首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.  相似文献   

2.
Thermal treatment is a post-synthesis treatment that aims to improve the crystallinity and interrelated physical properties of as-prepared materials. This process may also cause some unwanted changes in materials like their oxidation or contamination. In this work, we present the post-synthesis annealing treatments of the amorphous Fe1−xCox (x = 0.25; 0.50; 0.75) Wire-like nanochains performed at 400 °C in two different atmospheres, i.e., a mixture of 80% nitrogen and 20% hydrogen and argon. These processes caused significantly different changes of structural and magnetic properties of the initially-formed Fe-Co nanostructures. All of them crystallized and their cores were composed of body-centered cubic Fe-Co phase, whereas their oxide shells comprised of a mixture of CoFe2O4 and Fe3O4 phases. However, the annealing carried out in hydrogen-containing atmosphere caused a decomposition of the initial oxide shell layer, whereas a similar process in argon led to its slight thickening. Moreover, it was found that the cores of thermally-treated Fe0.25Co0.75 nanochains contained the hexagonal closest packed (hcp) Co phase and were covered by the nanosheet-like shell layer in the case of annealing performed in argon. Considering the evolution of magnetic properties induced by structural changes, it was observed that the coercivities of annealed Fe-Co nanochains increased in comparison with their non-annealed counterparts. The saturation magnetization (MS) of the Fe0.25Co0.75 nanomaterial annealed in both atmospheres was higher than that for the non-annealed sample. In turn, the MS of the Fe0.75Co0.25 and Fe0.50Co0.50 nanochains annealed in argon were lower than those recorded for non-annealed samples due to their partial oxidation during thermal processing.  相似文献   

3.
In the present study, we perform a systematic examination of the products formed by mixing and heating of tungsten boride and iridium powders at different ratios in a broad temperature range using qualitative and quantitative X-ray analysis and time-of-flight neutron diffraction (TOF-ND), in combination with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) performed at different accelerating voltages. The well-known and unknown ternary W–Ir–B phases were detected. The Vickers microhardness value for the new ternary W2Ir5B2 boride was measured. Based on these findings, the ternary W2Ir5B2 boride can be considered hard.  相似文献   

4.
This article considers issues pertinent to the research of the phase composition, structure and mechanical properties of materials obtained from powders of composite (Ni-Ti)-TiB2, which have prospective applications in aerospace and automotive industry and engine construction. The starting powder materials (Ni-Ti)-TiB2 were obtained by self-propagating high-temperature synthesis (SHS). Research samples were produced using high-temperature vacuum sintering. It was shown that the use of such materials increases the wettability of the particles and allows the production of composites, the density of which is 95% of the theoretical one. Average particle size was 1.54 µm, average microhardness was 8 GPa, which is an order of magnitude higher than the average microhardness of pure nickel-based and titanium-based alloys, and the ultimate strength values were comparable to those of tungsten-based heavy alloys.  相似文献   

5.
Zinc sulfide (ZnS) thin films were prepared and synthesized by the chemical bath deposition (CBD) technique on microscopic glass substrates using stoichiometric amounts of the precursor materials (ZnSO4·7H2O, NH4OH, and CS(NH2)2). Structural, morphological, compositional, and optical characterization of the films were studied. The obtained thin films were found to exhibit polycrystalline possessions. The effect of annealing temperature on the crystallographic structure and optical bandgap of ZnS thin films were both examined. The grain size and unit cell volume were both found to be increased. In addition, the strain, dislocation density, and the number of crystallites were found to be decreased with annealing temperature at 300 °C. However, the annealed sample was perceived to have more Zn content than S. The optical characterization reveals that the transmittance was around 76% of the as-deposited thin film and had been decreased to ~50% with the increasing of the annealing temperature. At the same time, the bandgap energy of the as-deposited film was 3.98 eV and was found to be decreased to 3.93 eV after annealing.  相似文献   

6.
Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ′-Fe4N and mixtures of α Fe and γ′-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ′ phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe–N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γα+ε is presented for the first time. From the observed equilibria, a PT projection of the univariant equilibria in the Fe-rich portion of the Fe–N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ′-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe–N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ′-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase in the system. In view of the frequently reported metastable retention of the γ′ phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γε are discussed.  相似文献   

