首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pistachio nuts can become colonized by mycotoxigenic fungi, especially Aspergillus flavus, resulting in contamination with aflatoxins (AFs). We examined the effect of gaseous O3 (50–200 ppm; 30 min; 6 L/min) on (a) in vitro germination, (b) mycelial growth, and (c) aflatoxin B1 (AFB1) production on a milled pistachio nut-based medium at different water activity (aw) levels and at 30 °C. This was complimented with in situ studies exposing raw pistachio nuts to 50–200 ppm of O3. Exposure of conidia to gaseous O3 initially resulted in lower germination percentages at different aw levels. However, 12 h after treatment, conidial viability recovered with 100% germination after 24–48 h. Growth rates of mycelial colonies were slightly decreased with the increase of the O3 dose, with significant inhibition only at 0.98 aw. The production of AFB1 after O3 treatment and storage for 10 days was stimulated in A. flavus colonies at 0.98 aw. Raw pistachio nuts inoculated with A. flavus conidia prior to O3 exposure showed a significant decrease in population after 20 days of storage. However, AFB1 contamination was stimulated in most O3 treatments. The relationship between exposure concentration, time and prevailing aw levels on toxin control needs to be better understood for these nuts.  相似文献   

2.
Aspergillus flavus and Aspergillus parasiticus are important pathogens of cotton, corn, peanuts and other oil-seed crops, producing toxins both in the field and during storage. We have designed three siRNA sequences (Nor-Ia, Nor-Ib, Nor-Ic) to target the mRNA sequence of the aflD gene to examine the potential for using RNA silencing technology to control aflatoxin production. Thus, the effect of siRNAs targeting of two key genes in the aflatoxin biosynthetic pathway, aflD (structural) and aflR (regulatory gene) and on aflatoxin B1 (AFB1), and aflatoxin G1 (AFG1) production was examined. The study showed that Nor-Ib gave a significant decrease in aflD mRNA, aflR mRNA abundance, and AFB1 production (98, 97 and 97% when compared to the controls) in A. flavus NRRL3357, respectively. Reduction in aflD and aflR mRNA abundance and AFB1 production increased with concentration of siRNA tested. There was a significant inhibition in aflD and AFB1 production by A. flavus EGP9 and AFG1 production by A. parasiticus NRRL 13005. However, there was no significant decrease in AFG1 production by A. parasiticus SSWT 2999. Changes in AFB1 production in relation to mRNA levels of aflD showed a good correlation (R = 0.88; P = 0.00001); changes in aflR mRNA level in relation to mRNA level of aflD also showed good correlation (R = 0.82; P = 0.0001). The correlations between changes in aflR and aflD gene expression suggests a strong relationship between these structural and regulatory genes, and that aflD could be used as a target gene to develop efficient means for aflatoxin control using RNA silencing technology.  相似文献   

3.
Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.  相似文献   

4.
5.
6.
The efficacy of ethylene-vinyl alcohol copolymer films (EVOH) incorporating the essential oil components cinnamaldehyde (CINHO), citral (CIT), isoeugenol (IEG), or linalool (LIN) to control growth rate (GR) and production of T-2 and HT-2 toxins by Fusarium sporotrichioides cultured on oat grains under different temperature (28, 20, and 15 °C) and water activity (aw) (0.99 and 0.96) regimes was assayed. GR in controls/treatments usually increased with increasing temperature, regardless of aw, but no significant differences concerning aw were found. Toxin production decreased with increasing temperature. The effectiveness of films to control fungal GR and toxin production was as follows: EVOH-CIT > EVOH-CINHO > EVOH-IEG > EVOH-LIN. With few exceptions, effective doses of EVOH-CIT, EVOH-CINHO, and EVOH-IEG films to reduce/inhibit GR by 50%, 90%, and 100% (ED50, ED90, and ED100) ranged from 515 to 3330 µg/culture in Petri dish (25 g oat grains) depending on film type, aw, and temperature. ED90 and ED100 of EVOH-LIN were >3330 µg/fungal culture. The potential of several machine learning (ML) methods to predict F. sporotrichioides GR and T-2 and HT-2 toxin production under the assayed conditions was comparatively analyzed. XGBoost and random forest attained the best performance, support vector machine and neural network ranked third or fourth depending on the output, while multiple linear regression proved to be the worst.  相似文献   

