首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low carbohydrate, high fat (LCHF) diets are followed by athletes, but questions remain regarding effects of LCHF on metabolic adaptation, exercise-induced stress, immune function and their time-course. In this cross-over study, 14 recreational male athletes (32.9 ± 8.2 years, VO2max 57.3 ± 5.8 mL/kg/min) followed a two week LCHF diet (<10 En% carbohydrates (CHO), ~75En% Fat) and a two week HC diet (>50 En% CHO), in random order, with a wash-out period of >2 weeks in between. After 2 days and 2 weeks on either diet, participants performed cycle ergometry for 90 min at 60%Wmax. Blood samples for analysis of cortisol, free fatty acids (FFA), glucose and ketones, and saliva samples for immunoglobin A (s-IgA) were collected at different time points before and after exercise. The LCHF diet resulted in higher FFA, higher ketones and lower glucose levels compared to the HC diet (p < 0.05). Exercise-induced cortisol response was higher after 2 days on the LCHF diet (822 ± 215 nmol/L) compared to 2 weeks on the LCHF diet (669 ± 243 nmol/L, p = 0.004) and compared to both test days following the HC diet (609 ± 208 and 555 ± 173 nmol/L, both p < 0.001). Workload was lower, and perceived exertion higher, on the LCHF diet compared to the HC diet on both occasions. A drop in s-IgA following exercise was not seen after 2 days on the LCHF diet, in contrast to the HC diet. In conclusion, the LCHF diet resulted in reduced workload with metabolic effects and a pronounced exercise-induced cortisol response after 2 days. Although indications of adaptation were seen after 2 weeks on the LCHF diet, work output was still lower.  相似文献   

2.
3.
The primary objective of this study was to determine the effects of vitamin D levels on peripheral pulse wave velocity (pPWV) following acute maximal exercise in healthy young adults. Fifty male healthy adults from National Chung Cheng University participated in the study. Participants were divided into the 25-hydroxyvitamin D (25(OH)D) sufficiency group (n = 28, 25(OH)D ≥ 50 nmol/L) and deficiency group (n = 22, 25(OH)D < 50 nmol/L). The acute maximal exercise was performed using an incremental cycling test to exhaustion. Additionally, the pPWV and blood pressure were obtained at rest and 0, 15, 30, 45, 60 min after acute maximal exercise. The results show that 25(OH)D deficiency group had higher pPWV at post-exercise (5.34 ± 0.71 vs. 4.79 ± 0.81 m/s, p < 0.05), post-exercise 15 min (5.13 ± 0.53 vs. 4.48 ± 0.66 m/s, p < 0.05) and post-exercise 30 min (5.26 ± 0.84 vs. 4.78 ± 0.50 m/s, p < 0.05) than the sufficiency group. Furthermore, there was a significant inverse correlation between 25(OH)D levels and pPWV following acute maximal exercise. Our study demonstrated that low vitamin D status relates to the poor response of pPWV following maximal exercise in healthy young men. Vitamin D deficiency may increase the risk of incident cardiovascular events after acute exhaustive exercise, even in healthy and active adults.  相似文献   