7.
Prior carburization of semi-finished steel sheets is a new process variant in hot stamping to manufacture parts with tailored properties. Compared to conventional hot stamping processes, a complex phase typed steel alloy is used instead of 22MnB5. Yet recent investigations focused on final mechanical properties rather than microstructural mechanisms cause an increase in strength. Thus, the influence of additional carburization on the microstructural evolution during hot stamping of a complex phase steel CP-W®800 is investigated within this work. The phase transformation behavior, as well as the grain growth during austenitization, is evaluated by in-situ measurements employing a laser-ultrasound sensor. The results are correlated with additional hardness measurements in as-quenched condition and supplementary micrographs. The experiments reveal that the carburization process significantly improves the hardenability of the CP-W®800. However, even at quenching rates of 70 K/s no fully martensitic microstructure was achievable. Still, the resulting hardness of the carburized samples might exceed the fully martensitic hardness of 22MnB5 derived from literature. Furthermore, the carburization process has no adverse effect on the fine grain stability of the complex phase steel. This makes it more robust in terms of grain size than the conventional hot stamping steel 22MnB5.  相似文献   

8.
Alloyed-transition metal dichalcogenide (TMD) coatings have been under investigation as multi-environment lubricants for the past few decades. These coatings display very low coefficient of friction properties at elevated temperatures. Studies on the annealing of these low-friction coatings are missing in the literature. For the first time, in this study, the annealing of the W-S-N dry lubricant coatings was carried out to study its effects on the composition, morphology, crystal structure and hardness of the coatings. The W-S-N coatings were deposited by direct current (DC) reactive magnetron sputtering. The analysis was carried out for as-deposited, 200 °C and 400 °C annealed coatings. The as-deposited coatings have N content in the range of 0–25.5 at. %. The coatings are compact and the densification increased with the increase in N-alloying. All the coatings are crystalline except the highest N-alloyed coating which is X-ray amorphous. A maximum hardness of 8.0 GPa was measured for the coating alloyed with 23 at. % N. Annealing did not affect the composition and morphology of the coatings, while some variations were observed in their crystal structure and hardness. The maximum hardness increased from 8 GPa to 9.2 GPa after 400 °C annealing of the 23 at. % N-alloyed coating.  相似文献   

9.
Interest in phase change materials keeps on rising as thermal energy storage grows in popularity in the scientific community as a promising complement for renewable energies in the future. Extending the possibilities beyond pure compounds, the use of mixtures (especially eutectics) widens the range of suitable phase change materials (PCM) available in the market. However, a precise knowledge of the mixtures’ phase behavior is required, making phase diagrams the most appropriate tools to follow. The aim of this work is to collect and analyze published literature concerning the phase diagrams of fatty acid esters mixtures, which constitute promising candidates as PCM due to their attractive properties, such as high latent heat, chemical stability and the possibility of extracting them from vegetable and animal oils. The topic appears as a still open scientific field, where further studies need to be performed to complete, complement and perfect the currently available information.  相似文献   

10.
In this study, we successfully obtained Al-TiB2 composite materials using self-propagating high-temperature synthesis and preliminary mechanical activation of the initial Al-(Ti + 2B) powder mixture with a high aluminum content (70 wt.%). We investigated the possibility of controlling the structure of synthesis products, in particular, the size and shape of ceramic particles. We examined the effects of the mechanical activation of the initial powder mixture on the structure and particle size of titanium diboride in the synthesis products. We proposed a mechanism of structure formation in the synthesis products obtained by SHS using the method of preliminary mechanical activation of the initial mixture. We found that mechanical activation for 60-180 s led to the formation of isolated TiB2 particles of prolate and irregular shape. The average particle size of TiB2 in the synthesis products was 0.77 (after 60 s of mechanical activation) and 1.5 µm (after 180 s of mechanical activation), respectively. An increase in the duration of mechanical activation to 900 s led to the formation of an island (skeletal) structure, in which there were interconnected aggregates and isolated particles of titanium diboride. The average size of these particles was 4.3 µm.  相似文献   