7.
A total of 603 samples of selected spices from different seasons (winter and summer) were analyzed for the occurrence of aflatoxin B1 (AFB1), total AFs, and tocopherols. The findings revealed that 120 (38.7%) samples from the summer and 136 (46.4%) samples from the winter season were observed to be infected with AFB1 and a large amount of AFs. The highest means of both AFB1 and total Afs were observed in red pepper, i.e., 15.5 ± 3.90 µg/kg and 22.90 ± 4.10 µg/kg, respectively. The minimum averages of AFB1 and total AFs were observed in cloves of 6.32 ± 1.8 and 8.40 ± 1.60 µg/kg, respectively (from the winter season). The seasonal variations in the levels of the total AFs in selected spices were observed to be nonsignificant (p ≥ 0.05), except for the levels in red pepper and ginger samples, which showed significant differences (p ≤ 0.05). The maximum average of the dietary intake of Afs, 4.80 µg/day/kg, was found in ginger from the winter season in individual females. Furthermore, the findings document that the maximum level of total tocopherol, i.e., 44.8 ± 9.3 mg/100 g, was observed in black pepper from the winter season. A significant difference in the concentration of total tocopherols was observed in selected spices from the summer and the winter seasons (p ≤ 0.05).  相似文献   

8.
Aflatoxin B1 (AFB1) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53tm1BrdN5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB1 for 26 weeks. NER activity was assessed with an in vitro assay, using AFB1-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB1–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB1 respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB1 (p < 0.05). In heterozygous p53 knockout mice, repair of AFB1–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB1 (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB1 or in liver extracts from mice treated with either AFB1 concentration. p53 genotype did not affect basal levels of repair. AFB1 exposure did not alter repair of AFB1-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB1 increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage.  相似文献   

9.
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.  相似文献   

10.
Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins. At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin, can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus, and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at high levels. AFs thus remain a current and continuously pressing problem in the world.  相似文献   

11.
Fusarium chaquense, a recently formally described novel species, has been identified as an T-2 toxin (T-2), HT-2 toxin (HT-2) and other toxins producer in natural grasses (Poaceae) from Argentina. The major objective of this study was to describe the effect of water activity (aW, 0.995, 0.98, 0.95, 0.93 and 0.91), temperature (15, 25 and 30 °C) and incubation time (5, 15 and 25 days) on growth and to evaluate the production of T-2, HT-2 toxins and beauvericin (BEA) by two F. chaquense strains in a grass-based media. The results showed a wide range of conditions for F. chaquense growth and mycotoxin production. Both strains had a maximum growth rate at the highest aW (0.995) and 25 °C. Regarding mycotoxin production, more T-2 than the other analysed mycotoxins were produced by the two strains. T-2 production was favoured at 0.995 aW and 30 °C, while HT-2 production at 0.98–0.95 aW and 15 °C. The maximum levels of BEA were produced at 0.995 aW and 25–30 °C. Two-dimensional profiles of aW by temperature interactions were obtained from these data in order to identify areas where conditions indicate a significant risk of mycotoxins accumulation on grass. For its versatility on growth and mycotoxin production in a wide range of aW and temperatures, F. chaquense would have an adaptive advantage over other Fusarium species, and this would explain its high frequency of isolation in natural grasses grown up in the Chaco wetlands.  相似文献   

