首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirteen epoxy resin system components were tested in the LLNA with regard to their sensitizing potency. Lymph node stimulation was quantified not only by measuring the incorporation of [3H]-thymidine into the ear lymph nodes but also the counts of cells recovered from these organs. Equivalent figures were obtained with both endpoints used for the evaluation of lymph node cell proliferation if the reference stimulation indices were adjusted. When dissolved in acetone, all test substances showed skin-sensitizing potential, mainly on the boundary between “strong” and “moderate” according to common potency evaluation schemes. Replacing acetone with acetone/olive oil (4:1) as a vehicle for four selected test items, resulted in considerably lower estimated concentrations for sensitization induction. The challenges in comparing the results obtained by different LLNA variations are discussed.  相似文献   

2.
Kimber I 《Toxicology》2001,158(1-2):59-64
The local lymph node assay (LLNA) is a method for the identification of skin sensitization hazard. The method is based upon measurement of proliferative responses induced in draining lymph nodes following topical exposure of mice to the test chemical. More recently the LLNA has also been used for the evaluation of relative skin sensitization potency in the context of risk assessment. Idiosyncratic drug reactions resulting from the stimulation of allergic or autoimmunogenic responses are poorly understood but represent an important clinical problem. In this article, the potential utility of the LLNA, either in a conventional modified configuration, to provide information of value in assessment the potential for systemic allergenicity is considered.  相似文献   

3.
Effective risk assessment and management of allergic contact dermatitis require three key factors: adequate hazard identification, measurement of the relative potency of identified hazards and an understanding of the nature, extent and duration of exposure. Suitable methods for hazard identification, such as the murine local lymph node assay (LLNA) and the guinea-pig maximization test, are well established and conditions of human exposure normally can be well anticipated. Thus, the need is for a robust and quantitative method for the estimation of relative skin sensitizing potency. One possible approach is via the analysis of LLNA dose-response data. In the LLNA, contact allergens are defined currently as those chemicals that cause a threefold or greater increase in lymph node cell proliferative activity compared with concurrent vehicle-treated controls. It is possible to estimate the concentration of a sensitizer required to generate a threefold stimulation of proliferation in draining lymph nodes; such a concentration is known as the EC3 value. Using a variety of statistical approaches to derive EC3 values from LLNA dose-response data for 10 chemicals, it has been demonstrated that simple linear interpolation between the values either side of the threefold stimulation index provides a robust assessment of the EC3 value without the need for recourse to more sophisticated statistical techniques. Provided that the appropriate concentrations of test chemical have been selected, EC3 values obtained in this way are reproducible both within and between laboratories and form the basis for examination of the utility of this approach for the estimation of relative skin sensitizing potency.  相似文献   

4.
To encourage the development and validation of alternative toxicity test methods, the effort required for validation of test methods proposed for regulatory purposes should be minimized. Performance standards (PS) facilitate efficient validation by requiring limited testing. Based on the validated method, PS define accuracy and reliability values that must be met by the new similar test method. The OECD adopted internationally harmonized PS for evaluating new endpoint versions of the local lymph node assay (LLNA). However, in the process of evaluating a lymph node cell count alternative (LNCC), simultaneous conduct of the regulatory LLNA showed that this standard test may not always perform in perfect accord with its own PS. The LNCC results were similar to the concurrent LLNA. Discrepancies between PS, LLNA and LNCC were largely associated with “borderline” substances and the variability of both endpoints. Two key lessons were learned: firstly, the understandable focus on substances close to the hazard classification borderline are more likely to emphasise issues of biological variability, which should be taken into account during the evaluation of results; secondly, variability in the results for the standard assay should be considered when selecting reference chemicals for PS.  相似文献   