11.
In this work, nanoporous antireflective coatings on silicate glass were obtained from silicon dioxide sol compositions by the sol-gel method in the presence of quaternary ammonium salt (tetrabutylammonium bromide) at different annealing temperatures (200–250 °C). Varying the salt concentration from 3 to 5 wt.%, we achieved the transmittance of the coatings of about 97% at 250 °C in comparison with 91% for clean glass in the wavelength range from 400 to 1100 nm. The addition of gold nanoparticles to the composition containing 5 wt.% tetrabutylammonium bromide allowed us to decrease the annealing temperature to 200 °C, preserving the transmittance at the level of 96.5%. For this case, the optimal concentration of gold nanoparticles is determined (2.6 × 10−9 mol/mL). According to the SEM analysis, the obtained antireflective coatings contain pores with a minimum area size up to 4 nm2.  相似文献   

12.
An AlCrSiWN coating was prepared on a cemented carbide substrate by the arc ion plating technology. The optimization of the coating process was carried out by matrix analysis of orthogonal experiments to calculate the influence of the process parameters on the hardness, bonding and roughness indexes of the coating, determine the optimal coating process parameters, and focus on the influence of the bias voltage on the microscopic morphology, mechanical properties and friction properties of the coating. The results showed that the influence of the process parameters on the indexes of the orthogonal experiments was in the following order: bias voltage > arc current > N2 flow rate. The optimal solution was achieved with an arc current of 160 A, a bias voltage of −80 V, and a N2 flow rate of 600 sccm. Properly increasing the bias voltage improved the microscopic morphology, mechanical properties and wear resistance of the coating. When the bias voltage was −80 V, the coating surface presented fewer large particles with a less uniform size and no obvious crater defects; in addition, the cross-sectional structure changed from grape-like to columnar, and the coating had higher hardness, lower roughness and better bond strength. In the friction performance test, coating at a −80 V bias voltage showed better wear resistance, which was reflected in lower friction coefficient and wear, and the wear mechanism mainly consisted of adhesion and oxidation wear.  相似文献   

13.
The performance of alkali-activated slag (AAS) under thermal treatment has received particular attention. In this study, the effect of five elevated temperatures (25, 200, 400, 600, and 800 °C) and two cooling methods (air cooling and water spraying) on the mechanical and durability properties, microstructure, and phase evolution of AAS was investigated. The results show that AAS mortars exhibit higher resistance to thermal attack than OPC in terms of strength and durability. AAS samples cooled in air show higher residual strength than those cooled by spraying water, which is mainly attributed to fewer cracks formed in the former. The resistance to carbonization of exposed AAS mortars depends on the pore size distribution, while that to chloride ion penetration depends on the porosity. Cooling methods show a minor effect on the phase evolution of reaction products, suggesting that the microstructure degradation is mainly responsible for the damage of AAS structures. This study provides fundamental knowledge for the thermally induced changes on AAS which contributes new ideas for the development of construction structures with higher fire resistance.  相似文献   

14.
For the purpose of investigating the microstructural evolution and the mechanical response under applied loads, a new phase field model based on the Ginzburg-Landau theory is developed by designing a free energy function with six potential wells that represent six martensite variants. Two-dimensional phase field simulations show that, in the process of a shape memory effect induced by temperature-stress, the reduction-disappearance of cubic austenite phase and nucleation-growth of monoclinic martensite multi-variants result in a poly-twined martensitic microstructure. The microstructure of martensitic de-twinning consists of different martensite multi-variants in the tension and compression, which reveals the microstructural asymmetry of nickel-titanium (NiTi) alloy in the tension and compression. Furthermore, in the process of super-elasticity induced by tensile or compressive stress, all martensite variants nucleate and expand as the applied stress gradually increases from zero. Whereas, when the applied stress reaches critical stress, only the martensite variants of applied stress-accommodating continue to expand and others fade gradually. Moreover, the twinned martensite microstructures formed in the tension and compression contain different martensite multi-variants. The study of the microstructural dynamic evolution in the phase transformation can provide a significant reference in improving properties of shape memory alloys that researchers have been exploring in recent years.  相似文献   