12.
Adsorption of the carcinogen aflatoxin B1 (AFB1) onto agro-waste-based materials is a promising alternative over conventional inorganic binders. In the current study, two unmodified adsorbents were eco-friendly prepared from kale and lettuce agro-wastes. A dynamic gastrointestinal tract-simulated model was utilized to evaluate the removal efficiency of the sorptive materials (0.5%, w/w) when added to an AFB1-contaminated diet (100 µg AFB1/kg). Different characterization methodologies were employed to understand the interaction mechanisms between the AFB1 molecule and the biosorbents. Based on adsorption results, the biosorbent prepared from kale was the best; its maximum adsorption capacity was 93.6%, which was significantly higher than that of the lettuce biosorbent (83.7%). Characterization results indicate that different mechanisms may act simultaneously during adsorption. Non-electrostatic (hydrophobic interactions, dipole-dipole interactions, and hydrogen bonding) and electrostatic interactions (ionic attractions) together with the formation of AFB1-chlorophyll complexes appear to be the major influencing factors driving AFB1 biosorption.  相似文献   

13.
14.
Five hundred and twenty samples of edible seeds and oilseeds (sunflower, palm, peanut, sesame, cotton, and grapeseed) were purchased from markets, farmers, and superstores in the central cities of Punjab, Pakistan. A total of 125 (48.1%) edible seed samples from a 6 ≤ months storage period, and 127 (48.8%) from a 2 ≥ years storage period were found to be infested with AFs. The average elevated amount of AFB1 and total AFs was observed in a 2 ≥ years storage period, i.e., 28.6 ± 4.5 and 51.3 ± 10.4 µg/kg, respectively, in sesame seeds. The minimum amount of AFB1 and total AFs was observed in palm seed samples with a storage period of 6 ≤ months, i.e., 9.96 ± 2.4, and 11.7 ± 1.90 µg/kg, respectively. The maximum amount of AFB1 and total AFs were observed in peanut oil samples, i.e., 21.43 ± 2.60 and 25.96 ± 4.30 µg/kg, respectively, with a storage period of 2 ≥ years. Therefore, the maximum dietary intake of 59.60 ng/kg/day was observed in oil samples stored at a ≥ 2 years storage period. The results of the present study concluded that a significant difference was found in the amounts of total AFs in edible seed samples stored at 6 ≤ months and 2 ≥ years storage periods (p < 0.05).  相似文献   

15.
Elasmolomus pallens are post-harvest insect pests of peanuts that are becoming resistant to chemical insecticides. In this, we study evaluated the effect of conidial formulations on entomopathogenic fungi against E. pallens to reduce the adverse effects. Fungal conidia were formulated and applied on sterile filter papers at varying concentrations (1 × 104–1 × 108 conidia mL−1) inside plastic containers. The test insects were exposed and maintained in a relative humidity of 80 ± 10% for 10 d at room temperature (25 ± 2 °C). Mortality was recorded every 24 h. Dose–response bioassay (LC50 and LC90) values for Aspergillus flavus formulated in oil were 1.95 × 106 and 3.66 × 109 conidia/mL, whereas formulations in Tween 80 had 9.36 × 107 and 6.50 × 109 conidia/mL. However, oil-formulated Metarhizium anisopliae had 3.92 × 106 and 2.57 × 108 conidia/mL, with 6.85 × 106 and 5.37 × 108, for formulations in Tween 80. A. flavus had LT50 values of 3.3 and 6.6 days, whereas M. anisopliae had LT50 values of 3.6 and 5.7 d. Maximum protease, chitinase, and lipase activities of 2.51, 0.98, and 3.22 U/mL, respectively, were recorded for A. flavus, whereas values of 2.43, 0.93, and 3.46 were recorded for M. anisopliae. The investigated pathogens demonstrate potential against E. pallens; therefore, their applicability under field conditions requires further investigation.  相似文献   