5.
目的 通过局部淋巴结试验法和局部封闭斑贴试验应用于化妆品皮肤变态反应的比较,探讨局部淋巴结试验应用于化妆品成品的可行性。方法 采用局部淋巴结试验与体内局部封闭斑贴试验对标准的阳性物以及市面上的2种染发剂进行评价。结果 局部淋巴结试验表明,2种染发剂的SI值<1.8,均为阴性,判断结果与局部封闭斑贴试验结果一致。结论 局部淋巴结试验相对局部封闭斑贴试验具有检验周期短、测试简便、评价客观等优点,是一种较好的用于评价染发类态产品过敏反应的替代方法。  相似文献   

6.
The amino acid derivative reactivity assay (ADRA) is an alternative method for evaluating key event 1 (KE-1) in the skin sensitization mechanism included in OECD TG442C (OECD, 2021). Recently, we found that ADRA with a 4-mM test chemical solution had a higher accuracy than the original ADRA (1 mM). However, ADRA (4 mM) has yet to be evaluated using integrated approaches to testing and assessment (IATA), a combination of alternative methods for evaluating KE. In this study, the sensitization potency of three defined approaches (DAs) using ADRA (4 mM) as KE-1 was predicted and compared with those of two additional ADRAs or direct peptide reactivity assay (DPRA): (i) “2 out of 3” approach, (ii) “3 out of 3” approach, and (iii) integrated testing strategy (ITS). In the hazard identification of chemical sensitizers, the accuracy of human data and local lymph node assay (LLNA) remained almost unchanged among the three approaches evaluated. Potency classifications for sensitization were predicted with the LLNA and human data sets using ITS. The potency classifications for the sensitization potency prediction accuracy of LLNA data using any alternative method were almost unchanged, at approximately 70%, and those with ITS were not significantly different. When ITS was performed using DPRA, the prediction accuracy was approximately 73% for human data, which was similar to that of the LLNA data; however, the accuracy tended to increase for all ADRA methods. In particular, when ITS was performed using ADRA (4 mM), the prediction accuracy was approximately 78%, which proved to be a practical level.  相似文献   

7.
Woolhiser MR  Munson AE  Meade BJ 《Toxicology》2000,146(2-3):221-227
The local lymph node assay (LLNA), as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), only allows for the use of CBA mice. The objective of these studies was to begin to assess the response of chemical sensitizers in the LLNA across six strains of female mice (C57BL/6, SJL/J, BALB/c, B6C3F1, DBA/2 and CBA). The moderate sensitizer alpha-hexylcinnamaldehyde (HCA) was chosen as the test chemical, while toluene diisocyanate (TDI) and 2,4-dinitrofluorobenzene (DNFB) were evaluated at single concentrations as positive controls. Draining lymph node cell proliferation following acetone exposure varied across strains. SJL mice had a significantly higher degree of proliferation with 2111 d.p.m./2 nodes. The remaining five strains demonstrated responses which ranged from 345 to 887 dpm/2 nodes. DBA/2, B6C3F1, BALB/c and CBA mice had essentially equal levels of lymph node proliferation following exposure to the three chemicals. While C57BL/6 mice gave similar results as CBA mice following DNFB and HCA administration, the LLNA response to TDI was considerably lower. SJL mice provided low stimulation indexes (SI) values for all three chemicals evaluated. Regardless of the level of LLNA response, all six mouse strains identified the sensitization potential of HCA, TDI or DNFB. Based on these studies, DBA/2, B6C3F1 and BALB/c mice are good choices for continued evaluation as additional mouse strains for use in the LLNA.  相似文献   