15.
Ribosomes translate RNA into proteins. The protein synthesis inhibitor cycloheximide (CHX) is widely used to inhibit eukaryotic ribosomes engaged in translation elongation. However, the lack of structural data for actively translating polyribosomes stalled by CHX leaves unanswered the question of which elongation step is inhibited. We elucidated CHX’s mechanism of action based on the cryo-electron microscopy structure of actively translating Neurospora crassa ribosomes bound with CHX at 2.7-Å resolution. The ribosome structure from this filamentous fungus contains clearly resolved ribosomal protein eL28, like higher eukaryotes but unlike budding yeast, which lacks eL28. Despite some differences in overall structures, the ribosomes from Neurospora, yeast, and humans all contain a highly conserved CHX binding site. We also sequenced classic Neurospora CHX-resistant alleles. These mutations, including one at a residue not previously observed to affect CHX resistance in eukaryotes, were in the large subunit proteins uL15 and eL42 that are part of the CHX-binding pocket. In addition to A-site transfer RNA (tRNA), P-site tRNA, messenger RNA, and CHX that are associated with the translating N. crassa ribosome, spermidine is present near the CHX binding site close to the E site on the large subunit. The tRNAs in the peptidyl transferase center are in the A/A site and the P/P site. The nascent peptide is attached to the A-site tRNA and not to the P-site tRNA. The structural and functional data obtained show that CHX arrests the ribosome in the classical PRE translocation state and does not interfere with A-site reactivity.

Cycloheximide (CHX) is the most widely used laboratory inhibitor of eukaryotic protein synthesis (1). Alma J. Whiffen, a mycologist working at Upjohn, initially identified it in 1946 as a product of Streptomyces griseus fermentation that she named actidione (diketone produced by an actinomycete); actidione inhibited the growth of fungi but not bacteria (24). In 1963, CHX’s function to inhibit eukaryotic protein synthesis was demonstrated using a cell-free translation system (CFTS) from Saccharomyces pastorianus (5). The first induced mutations conferring CHX resistance were isolated and genetically mapped in the model fungus Neurospora crassa (6). Around 2 y later, the direct action of CHX to inhibit translation in a mammalian system was demonstrated using active translation lysates prepared from anucleate rabbit reticulocytes (7). The early literature on CHX and related molecules has been thoroughly and contemporaneously reviewed (8).Structures of the Saccharomyces cerevisiae ribosome (9) and the human ribosome (10), containing CHX tightly bound at the ribosome E site, have given significant insight into its mechanism of action. Based on the position of the CHX binding site, CHX is proposed to interfere with the translocation of P-site transfer RNA (tRNA) to the E site. However, both of these CHX-containing structures were obtained using vacant ribosomes lacking tRNA and therefore did not establish the specific step(s) in the translation cycle at which CHX inhibits elongation. If E-site translocation is blocked as predicted, then this structure is consistent with ribosomes in the pretranslocation (PRE) state with either the nascent peptide on the P-site tRNA and the incoming amino acid on A-site tRNA or in the PRE state with the nascent peptide transferred to A-site tRNA. Both models appear in the literature, with single-molecule biophysical studies supporting the latter (1, 11). Furthermore, the ribosome subunits can have different, relative rotational orientations even while containing A/A and P/P tRNA: A classical PRE state can be discriminated from a rotated PRE* state (12). Thus, there are a variety of states in which CHX could potentially arrest the ribosome even prior to tRNA translocation.Here, we determined the cryo-electron microscopy (cryo-EM) structure of translating N. crassa ribosomes with CHX at 2.7-Å resolution. To accomplish this, we isolated polysomes from actively growing cells to which CHX was added and maintained CHX at a high concentration throughout all subsequent procedures until the vitrification step of cryo-EM sample preparation. We built a model for the N. crassa ribosome that differs from S. cerevisiae ribosomes and more closely resembles higher-eukaryotic ribosomes in that it contains ribosomal protein eL28. Comparisons of structures with CHX bound to ribosomes showed that the CHX-binding position is highly conserved in N. crassa, S. cerevisiae, and human ribosomes. However, unlike the canonical CHX-bound structures of vacant yeast and human ribosomes (9, 10), which contained an Mg2+ ion adjacent to the CHX-binding pocket, the N. crassa ribosome contained spermidine (SPD) in place of the Mg2+ ion. We sequenced previously identified N. crassa mutations that confer CHX resistance. All amino acid changes in these mutants, including an amino acid change at a previously unidentified position among eukaryotic mutations that confer CHX resistance, map to conserved residues in the CHX-binding pocket. In addition, P/P- and A/A-site tRNAs were present in the N. crassa structure, and the nascent peptide was resolved on the A-site tRNA. Finally, CHX did not appear to interfere with termination as it does with elongation in an N. crassa cell-free translation extract, consistent with CHX interfering with the translocation of tRNA to the E site but not peptidyl transfer events at the A site. The observation that terminating ribosomes are not arrested by CHX could be significant for analyses of the levels of ribosomes mapping to termination codons when CHX is included in ribosome-profiling analyses.This work provides a structural basis for a mechanistic understanding of CHX action. It also provides a high-resolution model for a fungal ribosome that differs from the S. cerevisiae ribosome.  相似文献   

