticipation. During reward outcomes, the SAD group did not differ significantly from the other two groups in ventromedial prefrontal cortex activation to either reward type. Analyses comparing only the ASD and SAD groups revealed greater bilateral amygdala activation to social rewards in SAD relative to ASD during both anticipation and outcome phases, and the magnitude of left amygdala hyperactivation in the SAD group during social reward anticipation was significantly correlated with the severity of trait anxiety symptoms. Results suggest reward network dysfunction to both monetary and social rewards in SAD and ASD during reward anticipation and outcomes, but that NAc hypoactivation during monetary reward anticipation differentiates ASD from SAD.  相似文献   

12.
Brain reward systems mediate liking and wanting for food reward. Here, we explore the differential involvement of the following structures for these two components: the ventral and dorsal striatopallidal area, orbitofrontal cortex (OFC), anterior insula and anterior cingulate. Twelve healthy female participants were asked to rate pleasantness (liking of food and non-food odors) and the desire to eat (wanting of odor-evoked food) during event-related functional magnetic resonance imaging (fMRI). The subjective ratings and fMRI were performed in hunger and satiety states. Activations of regions of interest were compared as a function of task (liking vs wanting), odor category (food vs non-food) and metabolic state (hunger vs satiety). We found that the nucleus accumbens and ventral pallidum were differentially involved in liking or wanting during the hunger state, which suggests a reciprocal inhibitory influence between these structures. Neural activation of OFC subregions was correlated with either liking or wanting ratings, suggesting an OFC role in reward processing magnitude. Finally, during the hunger state, participants with a high body mass index exhibited less activation in neural structures underlying food reward processing. Our results suggest that food liking and wanting are two separable psychological constructs and may be functionally segregated within the cortico-striatopallidal circuit.  相似文献   

13.
The nucleus accumbens is a brain region that participates in the control of behaviors related to natural reinforcers, such as ingestion, sexual behavior, incentive and instrumental learning, and that also plays a role in addictive processes. This paper comprises a review of work from our laboratory that focuses on two main research areas: (i). the role of the nucleus accumbens in food motivation, and (ii). its putative functions in cellular plasticity underlying appetitive learning. First, work within a number of different behavioral paradigms has shown that accumbens neurochemical systems play specific and dissociable roles in different aspects of food seeking and food intake, and part of this function depends on integration with the lateral hypothalamus and amygdala. We propose that the nucleus accumbens integrates information related to cognitive, sensory, and emotional processing with hypothalamic mechanisms mediating energy balance. This system as a whole enables complex hierarchical control of adaptive ingestive behavior. Regarding the second research area, our studies examining acquisition of lever-pressing for food in rats have shown that activation of glutamate N-methyl-d-aspartate (NMDA) receptors, within broadly distributed but interconnected regions (nucleus accumbens core, posterior striatum, prefrontal cortex, basolateral and central amygdala), is critical for such learning to occur. This receptor stimulation triggers intracellular cascades that involve protein phosphorylation and new protein synthesis. It is hypothesized that activity in this distributed network (including D1 receptor activity) computes coincident events and thus enhances the probability that temporally related actions and events (e.g. lever pressing and delivery of reward) become associated. Such basic mechanisms of plasticity within this reinforcement learning network also appear to be profoundly affected in addiction.  相似文献   

14.
Obese individuals are characterized by altered brain reward responses to food. Despite the latest discovery of obesity-associated genes, the contribution of environmental and genetic factors to brain reward responsiveness to food remains largely unclear. Sixteen female monozygotic twin pairs with a mean BMI discordance of 3.96 ± 2.1 kg/m2 were selected from the Netherlands Twin Register to undergo functional MRI scanning while watching high- and low-calorie food and non-food pictures and during the anticipation and receipt of chocolate milk. In addition, appetite ratings, eating behavior and food intake were assessed using visual analog scales, validated questionnaires and an ad libitum lunch. In the overall group, visual and taste stimuli elicited significant activation in regions of interest (ROIs) implicated in reward, i.e. amygdala, insula, striatum and orbitofrontal cortex. However, when comparing leaner and heavier co-twins no statistically significant differences in ROI-activations were observed after family wise error correction. Heavier versus leaner co-twins reported higher feelings of hunger (P = 0.02), cravings for sweet food (P = 0.04), body dissatisfaction (P < 0.05) and a trend towards more emotional eating (P = 0.1), whereas caloric intake was not significantly different between groups (P = 0.3). Our results suggest that inherited rather than environmental factors are largely responsible for the obesity-related altered brain responsiveness to food. Future studies should elucidate the genetic variants underlying the susceptibility to reward dysfunction and obesity. Clinical Trial Registration Number: NCT02025595.  相似文献   