4.
This study aimed to determine the short-term effect of two isocaloric diets differing in the ratio of protein–carbohydrate on melatonin levels, sleep, and subsequent dietary intake and physical activity in healthy young men. Twenty-four healthy men took part in a crossover design including two sessions of three days on isocaloric diets whether high-protein, low-carbohydrate (HPLC) or low-protein, high-carbohydrate (LPHC) followed by 24-h free living assessments. Sleep was measured by ambulatory polysomnography pre-post-intervention. Melatonin levels were assessed on the third night of each session on eight-point salivary sampling. Physical activity was monitored by accelerometry. On day 4, participants reported their 24-h ad-libitum dietary intake. LPHC resulted in better sleep quality and increased secretion of melatonin compared to HPLC. A significant difference was noted in sleep efficiency (p < 0.05) between the two sessions. This was mainly explained by a difference in sleep onset latency (p < 0.01) which was decreased during LPHC (PRE: 15.8 ± 7.8 min, POST: 11.4 ± 4.5 min, p < 0.001). Differences were also noted in sleep staging including time spent on REM (p < 0.05) and N1 (p < 0.05). More importantly, REM latency (PRE: 97.2 ± 19.9 min, POST 112.0 ± 20.7 min, p < 0.001) and cortical arousals (PRE: 7.2 ± 3.9 event/h, POST 8.5 ± 3.3 event/h) increased in response to HPLC diet but not LPHC. On day 4, 24-h ad-libitum energy intake was higher following HPLC compared to LPHC (+64 kcal, p < 0.05) and explained by increased snacking behavior (p < 0.01) especially from carbohydrates (p < 0.05). Increased carbohydrates intake was associated with increased cortical arousals.  相似文献   

5.
Sport nutrition knowledge has been shown to influence dietary habits of athletes. The purpose of the current study was to examine relationships between sport nutrition knowledge and body composition and examine potential predictors of body weight goals in collegiate athletes. Participants included National Collegiate Athletic Association Division III women (n = 42, height: 169.9 ± 6.9 cm; body mass: 67.1 ± 8.6 kg; fat-free mass: 51.3 ± 6.6 kg; body fat percent: 24.2 ± 5.3%) and men (n = 25, height: 180.8 ± 7.2 cm; body mass: 89.2 ± 20.5 kg; fat-free mass: 75.9 ± 12.2 kg; body fat percent: 13.5 ± 8.9%) athletes. Body composition was assessed via air displacement plethysmography. Athletes completed a validated questionnaire designed to assess sport nutrition knowledge and were asked questions about their perceived dietary energy and macronutrient requirements, as well as their body weight goal (i.e., lose, maintain, gain weight). Athletes answered 47.98 ± 11.29% of questions correctly on the nutrition questionnaire with no differences observed between sexes (men: 49.52 ± 11.76% vs. women: 47.03 ± 11.04%; p = 0.40). An inverse relationship between sport nutrition knowledge scores and body fat percentage (BF%) (r = −0.330; p = 0.008), and fat mass (r = −0.268; p = 0.032) was observed for all athletes. Fat mass (β = 0.224), BF% (β = 0.217), and body mass index (BMI) (β = 0.421) were all significant (p < 0.05) predictors of body weight goal in women. All athletes significantly (p < 0.001) underestimated daily energy (−1360 ± 610.2 kcal/day), carbohydrate (−301.6 ± 149.2 grams/day [g/day]), and fat (−41.4 ± 34.5 g/day) requirements. Division III collegiate athletes have a low level of sport nutrition knowledge, which was associated with a higher BF%. Women athletes with a higher body weight, BF% and BMI were more likely to select weight loss as a body weight goal. Athletes also significantly underestimated their energy and carbohydrate requirements based upon the demands of their sport, independent of sex.  相似文献   

6.
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeine’s effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0–200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p < 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes.  相似文献   

7.
The aim of a 12-week randomized double-blind placebo-controlled study was to assess the effect of daily supplementation with a natural extract of Spinacia oleracea L. (4 × 500 mg capsules/day; total 2 g per day) combined with a moderate-intensity training program (1 h session/3 times a week) on skeletal muscle fitness in adults over 50 years of age. Muscle strength assessed by isokinetic and isometric dynamometry improved significantly in the experimental (n = 23) and the placebo (n = 22) groups, but the magnitude of improvement was higher in the experimental group, with between-group differences in almost all variables, including isokinetic at 60° s−1 in knee extension, peak torque (p < 0.007); total work per repetition maximum (p < 0.009); isokinetic at 180°s−1 in knee extension, peak torque (p < 0.002); total work (p < 0.007); total work per repetition maximum (p < 0.005); average power (p < 0.027); isometric in knee extension, peak torque (p < 0.005); and average peak torque (p < 0.002). Similar findings were observed for muscle quality. Changes in quality of life (SF-36) were not found, except for improvements in the role physical (p < 0.023) and role emotional (p < 0.001) domains, likely as a result of the physical training sessions. A nutritional survey did not revealed changes in dietary habits. No adverse events were recorded. In subjects over 50 years of age, moderate-intensity strength training combined with daily supplementation for 12 weeks with a natural extract of Spinacia oleracea L. improved muscle-related variables and muscle quality. Maintaining muscle health is a key component of healthy aging.  相似文献   