8.
Allergic contact dermatitis is a serious health problem. There is a need to identify and characterize skin sensitization hazards, particularly with respect to relative potency, so that accurate risk assessments can be developed. For these purposes the murine local lymph node assay (LLNA) was developed. Here, we have investigated further a modi fi cation of this assay, non-radioisotopic LLNA, which in place of tritiated thymidine to measure lymph node cell proliferation employs incorporation of 5-bromo-2'-deoxyuridine. Using this method we have examined the skin sensitizing activity of eugenol, a known human contact allergen, and its dimers 2,2'-dihydroxyl-3,3'-dimethoxy-5,5'-diallyl-biphenyl (DHEA) and 4,5'-diallyl-2'-hydroxy-2,3'-dimethoxy phenyl ether (DHEB). Activity in the guinea pig maximization test (GPMT) also measured. On the basis of GPMT assays, eugenol was classified as a mild skin sensitizer, DHEA as a weak skin sensitizer and DHEB as an extreme skin sensitizer. In the non-radioisotopic LLNA all chemicals were found to give positive responses insofar as each was able to provoke a stimulation index (SI) of >or=3 at one or more test concentrations. The relative skin sensitizing potency of these chemicals was evaluated in the non-radioisotopic LLNA by derivation of an ec(3) value (the concentration of chemical required to provoke an SI of 3). The ec(3) values calculated were 25.1% for eugenol, >30% for DHEA and 2.3% for DHEB. Collectively these data suggest that assessments of relative potency deriving from non-radioisotopic LLNA responses correlate well with evaluations based on GPMT results. These investigations provide support for the proposal that the non-radioisotopic LLNA may serve as an effective alternative to the GPMT where there is a need to avoid the use of radioisotopes.  相似文献   

9.
The local lymph node assay (LLNA) is a regulatory accepted test for the identification of skin sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. However, there is evidence that LLNA is overestimating the sensitization potential of certain substance classes in particular those exerting skin irritation. Some reports describe the additional use of flow cytometry‐based immunophenotyping to better discriminate irritants from sensitizing irritants in LLNA. In the present study, the 22 performance standards plus 8 surfactants were assessed using the radioactive LLNA method. In addition, lymph node cells were immunophenotyped to evaluate the specificity of the lymph node response using cell surface markers such as B220 or CD19, CD3, CD4, CD8, I‐Aκ and CD69 with the aim to allow a better discrimination above all between irritants and sensitizers, but also non‐irritating sensitizers and non‐sensitizers. However, the markers assessed in this study do not sufficiently differentiate between irritants and irritant sensitizers and therefore did not improve the predictive capacity of the LLNA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the “EC3” value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).  相似文献   

11.
Recently UN GHS has introduced the sub-categorization of skin sensitizers for which ECt (concentration estimated to induce stimulation index above threshold) of the murine local lymph node assay (LLNA) is used as criteria. Non-radioisotopic variants of LLNA, LLNA: DA, LLNA: BrdU-ELISA, LNCC and LLNA: BrdU-FCM were developed yet their utilities for potency sub-categorization are not established. Here we assessed the agreement of LLNA variants with LLNA or human data in potency sub-categorization for 22 reference substances of OECD TG429. Concordance of sub-categorization with LLNA was highest for LLNA: BrdU-FCM(91%, κ = 0.833, weighted kappa) followed by LLNA: BrdU-ELISA (82%, κ = 0.744) and LLNA: DA (73%, κ = 0.656) whereas LNCC only showed a modest association (64%, κ = 0.441). With human data, LLNA agreed best (77%) followed by LLNA: DA and LLNA: BrdU-FCM(73%), LLNA: BrdU-ELISA (68%) and LNCC(55%). Bland-Altman plot revealed that ECt's of LLNA variants largely agreed with LLNA where most values fell within 95% limit of agreement. Correlation between ECt's of LLNA and LLNA variants were high except for LNCC(pair-wise with LLNA, LLNA: DA, r = 0.848, LLNA: BrdU-ELISA, r = 0.744, LLNA: BrdU-FCM, r=0.786, and LNCC, r = 0.561 by Pearson). Collectively, these results demonstrated that LLNA variants exhibit performance comparable to LLNA in the potency sub-categorization although additional substances shall be analyzed in the future.  相似文献   

12.
Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSensTM, h-CLAT (human cell line activation test), U-SENSTM, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.  相似文献   