15.
Nutritional state (e.g. fasted vs. fed) and different food stimuli (e.g. high-calorie vs. low-calorie, or appetizing vs. bland foods) are both recognized to change activity in brain reward systems. Using functional magnetic resonance imaging, we have studied the interaction between nutritional state and different food stimuli on brain food reward systems. We examined how blood oxygen level-dependent activity within a priori regions of interest varied while viewing pictures of high-calorie and low-calorie foods. Pictures of non-food household objects were included as control stimuli. During scanning, subjects rated the appeal of each picture. Twenty non-obese healthy adults [body mass index 22.1 ± 0.5 kg/m2 (mean ± SEM), age range 19–35 years, 10 male] were scanned on two separate mornings between 11:00 and 12:00 h, once after eating a filling breakfast ('fed': 1.6 ± 0.1 h since breakfast), and once after an overnight fast but skipping breakfast ('fasted': 15.9 ± 0.3 h since supper) in a randomized cross-over design. Fasting selectively increased activation to pictures of high-calorie over low-calorie foods in the ventral striatum, amygdala, anterior insula, and medial and lateral orbitofrontal cortex (OFC). Furthermore, fasting enhanced the subjective appeal of high-calorie more than low-calorie foods, and the change in appeal bias towards high-calorie foods was positively correlated with medial and lateral OFC activation. These results demonstrate an interaction between homeostatic and hedonic aspects of feeding behaviour, with fasting biasing brain reward systems towards high-calorie foods.  相似文献   

16.
Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development.  相似文献   

17.
The experience of being liked is a key social event and fundamental to motivating human behavior, though little is known about its neural underpinnings. In this study, we examined the experience of being liked in a group of 15‐ to 24‐year‐old: a cohort for whom forming friendships has a great degree of salience, and for whom the explicit representation of relationships is familiar from their frequent use of social networking technologies. Study participants (n = 19) were led to believe that other participants had formed an opinion on their likability based on their appearance in a photograph, and during fMRI scanning viewed the photographs of people who had purportedly responded favorably to them (alongside photographs of control participants). Results indicated that being liked activated primary reward‐ and self‐related regions, including the nucleus accumbens, midbrain (in an area corresponding to the ventral tegmentum), ventromedial prefrontal cortex, posterior cingulate cortex (including retrosplenial cortex), amygdala, and insula/opercular cortex. Participants showed greater activation of ventromedial prefrontal cortex and amygdala in response to being liked by people that they regarded highly compared to those they regarded less so. Finally, being liked by the opposite compared to the same gender activated the right caudal orbitofrontal cortex and right anterior insula: areas important for the representation of primary somatic rewards. This study demonstrates that neural response to being liked has features that are consistent with response to other rewarding events, but it has additional features that reflect its intrinsically interpersonal character. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Neuroimaging studies have implicated a set of striatal and orbitofrontal cortex (OFC) regions that are commonly activated during reward processing tasks. Resting‐state functional connectivity (RSFC) studies have demonstrated that the human brain is organized into several functional systems that show strong temporal coherence in the absence of goal‐directed tasks. Here we use seed‐based and graph‐theory RSFC approaches to characterize the systems‐level organization of putative reward regions of at rest. Peaks of connectivity from seed‐based RSFC patterns for the nucleus accumbens (NAcc) and orbitofrontal cortex (OFC) were used to identify candidate reward regions which were merged with a previously used set of regions (Power et al., 2011). Graph‐theory was then used to determine system‐level membership for all regions. Several regions previously implicated in reward‐processing (NAcc, lateral and medial OFC, and ventromedial prefrontal cortex) comprised a distinct, preferentially coupled system. This RSFC system is stable across a range of connectivity thresholds and shares strong overlap with meta‐analyses of task‐based reward studies. This reward system shares between‐system connectivity with systems implicated in cognitive control and self‐regulation, including the fronto‐parietal, cingulo‐opercular, and default systems. Differences may exist in the pathways through which control systems interact with reward system components. Whereas NAcc is functionally connected to cingulo‐opercular and default systems, OFC regions show stronger connectivity with the fronto‐parietal system. We propose that future work may be able to interrogate group or individual differences in connectivity profiles using the regions delineated in this work to explore potential relationships to appetitive behaviors, self‐regulation failure, and addiction.  相似文献   

19.
To better understand the reward circuitry in human brain, we conducted activation likelihood estimation (ALE) and parametric voxel-based meta-analyses (PVM) on 142 neuroimaging studies that examined brain activation in reward-related tasks in healthy adults. We observed several core brain areas that participated in reward-related decision making, including the nucleus accumbens (NAcc), caudate, putamen, thalamus, orbitofrontal cortex (OFC), bilateral anterior insula, anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC), as well as cognitive control regions in the inferior parietal lobule and prefrontal cortex (PFC). The NAcc was commonly activated by both positive and negative rewards across various stages of reward processing (e.g., anticipation, outcome, and evaluation). In addition, the medial OFC and PCC preferentially responded to positive rewards, whereas the ACC, bilateral anterior insula, and lateral PFC selectively responded to negative rewards. Reward anticipation activated the ACC, bilateral anterior insula, and brain stem, whereas reward outcome more significantly activated the NAcc, medial OFC, and amygdala. Neurobiological theories of reward-related decision making should therefore take distributed and interrelated representations of reward valuation and valence assessment into account.  相似文献   

20.
The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI < 25). Participants underwent a functional magnetic resonance imaging (fMRI) session while performing two tasks that involve the processing of food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food‐evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U‐shape association between BMI and monetary‐evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food‐evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary‐evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666–677, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号