8.
Background: To examine associations between body composition and vitamin D status in children participating in a lifestyle intervention. Methods: Children (6–12 y, n = 101) with a body mass index (BMI)-for-age >85th percentile were randomized to six dietitian-led behavior counselling sessions or no intervention. Plasma 25-hydroxyvitamin D (25(OH)D), anthropometry, and body composition using dual-energy X-ray absorptiometry were assessed every 3 months for 1 year. For each anthropometry variable (z-scores), tertiles were created to test for differences in 25(OH)D over time (tertile-by-time), and for changes in the z-score (loss, maintain, gain)-by-time, and according to fat patterning (android vs. gynoid) using mixed effects models. Results: The baseline plasma 25(OH)D was 62.2 nmol/L (95%CI: 58.7–65.7), and none < 30 nmol/L. At 6 mo, children with gynoid fat patterning had higher 25(OH)D concentrations than in those with android fat patterning (64.5 ± 1.1 nmol/L vs. 50.4 ± 1.0 nmol/L, p < 0.003, Cohen’s f = 0.20). Children with the lowest lean mass index z-score at 9 mo had higher plasma 25(OH)D concentrations than children with the highest z-score at baseline, 3 mo, and 6 mo (p < 0.05, Cohen’s f = 0.20). No other significant differences were observed. Conclusion: In this longitudinal study, vitamin D deficiency was not present in children 6–12 y of age with obesity. Reductions in adiposity did not alter the vitamin D status.  相似文献   

9.
The study of the effects of a water-based exercise program in overweight/obese people with or without type 2 diabetes is a topic of relatively recent interest. This type of exercise presents some advantages in reducing the risk of injury or trauma, and it can be a valuable therapeutic card to play for sedentary or physically inactive patients who have chronic metabolic diseases. This work aims to make a contribution showing the effects of a water-based exercise intervention, supervised by graduates in sports sciences, in a group of overweight/obese people with or without type 2 diabetes. In total, 93 adults (age 60.59 ± 10.44 years), including 72 women (age 60.19 ± 10.97 years) and 21 men (age 61.95 ± 8.48 years), were recruited to follow a water-based exercise program (2 sessions/week, for 12 weeks) at the C.U.R.I.A.Mo. Healthy Lifestyle Institute of Perugia University. Results showed an improvement in body mass index (−0.90 ± 1.56, p = 0.001), waist circumference (−4.32 ± 6.03, p < 0.001), and systolic (−7.78 ± 13.37, p = 0.001) and diastolic (−6.30 ± 10.91, p = 0.001) blood pressure. The supervised water-based intervention was useful in managing patients with metabolic diseases who often present with other health impairments, such as musculoskeletal problems or cardiovascular or rheumatic disease that could contraindicate gym-based exercise.  相似文献   