16.
Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1’s genotoxicity.  相似文献   

17.
Aflatoxin B1 (AFB1), one of the most potent naturally occurring mutagens and carcinogens, causes significant threats to the food industry and animal production. In this study, 25 bacteria isolates were collected from grain kernels and soils displaying AFB1 reduction activity. Based on its degradation effectiveness, isolate N17-1 was selected for further characterization and identified as Pseudomonas aeruginosa. P. aeruginosa N17-1 could degrade AFB1, AFB2 and AFM1 by 82.8%, 46.8% and 31.9% after incubation in Nutrient Broth (NB) medium at 37 °C for 72 h, respectively. The culture supernatant of isolate N17-1 degraded AFB1 effectively, whereas the viable cells and intra cell extracts were far less effective. Factors influencing AFB1 degradation by the culture supernatant were investigated. Maximum degradation was observed at 55 °C. Ions Mn2+ and Cu2+ were activators for AFB1 degradation, however, ions Mg2+, Li+, Zn2+, Se2+, Fe3+ were strong inhibitors. Treatments with proteinase K and proteinase K plus SDS significantly reduced the degradation activity of the culture supernatant. No degradation products were observed based on preliminary LC-QTOF/MS analysis, indicating AFB1 was metabolized to degradation products with chemical properties different from that of AFB1. The results indicated that the degradation of AFB1 by P. aeruginosa N17-1 was enzymatic and could have a great potential in industrial applications. This is the first report indicating that the isolate of P. aeruginosa possesses the ability to degrade aflatoxin.  相似文献   

18.
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24–48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components.  相似文献   

19.
This study investigated the effect of moderate risk level (8 µg/kg) AFB1 in diet supplemented with or without adsorbents on lactation performance, serum parameters, milk AFM1 content of healthy lactating cows and the AFM1 residue exposure risk in different human age groups. Forty late healthy lactating Holstein cows (270 ± 22 d in milk; daily milk yield 21 ± 3.1 kg/d) were randomly assigned to four treatments: control diet without AFB1 and adsorbents (CON), CON with 8 μg/kg AFB1 (dry matter basis, AF), AF + 15 g/d adsorbent 1 (AD1), AF + 15 g/d adsorbent 2 (AD2). The experiment lasted for 19 days, including an AFB1-challenge phase (day 1 to 14) and an AFB1-withdraw phase (day 15 to 19). Results showed that both AFB1 and adsorbents treatments had no significant effects on the DMI, milk yield, 3.5% FCM yield, milk components and serum parameters. Compared with the AF, AD1 and AD2 had significantly lower milk AFM1 concentrations (93 ng/L vs. 46 ng/L vs. 51 ng/L) and transfer rates of dietary AFB1 into milk AFM1 (1.16% vs. 0.57% vs. 0.63%) (p < 0.05). Children aged 2–4 years old had the highest exposure risk to AFM1 in milk in AF, with an EDI of 1.02 ng/kg bw/day and a HI of 5.11 (HI > 1 indicates a potential risk for liver cancer). Both AD1 and AD2 had obviously reductions in EDI and HI for all population groups, whereas, the EDI (≥0.25 ng/kg bw/day) and HI (≥1.23) of children aged 2–11 years old were still higher than the suggested tolerable daily intake (TDI) of 0.20 ng/kg bw/day and 1.00 (HI). In conclusion, moderate risk level AFB1 in the diet of healthy lactating cows could cause a public health hazard and adding adsorbents in the dairy diet is an effective measure to remit AFM1 residue in milk and its exposure risk for humans.  相似文献   

20.
Terbutaline sulfate (TBS) was assayed in biological samples by validated HPTLC method. Densitometric analysis of TBS was carried out at 366 nm on precoated TLC aluminum plates with silica gel 60F254 as a stationary phase and chloroform–methanol (9.0:1.0, v/v) as a mobile phase. TBS was well resolved at RF 0.34 ± 0.02. In all matrices, the calibration curve appeared linear (r2 ⩾ 0.9943) in the tested range of 100–1000 ng spot−1 with a limit of quantification of 18.35 ng spot−1. Drug recovery from biological fluids averaged ⩾95.92%. In both matrices, rapid degradation of drug favored and the T0.5 of drug ranged from 9.92 to 12.41 h at 4 °C and from 6.31 to 9.13 h at 20 °C. Frozen at −20 °C, this drug was stable for at least 2 months (without losses >10%). The maximum plasma concentration (Cpmax) was found to be 5875.03 ± 114 ng mL−1, which is significantly higher than the maximum saliva concentration (Csmax, 1501.69 ± 96 ng mL−1). Therefore, the validated method could be used to carry out pharmacokinetic studies of the TBS from novel drug delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号