16.
The paper presents the microstructure and phase composition of the interface zone formed in the explosive welding process between technically pure aluminum and nickel. Low and high detonation velocities of 2000 and 2800 m/s were applied to expose the differences of the welded zone directly after the joining as well as subsequent long-term annealing. The large amount of the melted areas was observed composed of a variety of Al-Ni type intermetallics; however, the morphology varied from nearly flat to wavy with increasing detonation velocity. The applied heat treatment at 500 °C has resulted in the formation of Al3Ni and Al3Ni2 layers, which in the first stages of growth preserved the initial interface morphology. Due to the large differences in Al and Ni diffusivities, the porosity formation occurred for both types of clads. Faster consumption of Al3Ni phase at the expense of the growing Al3Ni2 phase, characterized by strong crystallographic texture, has been observed only for the weld obtained at low detonation velocity. As a result of the extended annealing time, the disintegration of the bond occurred due to crack propagation located at the A1050/Al3Ni2 interface.  相似文献   

17.
Mo-Mo2N nanocomposite coating was produced by reactive magnetron sputtering of a molybdenum target, in the atmosphere, of Ar and N2 gases. Coating was deposited on Ti6Al4V titanium alloy. Presented are the results of analysis of the XRD crystal structure, microscopic SEM, TEM and AFM analysis, measurements of hardness, Young’s modulus, and adhesion. Coating consisted of α-Mo phase, constituting the matrix, and γ-Mo2N reinforcing phase, which had columnar structure. The size of crystallite phases averaged 20.4 nm for the Mo phase and 14.1 nm for the Mo2N phase. Increasing nitrogen flow rate leads to the fragmentation of the columnar grains and increased hardness from 22.3 GPa to 27.5 GPa. The resulting coating has a low Young’s modulus of 230 GPa to 240 GPa. Measurements of hardness and Young’s modulus were carried out using the nanoindentation method. Friction coefficient and tribological wear of the coatings were determined with a tribometer, using the multi-cycle oscillation method. Among tested coatings, the lowest friction coefficient was 0.3 and wear coefficient was 10 × 10−16 m3/N∙m. In addition, this coating has an average surface roughness of RMS < 2.4 nm, determined using AFM tests, as well as a good adhesion to the substrate. The dominant wear mechanism of the Mo-Mo2N coatings was abrasive wear and wear by oxidation. The Mo-Mo2N coating produced in this work is a prospective material for the elements of machines and devices operating in dry friction conditions.  相似文献   

18.
The initial processes of the phase transition dynamics of liquid crystals (LCs) subject to UV pulse irradiation were clarified using a nanosecond time-resolved imaging technique called pattern-illumination time-resolved phase microscopy (PI-PM). Two types of LCs were studied: a photo-responsive LC and dye-doped LCs. We found two steps of molecular disordering processes in the phase transition, namely local disordering proceeding anisotropically, followed by the spreading of the isotropic phase. These two processes were separated for a photo-responsive LC while being simultaneously observed for the dye-doped LCs. It was found that the photomechanical dyes induced the phase transition process faster than the photothermal dyes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号