10.
The aim of this study was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru) and sucralose on blood glucose response in healthy individuals. Fifteen healthy individuals (five females, age of 25.4 ± 2.5 years, BMI of 23.7 ± 1.7 kg/m2 with a body mass (BM) of 76.3 ± 12.3 kg) participated in this double-blind randomized crossover placebo-controlled trial. Participants received a mixture of 300 mL of water with 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose as a placebo. Peak BG values Glu were reached after 40 ± 13 min (peak BG: 141 ± 20 mg/dL), for Fru after 36 ± 22 min (peak BG: 98 ± 7 mg/dL), for GluFru after 29 ± 8 min (BG 128 ± 18 mg/dL), and sucralose after 34 ± 27 min (peak BG: 83 ± 5 mg/dL). Significant differences regarding the time until peak BG were found only between Glu and GluFru supplementation (p = 0.02). Peak blood glucose levels were significantly lower following the ingestion of Fru compared to the supplementation of Glu and GluFru (p < 0.0001) while Glu and GluFru supplementation showed no difference in peak values (p = 0.23). All conditions led to a significantly higher peak BG value compared to sucralose (p < 0.0001). Blood lactate increased in Glu (p = 0.002), Fru and GluFru (both p < 0.0001), whereas sucralose did not increase compared to the baseline (p = 0.051). Insulin levels were significantly higher in all conditions at peak compared to sucralose (p < 0.0001). The findings of this study prove the feasibility of combined carbohydrate supplementations for many applications in diabetic or healthy exercise cohorts.  相似文献   

11.
Previous research indicates that dietary habits may differ between athletes of different sports. In this cross-sectional study, we hypothesize meal frequency, food choices, and food preferences will significantly differ between contact types. The participants were athletes (n = 92; men: n = 57, body fat percent (BF%): 14.8 ± 8.4%, body mass index (BMI): 25.5 ± 5.5 kg·m−2; women: n = 36, BF%: 26.7 ± 7.3%, BMI: 22.3 ± 2.7 kg·m−2) from high-contact (HCS), low-contact (LCS), and non-contact (NCS) sports. Meal frequency, food preference, and food choice questionnaires assessed factors influencing dietary habits. Dual-energy X-ray absorptiometry (DXA) measured lean body mass, fat mass, and body fat. A GLM multivariate analysis was used with significance accepted at p < 0.05. Significant body composition differences were observed between genders (p < 0.001) and among sports (p < 0.001). Dinner (83.7%), lunch (67.4%), and breakfast (55.4%) were the most frequently eaten meals, followed by evening snack (17.8%), afternoon snack (15.2%), and morning snack (8.7%). Greater preferences for starches were observed for HCS (p = 0.04; η2 = 0.07) and for a greater preference for vegetables was found for NCS (p = 0.02; η2 = 0.09). Significant differences also existed in the importance of health (p = 0.04; η2 = 0.07), weight control (p = 0.05; η2 = 0.11), natural content (p = 0.04; η2 = 0.07), and price (p = 0.04; η2 = 0.07). These results support our hypothesis that food choices and food preferences differ between contact types. This may help sports dieticians create more individualized nutrition programs.  相似文献   

12.
This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01) and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01). Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01). These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05) and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05) expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01). The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01) and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01). These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.  相似文献   

