首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The number of serological assays for SARS-CoV-2 has skyrocketed in the past year. Concerns have been raised regarding their performance characteristics, depending on the disease severity and the time of the analysis post-symptom onset (PSO). Thus, independent validations using an unbiased sample selection are required for meaningful serology data interpretation. We aimed to assess the clinical performance of six commercially available assays, the seroconversion, and the dynamics of the humoral response to SARS-CoV-2 infection. The study included 528 serum samples from 156 patients with follow-up visits up to six months PSO and 161 serum samples from healthy people. The IgG/total antibodies positive percentage increased and remained above 95% after six months when chemiluminescent immunoassay (CLIA) IgG antiS1/S2 and electro-chemiluminescent assay (ECLIA) total antiNP were used. At early time points PSO, chemiluminescent microparticle immunoassay (CMIA) IgM antiS achieved the best sensitivity. IgM and IgG appear simultaneously in most circumstances, and when performed in parallel the sensitivity increases. The severe and the moderate clinical forms were significantly associated with higher seropositivity percentage and antibody levels. High specificity was found in all evaluated assays, but the sensitivity was variable depending on the time PSO, severity of disease, detection method and targeted antigen.  相似文献   

2.
Knowledge of the antibody-mediated immune response to SARS-CoV-2 is crucial to understand virus immunogenicity, establish seroprevalence, and determine whether subjects or recovered patients are at risk for infection/reinfection and would therefore benefit from vaccination. Here, we describe a novel and simple cell-ELISA specifically designed to measure viral spike S1-specific IgG produced in vitro by B cells in peripheral blood mononuclear cell (PBMC) cultures from a cohort of 45 asymptomatic (n = 24) and symptomatic (n = 21) individuals, with age ranging from 8 to 99 years. All subjects underwent ELISA serological screening twice, at the same time as the cell-ELISA (T2) as well as 35–60 days earlier (T1). Cryopreserved PBMCs of healthy donors obtained years before the COVID-19 pandemic were also included in the analysis. The preliminary results presented here show that out of 45 tested subjects, 16 individuals (35.5%) were positive to the cell-ELISA, 11 (24.5%) were concomitantly positive in the serological screening (T1 and/or T2), and only one person was exclusively positive in ELISA (T1) and negative in cell-ELISA, though values were close to the cutoff. Of note, five individuals (11.2%) tested negative in ELISA but positive in cell-ELISA and thus, they appear to have circulating B cells that produce antibodies against SARS-CoV-2, likely at levels that are undetectable in the serum, which challenges the negative results of the serological screening. The relative level of in vitro secreted IgG was measurable in positive subjects, ranging from 7 to 50 ng/well. Accordingly, all anti-SARS-CoV-2 antibody-positive subjects previously reported moderate to severe symptoms attributable to COVID-19, even though the RT-PCR data were rarely available to confirm viral infection. Overall, the described cell-ELISA might be an effective method for detecting subjects who encountered the virus in the past, and thus helpful to improve serological ELISA tests in the case of undetectable/equivocal circulating IgG levels, and a suitable and improved tool to better evaluate SARS-CoV-2-specific humoral immunity in the COVID-19 pandemic.  相似文献   

3.
Due to the current, rapidly increasing Coronavirus disease 2019 (COVID-19) pandemic, efficient and highly specific diagnostic methods are needed. The receptor-binding part of the spike (S) protein, S1, has been suggested to be highly virus-specific; it does not cross-react with antibodies against other coronaviruses. Three recombinant partial S proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) expressed in mammalian or baculovirus-insect cells were evaluated as antigens in a Luminex-based suspension immunoassay (SIA). The best performing antigen (S1; amino acids 16-685) was selected and further evaluated by serum samples from 76 Swedish patients or convalescents with COVID-19 (previously PCR and/or serologically confirmed), 200 pre-COVID-19 individuals (180 blood donors and 20 infants), and 10 patients with acute Epstein-Barr virus infection. All 76 positive samples showed detectable antibodies to S1, while none of the 210 negative controls gave a false positive antibody reaction. We further compared the COVID-19 SIA with a commercially available enzyme immunoassay and a previously evaluated COVID-19 rapid antibody test. The results revealed an overall assay sensitivity of 100%, a specificity of 100% for both IgM and IgG, a quantitative ability at concentrations up to 25 BAU/mL, and a better performance as compared to the commercial assays, suggesting the COVID-19 SIA as a most valuable tool for efficient laboratory-based serology.  相似文献   

4.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. From the onset of the pandemic, rapid antigen tests have quickly proved themselves to be an accurate and accessible diagnostic platform. The initial (and still most commonly used antigen tests) for COVID-19 diagnosis were constructed using monoclonal antibodies (mAbs) specific to severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP). These mAbs are able to bind SARS-CoV-2 NP due to high homology between the two viruses. However, since first being identified in 2019, SARS-CoV-2 has continuously mutated, and a multitude of variants have appeared. These mutations have an elevated risk of leading to possible diagnostic escape when using tests produced with SARS-CoV-derived mAbs. Here, we established a library of 18 mAbs specific to SARS-CoV-2 NP and used two of these mAbs (1CV7 and 1CV14) to generate a prototype antigen-detection lateral flow immunoassay (LFI). A side-by-side analysis of the 1CV7/1CV14 LFI and the commercially available BinaxNOWTM COVID-19 Antigen CARD was performed. Results indicated the 1CV7/1CV14 LFI outperformed the BinaxNOWTM test in the detection of BA.2, BA.2.12.1, and BA.5 Omicron sub-variants when testing remnant RT-PCR positive patient nasopharyngeal swabs diluted in viral transport media.  相似文献   

5.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号