13.
The murine local lymph node assay (LLNA) is a method for the predictive identification of chemicals that have a potential to cause skin sensitization. Activity is measured as a function of lymph node cell (LNC) proliferative responses stimulated by topical application of test chemicals. Those chemicals that induce a threefold or greater increase in LNC proliferation compared with concurrent vehicle controls are classified as skin sensitizers. In the present investigations we have evaluated further the reliability and accuracy of the LLNA. In the context of an international interlaboratory trial the sensitization potentials of six materials with a history of use in topical medicaments have been evaluated: benzoyl peroxide, hydroquinone, penicillin G, streptomycin sulfate, ethylenediamine dihydrochloride, and methyl salicylate. Each chemical was analyzed in the LLNA by all five laboratories. Either the standard LLNA protocol or minor modifications of it were used. Benzoyl peroxide and hydroquinone, both human contact allergens, elicited strong LLNA responses in each laboratory. Penicillin G, another material shown previously to cause allergic contact dermatitis in humans, was also positive in all laboratories. Streptomycin sulfate induced equivocal responses, in that this material provoked a positive LLNA response in only one of the five laboratories, and then only at the highest concentration tested. Ethylenediamine dihydrochloride dissolved in a 3:1 mixture of acetone with water, or in 4:1 acetone:olive oil (one laboratory), was uniformly negative. However, limited further testing with the free base of ethylene diamine yielded a positive LLNA response when applied in acetone:olive oil (AOO). Finally, methyl salicylate, a nonsensitizing skin irritant, was negative at all test concentrations in each laboratory. Collectively these data serve to confirm that the local lymph node assay is sufficiently robust to yield equivalent results when performed independently in separate laboratories and indicate also that the LLNA is of value in assessing the skin sensitization potential of topical medicaments.  相似文献   

14.
To evaluate the reliability of the murine local lymph node assay (LLNA), a test for allergic contact dermatitis activity, the inter- and intralaboratory consistency statistics (h and k, respectively) were calculated for validation studies testing multiple chemicals. The analysis indicated the absence of excessive variability in the dose calculated to induce a threefold or greater increase in the stimulation index (SI). To assess the appropriateness of using an SI of 3 as the decision criteria for identifying a sensitizing compound, LLNA results based on SI values of 2.0, 2.5, 3.0, 3.5, and 4.0 were compared with guinea pig or human results. The results supported the use of an SI of 3 as the decision criteria. Assay performance was determined by comparing LLNA results to results obtained for guinea pigs or humans. The accuracy of the LLNA was 89% when compared with results from the guinea pig maximization test (GPMT)/Buehler assay (BA). The performance of the LLNA and the GPMT/BA was similar when each was compared to human maximization test results plus substances included as human patch test allergens. The LLNA offered advantages over the GPMT in respect to both the time required to conduct the test and the assay cost.  相似文献   

15.
Non-radioisotopic local lymph node assay (LLNA) employing 5-bromo-2′-deoxyuridine (BrdU) with flow cytometry (FACS) or immunohistochemistry (IHC) is gaining attention due to a regulatory issue of using radioisotope, 3H-thymidine, in vivo in traditional LLNA. In this study, to compare the performance of these non-radioisotopic endpoints, 7 chemicals with known sensitizing potencies were examined in LLNA. Mice were topically treated with chemicals or vehicle on both ears for 3 days. After intraperitoneal injection of BrdU, bilateral lymph nodes were isolated separately and undergone respectively, FACS or IHC to determine BrdU incorporated lymph node cells (LNCs). Weight and histology of treated ears were also examined to evaluate chemical-induced edema and irritation. Both FACS and IHC could successively identify the skin sensitizers from non-sensitizers. Comparison of FACS and IHC with traditional LLNA revealed that FACS has a higher sensitivity although both assays produced comparable sensitivity and performance to traditional LLNA. In conclusion, non-radioisotopic LLNA using FACS and IHC can successfully detect sensitizers with a good correlation to traditional LLNA. Notably, FACS showed almost equivalent sensitivity and accuracy to traditional LLNA.  相似文献   