13.
A half-marathon (HM) is a vigorous high-intensity exercise, which could induce lower extremity musculoskeletal injury risks for recreational runners. They usually consume nonsteroidal anti-inflammatory drugs (NSAIDs) in order to shorten their return to play but ignore the side effects, such as peptic ulcers and renal and vascular disorders. Lactobacillus plantarum PS128 (PS128) could improve inflammation and oxidative stress by modulating the gut microbiota, thus potentially improving muscle damage and recovery. However, few studies have addressed the PS128 exercise capacity recovery 96 h after HM. Thus, this study aimed to investigate the effect of PS128 on exercise capacity and physiological adaptation after HM. A double-blind, randomized, placebo-controlled, counterbalanced, crossover trial was used for the experiment. HM was conducted at the beginning and end of the 4-week nutritional supplement administration. Eight recreational runners took two capsules (3 × 1010 CFU/capsule) of PS128 each morning and evening before meals for 4 weeks as the PS128 treatment (LT), or they took two capsules of placebo for 4 weeks as the placebo treatment (PT). In both treatments, an exercise capacity test (lower extremity muscle strength, anaerobic power, lower extremity explosive force, and aerobic capacity) and blood test (muscle fatigue, muscle damage, oxidative stress, and renal injury) were performed before the administration of the nutritional supplement (baseline), 48 h before HM (pre), and 0 h (0 h post), 3 h (3 h post), 24 h (24 h post), 48 h (48 h post), 72 h (72 h post), and 96 h (96 h post) after HM. There was no significant difference in the total duration of HM between PT and LT, but PT was found to be significantly higher than LT at Stage 4 (15,751–21,000 m) of HM (3394 ± 727 s vs. 2778 ± 551 s, p = 0.02). The lower extremity muscle strength measured using an isokinetic dynamometer in PT was significantly lower than that in LT at 72 h after HM. The lower extremity explosive force from the countermovement jump (CMJ) in PT was significantly decreased compared to 24 h prior. There was no significant difference between anaerobic power and aerobic capacity between the two treatments after HM. After HM, LT had lower muscle damage indices, such as myoglobin (3 h post-PT vs. -LT: 190.6 ± 118 ng/mL vs. 91.7 ± 68.6 ng/mL, p < 0.0001) and creatine phosphokinase (24 h post-PT vs. -LT: 875.8 ± 572.3 IU/L vs. 401 ± 295.7 IU/L, p < 0.0001). Blood urea nitrogen recovered in 24 h (24 h pre- vs. post-LT, p > 0.05) and higher superoxide dismutase was found in LT (96 h post-PT vs. -LT: 0.267 ± 0.088 U/mL vs. 0.462 ± 0.122 U/mL, p < 0.0001). In conclusion, PS128 supplementation was associated with an improvement in muscle damage, renal damage, and oxidative stress caused by HM through microbiota modulation and related metabolites but not in exercise capacity.  相似文献   

14.
The aim of the study was to evaluate the overall biohumoral and metabolic effects of a 12-week add-on therapy consisting of a new nutraceutical formulation (BHC) based on berberine, hesperidin, and chromium picolinate in type 2 diabetes mellitus (T2D) patients with suboptimal glycemic compensation receiving metformin. After 12 weeks, participants in the group receiving metformin plus BHC, compared to the group receiving metformin only, saw a significant improvement in their glucose profile, in terms of both glycated hemoglobin (HbA1c) and fasting blood glucose (FBG). Their FBG dropped from 145 ± 20 mg/dL to 128 ± 23 mg/dL (p < 0.01), a decrease of 11.7% compared with the baseline. This decrease differed significantly from the situation in the control arm (p < 0.05). HbA1c decreased by 7.5% from the baseline, from 53.5 ± 4.3 mmol/mol to 49.5 ± 5.1 mmol/mol (p < 0.01), in the group given BHC, while no difference was seen in the control group. Advanced glycation end products (AGEs) and malondialdehyde (MDA) were found to be significantly reduced (p < 0.01) only in the BHC group, from 9.34 ± 7.61 μg/mL to 6.75 ± 6.13 μg/mL, and from 1.7 ± 0.15 μmol/L to 1.4 ± 0.25 μmol/L, respectively. In patients with T2D taking metformin with suboptimal glycemic compensation, adding BHC for 3 months significantly improved glucose control in terms of FBG and HbA1c, and had a positive effect on the lipid peroxidation profile, as indicated by a decrease in AGEs and MDA.  相似文献   

15.
We compared the effect of programmed (PFI) and thirst-driven (TDFI) fluid intake on prolonged cycling performance and exercise associated muscle cramps (EAMC). Eight male endurance athletes (26 ± 6 years) completed two trials consisting of 5 h of cycling at 61% V˙O2peak followed by a 20 km time-trial (TT) in a randomized crossover sequence at 30 °C, 35% relative humidity. EAMC was assessed after the TT with maximal voluntary isometric contractions of the shortened right plantar flexors. Water intake was either programmed to limit body mass loss to 1% (PFI) or consumed based on perceived thirst (TDFI). Body mass loss reached 1.5 ± 1.0% for PFI and 2.5 ± 0.9% for TDFI (p = 0.10). Power output during the 20 km TT was higher (p < 0.05) for PFI (278 ± 41 W) than TDFI (263 ± 39 W), but the total performance time, including the breaks to urinate, was similar (p = 0.48) between conditions. The prevalence of EAMC of the plantar flexors was similar between the drinking conditions. Cyclists competing in the heat for over 5 h may benefit from PFI aiming to limit body mass loss to <2% when a high intensity effort is required in the later phase of the race and when time lost for urination is not a consideration.  相似文献   

16.
Whether hemodialysis patients should be allowed or even encouraged to eat during dialysis remains a controversial topic. This cross-over study aimed to evaluate the impact of feeding during dialysis on intradialytic blood pressure (BP) profile and dialysis adequacy in 26 patients receiving thrice-weekly, in-center hemodialysis. Over three consecutive mid-week dialysis sessions, intradialytic BP was monitored using the Mobil-O-Graph device (IEM, Stolberg, Germany). Blood samples were also obtained for the determination of the urea reduction ratio (URR). At baseline, patients underwent dialysis without the provision of a meal. In phases A and B, a meal with either high-protein (1.5 gr/kg of body weight) or low-protein (0.7 gr/kg of body weight) content was administered 1 h after the initiation of dialysis. The sequence of meals (high-protein and low-protein or vice versa) was randomized. Average intradialytic systolic BP (SBP) was similar on all three occasions. However, compared with baseline, the standard deviation (SD) (11.7 ± 4.1 vs. 15.6 ± 7.6 mmHg, p < 0.01), coefficient of variation (CV) (9.5 ± 3.7% vs. 12.4 ± 6.0%, p < 0.01) and average real variability (ARV) (9.4 ± 3.9 vs. 12.1 ± 5.2 mmHg, p < 0.01) of intradialytic SBP were higher in phase A. Similarly, compared with the baseline evaluation, all three indices of intradialytic SBP variability were higher in phase B (SD: 11.7 ± 4.1 vs. 14.1 ± 4.5 mmHg, p < 0.05; CV: 9.5 ± 3.7% vs. 11.1 ± 3.8%, p < 0.05; ARV: 9.4 ± 3.9 vs. 10.9 ± 3.9 mmHg, p < 0.05). Compared with dialysis without a meal, the consumption of a high-protein or low-protein meal resulted in a lower URR (73.4 ± 4.3% vs. 65.7 ± 10.7%, p < 0.001 in phase A and 73.4 ± 4.3% vs. 67.6 ± 4.3%, p < 0.001 in phase B, respectively). In conclusion, in the present study, feeding during dialysis was associated with higher intradialytic SBP variability and reduced adequacy of the delivered dialysis.  相似文献   

17.
We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15–63 s]; MAX = 36 s [13–59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.  相似文献   

18.
We aimed to report the implementation of a phenylketonuria (PKU) transition program and study the effects of follow-up with an adult team on metabolic control, adherence, and loss of follow-up. Fifty-five PKU patients were analysed in the study periods (SP): 2 years before (SP1) and after the beginning of adult care (SP2). Retrospective data on metabolic control and number of clinic appointments were collected for each SP, and protein intakes were analysed. In SP2, three patients (6%) were lost to follow-up. There was a small but statistically significant increase in median number of annual blood spots from SP1 to SP2: 11 (7–15) vs. 14 (7–20); p = 0.002. Mean ± SD of median blood Phe remained stable (525 ± 248 µmol/L vs. 552 ± 225 µmol/L; p = 0.100); median % of blood Phe < 480 µmol/L decreased (51 (4–96)% vs. 37 (5–85)%; p = 0.041) and median number of clinic appointments increased from SP1 to SP2: (5 (4–6) vs. 11 (8–13); p < 0.001). No significant differences were found regarding any parameter of protein intake. Our results suggest that the implementation of an adult service was successful as impact on metabolic control was limited and attendance remained high. Continuous dietetic care likely contributed to these results by keeping patients in follow-up and committed to treatment.  相似文献   