16.
The murine local lymph node assay (LLNA) is a method for the prospective identification of skin sensitizing chemicals. Proliferative responses induced in lymph nodes draining the site of topical application of the test chemical are measured and those chemicals that induce a stimulation index of three or more compared with concurrent vehicle-treated controls are considered to have the potential to cause skin sensitization. Dose-response data from the LLNA may be used to derive an estimate of relative skin sensitizing potency, based upon derivation of the concentration of chemical required to cause a stimulation index of 3 (EC3 value) as calculated by linear interpolation. The purpose of the present investigations was to examine the stability of LLNA responses and the consistency of derived EC3 values induced by the contact allergen paraphenylenediamine (PPD). Analyses were conducted once a month over a 4-month period in each of two independent laboratories. In all assays, and in both laboratories, PPD elicited a positive response. Although some minor differences in responses between and within laboratories were observed, the derived EC3 values were generally very consistent. In Laboratory 1, EC3 values varied between 0.06 and 0.09% PPD, whereas in Laboratory 2 the range was 0.09-0.20%. These EC3 values are consistent with clinical experience of this material insofar as it is a common and relatively potent cause of allergic contact dermatitis in humans. Taken together, these data confirm the stability of LLNA responses both with time and between laboratories and provide additional support for the use of derived EC3 values in the assessment of relative skin sensitizing potency.  相似文献   

17.
Abstract

Summary: The murine local lymph node assay (LLNA) has been developed as an alternative method for the identification of skin sensitizing chemicals. Measurement is made of the proliferation of lymphocytes within lymph nodes draining the site of exposure to the test chemical. This report describes a collaborative study in which 25 test chemicals were evaluated in each of four participating laboratories and the results compared with existing data from guinea pig predictive tests. Nineteen chemicals were predicted to be sensitizers in the guinea pig. Of these, 14 were correctly identified in the LLNA (9 by all laboratories and 5 by two or three laboratories). Five chemicals predicted to be contact allergens by guinea pig tests failed to elicit positive LLNA responses. With adoption of a 5 day rather than a 4 day exposure period to the test chemical and administration of maximum soluble test concentrations, positive reactions could be obtained with each of the chemicals initially negative in the LLNA. The LLNA and guinea pig tests were in agreement for all three chemicals predicted to be nonsensitizers in the guinea pig. Positive LLNA responses were obtained with four chemicals (including a re-evaluation of one initially negative in the LLNA) for which guinea pig results were equivocal in three cases and negative in another. These results suggest that the LLNA may provide a rapid and reliable elective prescreen for the identification of contact allergens.  相似文献   

18.
19.
20.
The identification and characterization of chemicals that possess skin-sensitizing potential are typically performed using predictive tests. However, human exposure to skin-sensitizing chemicals often occurs via a matrix (vehicle) that differs from that used in these tests. It is thus important to account for the potential impact of vehicle differences when undertaking quantitative risk assessment for skin sensitization. This is achieved through the application of a specific sensitization assessment factor (SAF), scaled between 1 and 10, when identifying an acceptable exposure level. The objective of the analysis described herein is to determine the impact of vehicle differences on local lymph node assay (LLNA) EC3 values (concentrations of test chemical required to provoke a 3-fold increase in lymph node cell proliferation). Initially, the inherent variability of the LLNA was investigated by examining the reproducibility of EC3 values for 14 chemicals that have been tested more than once in the same vehicle (4:1 acetone:olive oil, AOO). This analysis reveals that the variability in EC3 value for these chemicals following multiple assessments is <5-fold. Next, data from the literature and previously unpublished studies were compiled for 18 chemicals that had been assessed in the LLNA using at least 2 of 15 different vehicles. These data demonstrate that often the variability in EC3 values observed for a given chemical in different vehicles is no greater than the 5-fold inherent variability observed when assessing a chemical in the same vehicle on multiple occasions. However, there are examples where EC3 values for a chemical differ by a factor of more than 10 between different vehicles. These observations were often associated with an apparent underestimation of potency (higher EC3 values) with predominantly aqueous vehicles or propylene glycol. These data underscore the need to consider vehicle effects in the context of skin-sensitization risk assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号