19.
Background: Recently, high-carbohydrate or low-carbohydrate (HC/LC) diets have gained substantial popularity, speculated to improve physical performance in athletes; however, the effects of short-term changes of the aforementioned nutritional interventions remain largely unclear. Methods: The present study investigated the impact of a three-week period of HC/low-fat (HC) diet followed by a three-week wash-out-phase and subsequent LC diet on the parameters of physical capacity assessed via cardiopulmonary exercise testing, body composition via bioimpedance analysis and blood profiles, which were assessed after each of the respective diet periods. Twenty-four physically active adults (14 females, age 25.8 ± 3.7 years, body mass index 22.1 ± 2.2 kg/m2), of which six participants served as a control group, were enrolled in the study. Results: After three weeks of each diet, VO2peak was comparable following both interventions (46.8 ± 6.7 (HC) vs. 47.2 ± 6.7 mL/kg/min (LC; p = 0.58)) while a significantly higher peak performance (251 ± 43 W (HC) vs. 240 ± 45 W (LC); (p = 0.0001), longer time to exhaustion (14.5 ± 2.4 min (HC) vs. 14.1 ± 2.4 min (LC); p = 0.002) and greater Watt/kg performance (4.1 ± 0.5 W/kg (HC) vs. 3.9 ± 0.5 W/kg (LC); p = 0.003) was demonstrated after the HC diet. In both trial arms, a significant reduction in body mass (65.2 ± 11.2 to 63.8 ± 11.8 kg (HC) vs. 64.8 ± 11.6 to 63.5 ± 11.3 kg (LC); both p < 0.0001) and fat mass (22.7% to 21.2%; (HC) vs. 22.3% to 20.6% (LC); both p < 0.0001) but not in lean body mass or skeletal muscle mass was shown when compared to baseline. Resting metabolic rate was not different within both groups (p > 0.05). Total cholesterol and LDL-cholesterol significantly decreased after the HC diet (97.9 ± 33.6 mg/dL at baseline to 78.2 ± 23.5 mg/dL; p = 0.02) while triglycerides significantly increased (76 ± 38 mg/dL at baseline to 104 ± 44 mg/dL; p = 0.005). Conclusion: A short-term HC and LC diet showed improvements in various performance parameters in favor of the HC diet. Some parameters of body composition significantly changed during both diets. The HC diet led to a significant reduction in total and LDL-cholesterol while triglycerides significantly increased.  相似文献   

20.
Daily muscle glycogen recovery after training is important for athletes. Few studies have reported a continuous change in muscle glycogen for 24 h. We aimed to investigate the changes in carbohydrate intake amount on muscle glycogen recovery for 24 h after exercise using 13C-magnetic resonance spectroscopy (13C-MRS). In this randomized crossover study, eight male participants underwent prolonged high-intensity exercise, and then consumed one of the three carbohydrate meals (5 g/kg body mass (BM)/d, 7 g/kg BM/d, or 10 g/kg BM/d). Glycogen content of thigh muscle was measured using 13C-MRS before, immediately after, and 4 h, 12 h and 24 h after exercise. Muscle glycogen concentration decreased to 29.9 ± 15.9% by exercise. Muscle glycogen recovery 4–12 h after exercise for the 5 g/kg group was significantly lower compared to those for 7 g/kg and 10 g/kg groups (p < 0.05). Muscle glycogen concentration after 24 h recovered to the pre-exercise levels for 7 g/kg and 10 g/kg groups; however, there was a significant difference for the 5 g/kg group (p < 0.05). These results suggest that carbohydrate intake of 5 g/kg BM/d is insufficient for Japanese athletes to recover muscle glycogen stores 24 h after completing a long-term high-intensity exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号